
To appear in Theoretical Computer Science.

Also in Proc. ICALP'90, pages 32-45.

Static Correctness
of

Hierarchical Procedures

Michael I. Schwartzbach

Computer Science Department

Aarhus University

Ny Munkegade

DK-8000 �Arhus C, Denmark

mis@daimi.aau.dk

Abstract

A system of hierarchical, fully recursive types in a truly imperative lan-

guage allows program fragments written for small types to be reused

for all larger types. To exploit this property to enable type-safe hier-

archical procedures, it is necessary to impose a static requirement on

procedure calls. We introduce an example language and prove the ex-

istence of a sound requirement which preserves static correctness while

allowing hierarchical procedures. This requirement is further shown

to be optimal, in the sense that it imposes as few restrictions as possi-

ble. This establishes the theoretical basis for a general type hierarchy

with static type checking, which enables 1st order polymorphism com-

bined with multiple inheritance and specialization in a language with

assignments.

We extend the results to include opaque types. An opaque version of

a type is di�erent from the original but has the same values and the

same order relations to other types. The opaque types allow a more

exible polymorphism and provide the usual pragmatic advantages

1

of distinguishing between intended and unintended type equalities.

Opaque types can be viewed as a compromise between synonym types

and abstract types.

2

1 Introduction

This paper develops a subtype polymorphism for an imperative language with

assignments, subvariables, variable parameters, and fully recursive types.

It combines multiple inheritance with simple implicit parametric polymor-

phism.

The idea is to allow hierarchical procedure calls, where the types of the ac-

tual parameters are larger than those of the formal parameters. The claim

is that if a program is statically correct, then this mechanism will preserve

correctness. This is only true if the procedure call avoids some blatant in-

consistencies by maintaining a homogeneous choice of larger actual types.

We must introduce a static requirement, which is a rule that determines the

legality of procedure calls.

In section 2 we introduce the types. They are represented as unordered, reg-

ular trees. The type ordering is de�ned as a re�nement of the B�ohm ordering.

Section 3 presents the example language. It is similar to Pascal, except that

it employs the richer types presented in section 2. In section 4 we observe the

apparent coincidence that procedures seem to remain type correct when the

types of their formal parameters are increased. This is the inspiration to the

later introduction of hierarchical procedure calls. Section 5 contains a formal

de�nition of static correctness of programs. The correctness requirements

are carefully expressed using a very small set of relations on types. The con-

cept of extended types is introduced; these play the role of type schemes,

summarizing the possible types of polymorphic expressions. The exact re-

quirement for the legality of procedure calls is left as an unspeci�ed predicate

on the types of formal and actual parameters. Section 6 observes that such

a requirement need only satisfy a few simple soundness rules to imply type

correctness for programs. This inspires a search for the most liberal such

requirement. A candidate is proposed, and a lengthy proof is given for its

soundness and optimality. In section 7 various extensions to the language are

considered. It is shown that local variables can be handled, whereas global

variables must be abandonded. Section 8 describes a technique for making

the hierarchical calls more
exible by introducing opaque versions of types.

Technically, this is simply a matter of moving form a partial order on types

to a preorder. All previous results generalize without much di�culty.

3

2 The Types

The type system allows dynamic, recursive types, but it is still intended to

be employed by a standard imperative language, where variables containing

structured values are composed of a similar structure of subvariables.

Types are de�ned by means of a set of type equations

Type Ni = �i

where the Ni's are names and the �i's are type expressions, which are de�ned

as follows

� ::= Int j Bool j simple types

Ni j type names

�� j lists

(n1 : �1; : : : ; nk : �k) partial products, k � 0, ni 6= nj

Here the ni's are names. Notice that type de�nitions may involve arbitrary

recursion.

The �-operator corresponds to ordinary �nite lists. The partial product is a

generalization of sums and products; its values are partial functions from the

tag names to values of the corresponding types, in much the same way that

values of ordinary products may be regarded as total functions.

The partiality of the product will prove essential to the correctness of the

hierarchy. Furthermore, partial products yield a pragmatically advantageous

notation for specifying recursive types, in particular when combined with the

notion of structural invariants. Details are presented in [7].

The values of types may be taken to be the �-least solutions to the corre-

sponding equations on sets induced by the above interpretation of the type

constructors. Other interpretations of types are possible; for example, one

may include in�nite (lazy) values. The variety of di�erent interpretations is

investigated in [8].

4

2.1 Type Equivalence

Several type expressions may be taken to denote the same type. These can

be identi�ed by an equivalence relation �, which is de�ned as the identity

of normal forms, using the techniques of [4,5]. To each type expression

T we associate a unique normal form nf (T), which is a possibly-in�nite

labeled tree. Informally, the tree is obtained by repeatedly unfolding the

type expression. Formally, we use the fact that the set of labeled trees form

a complete partial order under the partial ordering where t1 v t2 i� t1 can

be obtained from t2 by replacing any number of subtrees with the singleton

tree
. In this setting, normal forms can be de�ned as limits of chains of

approximations. The singleton tree
 is smaller than all other trees and

corresponds to the normal form of the type de�ned by

Type N = N

We shall write
 to denote any such type expression.

2.2 Type Ordering

The hierarchical ordering is a re�nement of v. We want to include orderings

between partial product types, such that (ni : Ti) � (mj : Sj) i�

fnig � fmjg and (8i; j : ni=mj) Ti � Sj)

This possibility must extend to in�nite types as well. If �0 is this inductive

(�nite) re�nement of v, then the full ordering is de�ned as

S � T , 8S0 v S; jS0j <1 : S0 �0 T

Thus, products with fewer components are smaller than products with more

components. As noted in [7], trees under this ordering no longer form a cpo.

However, all the chains de�nable by type equations still have limits.

Facts 2.1:

5

�
 is the smallest type.

� The type constructors are monotonic and continuous.

� If T = F (T) is a type equation, then
 � F (
) � F 2(
) � � � � �

F i(
) � � � � is a chain with limit T .

� If T1 � T2, then all values of type T1 are also values of type T2.

� Greatest lower bounds u always exist.

� Least upper bounds t may or may not exist.

� All of �, �, u and t are computable.

The least upper bounds of� correspond to the constructive aspect ofmultiple

inheritance: two types can be joined by the (recursive) uni�cation of their

components. In fact, we obtain a generalization of the ordinary multiple

inheritance, since we have recursive (in�nite) types and the polymorphic

type
. The greatest lower bounds correspond to general specialization: the

maximal common subtype of two types can be constructed.

3 An Example Language

The results we present will be valid in any standard imperative language

which employs our type system and exploits its rami�cations. In order to

provide a rigorous framework for stating and proving these results, we shall

introduce a modest example language. Hopefully, it will be apparent that all

major results will carry over to richer languages without signi�cant modi�-

cations. The language is presented by means of its syntax and its informal

semantics.

3.1 Syntax

The principal syntactic categories are: statements (S), variables (�), expres-

sions (�), declarations (D), types (�), and programs (P). In the following

6

grammar the symbols N;P; ni; x range over arbitrary names, and k is any

non-negative number.

S ::= �:=� j

�:-ni j

�:+(ni:�) j

P(�1,: : :,�k) j

if � then S end j

while � do S end j

S1 ; S2

� ::= x j �.ni j �[�]

� ::= 0 j �+1 j �-1 j

� j

�1 = �2 j

[�1,: : :,�k] j

|�| j

(n1:�1,: : :,nk:�k) j

has(�,ni)

D ::= Type N = � j

Proc P(� x1:�1,: : :,� xk:�k) S end P j

Var x:�

� ::= var j val

� ::= Int j Bool j

N j

*� j

(n1:�1,: : :,nk:�k)

P ::= D1 D2 : : : Dk S

3.2 Informal Semantics

Most of the language is quite standard: simple expressions, variables, assign-

ments, comparisons, control structures and procedures with variable- or value

parameters. There are static scope rules, but global variables may not be

accessed from within procedures. As shown in section 7.1 this is a necessary

restriction; however, it does not seriously limit the generality of the language,

since global variables can be explicitly passed as variable parameters.

The partial product acts as a partial function where �:-ni removes ni from

the domain of �, �:+(ni:�) updates � with the value � on ni, and has(�,ni)

decides whether ni is in the domain of �. Arbitrary partial product constants

can be denoted by (n1:�1,: : :,nk:�k). A subvariable of a partial product

7

may be selected by �.ni (provided it is in the domain of �). A list constant

is denoted by [�1,: : :,�k], and the subvariable with index � is selected by

�[�] (provided � has length greater than �). The expression |�| denotes

the length of the list �.

4 Motivating Hierarchal Procedures

This section will provide an intuitive motivation for the proposed type hier-

archy, and it will point out the various di�culties that we must overcome.

The prime motivation is the observation that many procedure calls seem to

work �ne if the types of actual parameters are larger than those of the formal

parameters. In the following examples we compare pairs of procedures, where

we increase the sizes of the formal parameters. In all cases we observe that

the procedure body can remain unchanged.

Proc P(var x,y:
,val z:
) Proc P(var x,y:Int,val z:Int)

x:= z; x:= z;

y:= z y:= z

end P end P

Proc Q(var x:*
,val y:
) Proc Q(var x:*Bool,val y:Bool)

if |x| = 0 then if |x| = 0 then

x:=[y,y,y] x:=[y,y,y]

end end

end Q end Q

Proc R(var x:(a:
,b:Bool)) Proc R(var x:(a:Int,b:Bool,c:()))

x.b:=has(x,a) x.b:=has(x,a)

end R end R

This opens up for a very direct version of code reuse, where the left-hand

procedure can emulate the right-hand one by enlarging the types of its formal

parameters during a so-called hierarchical procedure call. Then
 works as

8

a type parameter and inheritance is enabled by the partial product aspect of

the type ordering.

There have been many suggestions for languages with a similar subtype poly-

morphism. Ours is unique in allowing truly imperative features such as as-

signments, subvariables, and variable parameters. Many systems rely on

coercions [1,2,4,6] which have distinct disadvantages such as type loss and

the update problem [2]. We avoid these; for example, the procedure

Proc Id(var x:
)

skip

end Id

will be the identity on both the type and the value of any argument. The

presence of variables or mutable types [1,2] have so far lead to unsafe type sys-

tems, unless the subtype ordering is trivialized in this case. A system which

operationally is more similar to ours is that of type extensions [10]. However,

several important issues are not addressed, leading to various anomalies. For

example, just allowing actual parameters to have larger types than formal

parameters is too liberal an attitude. We must have a homogeneous choice

of larger types, as the following example shows. The procedure

Proc P(var x:
,val y:
)

x:=y

end P

will not be correct if the actual type of x is Int and the actual type of y

is Bool. We must limit the permitted procedure calls to avoid such blatant

inconsistencies. Also, it is not clear that more subtle problems cannot oc-

cur with this mechanism; for example, the behavior of recursive types or

nested levels of (recursive) hierarchical calls must also be considered. In the

following sections we shall provide the necessary framework for supplying a

formal proof for the validity of these ideas. This will establish a �rm basis

for exploiting this useful mechanism without any risk of inconsistencies or

anomalies.

9

5 Static Correctness

In a programming language static correctness is a decidable syntactic prop-

erty of program texts. When all programs are guaranteed to be statically

correct, then one can verify certain invariant properties of the execution

model. These invariants are crucial for reasoning about program correct-

ness. They are also very useful for developing e�cient implementations and

performing compile-time optimizations. Typically, static correctness implies

such basic properties as: variables of type T can only contain values of type

T , operations are only performed on arguments of the proper types, etc.

In this section we shall de�ne static correctness of our programs. To facilitate

this we need a number of auxiliary concepts.

5.1 Environments

Correctness will be de�ned relativly to an environment, which is a �nite map

from (variable) names to types.

De�nition 5.1: If � is a variable and E is an environment, then E #� denotes

a type de�ned as follows

� E #x = E(x) if x 2 dom(E)

� E #�[�] = T if E #� = �T

� E #�.ni = Ti if E #� = (n1 : T1; : : : ; nk : Tk)

We write � 2 E if E #� denotes a type according to the above schema. 2

De�nition 5.2: If E and E 0 are environments, then

E � E 0 i� dom(E) = dom(E 0) ^ 8x : E(x) � E 0(x)

2

10

5.2 Extended Types

We have some polymorphic constants in the language; for example, [] de-

notes the empty list of any type, and the constant (b:87) can have any type

which is a partial product with at least a b-component of type Int.

It will prove technically convenient to make this polymorphism explicit by

de�ning an extension of our type system.

Notation 5.3: We introduce the abbreviation (ai : Ai) instead of the more

explicit (a1 : A1; : : : ; ak : Ak). The value of k is implicit and is not assumed

to be the same in e.g. (ai : Ai) and (bj : Bj). 2

De�nition 5.4: The x-types are extensions of the types de�ned as follows

X ::= � j (any type)

�X j

� j

�(n1 : X1; : : : ; nk : Xk)

An x-type is really a type scheme that de�nes a set of types with similar

structure. Types can be elements of x-types. Any type of the form �T is an

element of �, and the elements of �(ni : Xi) are all partial products with

at least the components (ni : Ti), where Ti is an element of Xi. In general,

an x-type is a (possibly in�nite) tree; however, the x-type depth, which is

the largest depth of � and � nodes, is always �nite, as seen in the following

illustration

11

..........................

T
T
T
T
T
T
TT

�
�
�
�
�
�
��

J
J
J
J
J
J
J

�

depth

�
�()

()

�
()

�

�
�()

�
�
�

�

2

De�nition 5.5: (Compatibility) The relation X11X2 holds i� the x-types

X1 and X2 have at least one element in common. 2

Proposition 5.6: 1 is the smallest symmetric relation which satis�es

� T11T2, if T1=T2
� �1�

� �1�X

� �X11�X2 i� X11X2

� (ni : Ti)1�(mj : Yj) i� fmjg � fnig ^ (8i; j : ni=mj) Ti1Yj)

� �(ni : Xi)1�(mj : Yj) i� (8i; j : ni=mj) Xi1Yj)

Proof: Induction in the largest x-type depth. 2

De�nition 5.7: (Uni�cation) IfX11X2, thenX1
X2 denotes the unique x-

type whose elements are exactly the common elements ofX1 andX2. Clearly,

 is associative and commutative (when de�ned). 2

Proposition 5.8: Whenever its arguments are related by 1, then
 can be

computed as follows

12

� T1
 T2=T1, if T1=T2 are types

� �
 �=�

� �
 �X=�X

� �X1
 �X2=�(X1
X2)

� (ni : Ti)
�(mj : Yj)=(ni : Ti)

� �(ni : Xi)
�(mj : Yj)=�(zk : Zk) where fzkg=fnig [fmjg and

Zk =

8><
>:
Xi if zk=ni 62 fmjg

Xi
 Yj if zk=ni=mj

Yj if zk=mj 62 fnig

Proof: Induction in the largest x-type depth. 2

Proposition 5.9: If X11X2, then (X1
X2) 1 Y , X11Y ^ X21Y

Proof:) is immediate. For(we use induction in the largest x-type depth

in Xi.

� If both Xi are types, then X1 = X2 = X1
X2 and we are done.

� If e.g. X1=�, then X1
X2=X2 and we are done.

� If Xi=�Zi then we have two cases: 1) if Y =�, then we are done; 2) if

Y =�Z, then we use the induction hypothesis.

� If X1=(ni : Ti) and X2 = �(mj : Zj), then X1
X2=X1 and we are

done.

� If X1 = �(ni : Yi) and X2 = �(mj : Zj), then the result follows by

induction on the common components. 2

De�nition 5.10: (Su�ciency) The relation S / X states that there is an

element of the x-type X which is larger than the type S. 2

Proposition 5.11: / is the smallest relation which satis�es

� S / T , if T is a type and S � T

13

�
 / X

� �S / �X i� S / X

� �S / �

� (ni : Si) /�(mj : Xj) i� (8i; j : ni=mj) Si / Xj)

Proof: Induction in the structure of X. 2

Proposition 5.12: S / X1
X2 , S / X1 ^ S / X2

Proof:) is immediate. For (we proceed by induction in the length of

the largest x-type depth in Xi.

� If both Xi are types, then S / X1=X2=X1
X2.

� If e.g. X1=�, then X1
X2=X2.

� IfXi=�Yi, then S=�T and T /Yi so by induction hypothesis T /Y1
Y2
so �T / �(Y1
 Y2)=X1
X2.

� If X1=(ni : Ti) and X2=�(mj : Yj), then X1
X2 = X1.

� If X1 = �(ni : Yi) and X2 = �(mj : Zj), then the result follows by

induction on the common components. 2

Proposition 5.13: All of: 1,
 and / are computable.

Proof: Immediate from decidability of � and �, the �nite depth of x-types,

and propositions 5.6, 5.8, and 5.11. 2

5.3 De�ning Correctness

To specify the correctness conditions we need to talk about the types of

expressions. These are, as previously stated, not unique, but we can assign a

unique x-type E[[�]] to each expression � relative to an environment E.1 The

1In this context it is more convenient to use the \denotational" notation E [[�]] = X

rather than the \inferential" notation E ` � : X.

14

elements of E[[�]] are exactly the possible types of �.

De�nition 5.14: If E is an environment and � is an expression, then E[[�]]

is de�ned inductively as follows

� E[[0]] = E[[�+1]] = E[[�-1]] = Int

� E[[�]] = E #�

� E[[�1 = �2]] = Bool

� E[[[�1,: : :,�k]]] = �(
iE[[�i]]), if k > 0

� E[[[]]] = �

� E[[|�|]] = Int

� E[[(ni:�i)]] = �(ni : E[[�i]])

� E[[has(�,ni)]] = Bool

A program will only be correct when all such denotations are well-de�ned.

2

De�nition 5.15: We present a predicate correct(E;S) which says that

the statement S is statically correct with respect to the environment E. The

predicate is described as a list of conditions on phrases: variables, expressions

and statements. These conditions must be true for all such phrases in the

syntactic derivation of S.

15

Phrase: Condition:

1) � � 2 E

2) �[�] E[[�]] 1 Int

3) �:=� E[[�]]1E[[�]]

4) �:-ni (ni :
) / E[[�]]

5) �:+(ni:�) (ni :
) / E[[�]] ^ E[[�.ni]]1E[[�]]

6) �+1, �-1 E[[�]] 1 Int

7) �1 = �2 E[[�1]]1E[[�2]]

8) [�1,: : :,�k] 8i; j : E[[�i]]1E[[�j]]

9) |�| �
 / E[[�]]

10) has(�,ni) (ni :
) / E[[�]]

11) if � then S end E[[�]] 1 Bool

12) while � do S end E[[�]] 1 Bool

13) P(�1,: : :,�k) 9A : E[[�i]] 1 A(xi) ^ req(F ;A)

For the procedure call we used a few abbreviations. The procedure looks like

Proc P(� x1:�1,: : :,� xk:�k)

S

end P

Now, F is the formal environment mapping xi to �i, whereas A is the actual

environment which maps xi to an appropriate actual type compatible with

�i.

Finally, req is the static requirement, which is in fact the main topic of

this paper. It is a predicate on the formal and actual environments, which

determines the permitted degree of hierarchical procedure calls. To get an

ordinary language we can use the requirement

equal(F ;A) � (F = A)

which insists that the formal and actual parameter types must be equivalent.

The entire program is statically correct when all statements are correct rela-

tive to their environments. The environment for the main program consists of

16

the global variables, and the environment for a procedure body is its formal

parameters; thus, global variables are not accessible from within procedures.

Also, we must include various static conditions which are independent of the

environment, such as a systematic use of names and bindings, and the fact

that actual variable parameters must be variables. 2

5.4 Dynamic Aspects

If we use the requirement equal, then the de�nition of static correctness

should be uncontroversial. Examples of invariants are: values of type T can

only reside in variables of type T , list operations are only performed on lists,

and operations involving a product component ni are only allowed if the type

in fact contains such a component. The polymorphic constants are allowed to

remain undetermined as long as it can be assured that they can be assigned

a sensible type.

6 Hierarchical Correctness

By relaxing the static requirement we allow some procedure calls where the

actual types are larger than the formal types. The semantics of a hierarchi-

cal call is to substitute the actual types for the formal types, recompile the

procedure and perform a normal procedure call.2

This raises some concerns about the static correctness. We may have en-

sured that the body of the procedure was correct with respect to the formal

environment, but now it will be executed in a di�erent actual environment.

Consequently, the requirement must possess a special quality.

De�nition 6.1: A static requirement req is sound if

2An implementationwould, of course, employ a uniform data representation that allows

it to reuse code without further ado.

17

� 8S;F ;A : correct(F ;S) ^ req(F ;A)) correct(A;S)

� Condition 13) in de�nition 5.15 is decidable

Thus, correctness must be preserved by a sound requirement, and the static

correctness conditions must remain decidable. 2

Proposition 6.2: The requirement equal is sound.

Proof: If F = A, then clearly correctness is preserved. Condition 13) is

decidable, since we have only one possible A for which we must check that

E[[�i]]1A(xi), which is the same as E[[�i]] 1 �i. Hence, the types of the actual

parameters are required to match those of the formal parameters, which is

what we would expect in this normal situation. 2

Soundness has very important consequences for the dynamic aspects of static

correctness. If we verify static correctness for all parts of a program, then

we expect certain invariants to hold during execution. With hierarchical

calls this property is no longer immediate, but if the static requirement is

sound, then the execution invariants will still hold. This can be established

essentially by induction in the length of the dynamic chain of procedure calls.

If we have length 0, then no hierarchical calls have been performed and we

are safe. For longer chains we can perform the induction step by appealing

to the facts that the actual parameters satisfy the static requirement and

that the soundness condition holds.

6.1 An Optimal Sound Requirement

We shall prove the existence of a sound requirement which is optimal, in the

sense that it is minimally restrictive and, hence, allows as many hierarchical

calls as possible.

De�nition 6.3: all is a static requirement de�ned by

all(F ;A) � (F � A) ^ (8�; �0 : F #�=F #�0) A#�=A#�0)

18

2

Theorem 6.4: all is sound.

To prove this main result we must show that all the static correctness con-

ditions are preserved and that condition 13) is decidable.

Lemmas 6.5 through 6.7 show preservation of the basic conditions. We as-

sume all(F ;A).

Lemma 6.5: If � 2 F , then � 2 A and F #��A#�.

Proof: Induction in �. Assume � 2 F . If � is a name, then we are done

since F � A. Now, assume the result holds for �. Look at �.ni. Since

�.ni 2 F , then F # � = (ni : Ti) and F # �.ni = Ti. But as F # � �A # �,

then A# �= (mj : Sj) where fnig � fmjg and ni =mj) Ti� Sj. Hence,

�.ni 2 A and F # �.ni=Ti�Sj =A#�.mj =A#�.ni. For �[�] we have

that F #�=�T and F #�[�]=T . Since F #��A#�, then A#�=�S where

T �S. Hence, F #�[�]=T�S=A#�[�]. 2

Lemma 6.6: If F [[�1]]1F [[�2]], then A[[�1]]1A[[�2]].

Proof: Induction in largest depth of an x-type in F [[�i]]. Assume F [[�1]]1

F [[�2]]:

� If F [[�i]] both are types, then we have three cases: 1) if both �i's

are variables, then we are done because of soundness; 2) if neither is a

variable, then they both have the same simple type in any environment;

3) if only one is a variable, then the other has a simple type, e.g.

F [[�1]]= Int. By lemma 6.5 F [[�1]]�A[[�1]], so A[[�1]]= Int, and we are

done.

� If F [[�1]]=F [[�2]]=�, then �1=�2=[], so A[[�1]]=A[[�2]]=�.

� If F [[�1]] = � and F [[�2]] = �X, then �2 = [1; : : : ; k] and X =

i(F [[i]]). Hence, A[[�1]]=� and A[[�2]]=�Y where Y =
i(A[[i]]).

19

� If F [[�1]] = �X and F [[�2]] = �Y , then �1 = [1; : : : ; k] and �2 =

[�1; : : : ; �k], where X =
i(F [[i]]), Y =
j(F [[�j]]) and X 1 Y . Using

proposition 5.9, F [[i]] 1 F [[�j]], so by induction hypothesis A[[i]] 1

A[[�j]], so
i(A[[i]]) 1
j(A[[�j]]) and we are done.

� If F [[�1]] = (ni : Ti) and F [[�2]] = �(mj : Yj), then fmjg � fnig and

ni=mj) Ti1Yj. Here �1=� and �2=(mj : j), so F [[�.ni]] 1 F [[j]].

By induction hypothesis A[[�.ni]] 1 A[[j]], and we can reverse the

argument. Notice that by lemma 6.5 A[[�1]] will have all the necessary

fnig-components.

� If F [[�1]] = �(ni : Xi) and F [[�2]] = �(mj : Yj), then we proceed by

induction on the common components. 2

Lemma 6.7: If S / F [[�]], then S /A[[�]].

Proof: Induction in �. Assume S / F [[�]]:

� If F [[�]] is Int or Bool, then F [[�]]=A[[�]] and we are done.

� If �=�, then F [[�]] is a type and by lemma 6.5 F [[�]]�A[[�]]. Since /

is� on types the result follows by transitivity.

� If �=[], then F [[�]]=A[[�]]=�.

� If � = [�1; : : : ; �k], then F [[�]] = �(
iF [[�i]]). Hence, S = �T where

T /
i(F [[�i]]), so (using proposition 5.12) T / F [[�i]]. By hypothesis

T /A[[�i]], so (using lemma 6.6 and proposition 5.12) T / (
iA[[�i]]) and

S=�T / �(
iA[[�i]])=A[[�]].

� If �= (mj:�j), then F [[�]]=�(mj : F [[�j]]). Hence, S= (ni : Si) and

ni = mj implies Si � F [[�j]]. By hypothesis Si � A[[�j]], so S = (ni :

Si) / (mj : A[[�j]])=A[[�]]. 2

Lemmas 6.9 and 6.11 will establish the decidability of condition 13).

Notation 6.8: If X is an x-type, then a type address in X is a sequence

 2 fni; []g
� which may specify a path from the root to a subtree. The

20

branch from �X to X is selected by [], and the branch from (ni : Xi) or

�(ni : Xi) to Xi is selected by ni. We use
 2 X to indicate that
 leads to

a subtree of X, which we will call X #
. 2

Lemma 6.9: Let F � A be types. Then

8�; � : F #�=F #�) A#�=A#�

is decidable.

Proof: Any type T is a regular tree with only �nitely many di�erent sub-

trees. Hence, we can construct a deterministic, �nite automatonMT on type

addresses with one state for each di�erent subtype, such that on input
 2 T

the automatonMT will reach the state that corresponds to the subtree T #
.

Every state accepts. Each state is labeled with the coarse type of the corre-

sponding type: � for products, � for lists, and Int,Bool for the simple types.

There is a natural isomorphism between such automata and type equations.

The above decision problem translates to a variation of language inclusion

for which an e�cient algorithm is presented in [9]. 2

Example 6.10: The type T de�ned by the equations

Type A = (x : B; y : C)

Type B =

Type C = �D

Type D = (x : E; z : F)

Type E = �A

Type F = Int

corresponds to the automaton

21

��
��

��
��
��
��

��
��

��
��

��
��

-

-�
?

6

-

6

zx

[] []

y

x

Int��

��

Lemma 6.11: Condition 13) is decidable.

Proof: We �rst observe that without loss of generality we need only look

at the case with a single parameter, since the full complexity of the problem

returns if the parameter type is a product. Hence, we talk about the formal

type � and the actual x-type E[[�]].

Our �rst test is whether � / E[[�]]. If not, then no A exists; otherwise, we

proceed.

We call a type address in � short if it indicates a non-type (an x-type) in

E[[�]] and long if it indicates a type. We begin by computing the �nite set of

short addresses. We shall test the condition in three stages.

Stage 1 (short/long): For each short � we determine if there is a long �

such that � # � = � # �. This can be done by constructing the automaton

mentioned in the proof of lemma 6.9 and checking if the equivalence class

containing � has a su�ciently long �. If this is the case, then we need to

have E[[�]] # � 1 E[[�]] # �. If not, then no A exists; otherwise, we proceed.

We can safely replace E[[�]]#� with E[[�]] # �, since this is the only element

which can possibly work (this changes the address � from short to long, and

in stage 2 will shall test if this element in fact does work). We continue this

stage until all short/long combinations have been eliminated.

22

Stage 2 (long/long): Collect all maximal subtypes in � that have long

addresses and collect the corresponding subtypes in E[[�]]. Using lemma 6.9

we can determine if the condition holds for all long/long combinations. If

not, then no A exists; otherwise, we proceed.

Stage 3 (short/short): We are left with the �nitely many short/short

combinations. We verify for each such �; � that if � # � = � # �, then

E[[�]] # � 1 E[[�]] # �. If not, then no A exists; otherwise, we can �nd a

common element for each set of pairwise 1 x-types. Due to proposition 5.11

this common element can be chosen to be larger than the formal type.

After these three stages we know that an A exists. The only addresses in

� that we have not considered are the ones that are invalid in E[[�]]. Since

� / E[[�]], all such invalid addresses are blocked in either �-nodes, or in �-

nodes with too few explicit components. Thus, the x-type E[[�]] allows any

types to complete the actual type in these places. Other type addresses in

� may impose several constraints, but from the above three stages we know

that a common choice can be made. 2

Lemmas 6.12 through 6.15 will show preservation of condition 13).

Lemma 6.12: If E[[�]] is a type and
 2 E[[�]], then there is an expression

�#
 such that if E � E 0, then E 0[[�#
]]=E 0[[�]]#
.

Proof: Induction in �.

� If the type E[[�]] is simple, then
 is empty and �#
=�.

� If � is a variable, then we can choose �#
=�.~
, where ~
 is a translation

of
 to subvariable selections.

� If �= [�1, : : : ,�k], then at least one E[[�i]] is a type; otherwise, E[[�]]

would not be a type. We have
 = �
0, so we can inductively de�ne

�#
=�i#

0.

23

Since any other choice for � would result in an x-type, we have exhausted all

cases. 2

Lemma 6.13: If
 2 E[[�]], then there is an expression � #
 such that if

E � E 0, then E 0[[�#
]]=E 0[[�]]#
.

Proof: We shall prove the more general result that for
iE[[�i]] we can �nd

an expression � such that (
iE
0[[�i]])#
=E

0[[�]]. We proceed by induction in

the largest x-type depth in
iE[[�i]].

� If
iE[[�i]] is a type, then at least one E[[�j]] is a type. Hence, we can

use lemma 6.13 and de�ne �=E[[�j]]#
.

� If
iE[[�i]]=�, then
 is empty and �=[] will do.

� If
iE[[�i]] = �X, then X =
jE[[j]], where the j's are all the list

elements in the �i's. We have
=�
0, so we can use the � inductively

de�ned for
jE[[j]] and

0.

� If
iE[[�i]] = (nk : Xk), then
=m:

0 where m 2 fnkg is some compo-

nent. Let the j be the subexpressions for all m-components. Then we

can use the � inductively de�ned for
jE[[j]] and

0. 2

Lemma 6.14: If E[[�]]#� 1 E[[�]]#� and all(E; E 0), then E 0[[�]]#� 1 E 0[[�]]#

�.

Proof: Using lemma 6.13 we get E[[� # �]] 1 E[[� # �]]. Using lemma 6.7

we conclude that E 0[[� # �]] 1 E 0[[� # �]]. Using lemma 6.13 again we get

E 0[[�]]#� 1 E 0[[�]]#�. 2

Lemma 6.15: If condition 13) holds for E and all(E; E 0), then condition

13) also holds for E 0.

Proof: Looking at the proof of lemma 6.11 we can see that every time a

test succeeds with E, and we are allowed to proceed, then the same test will

also succeed with E 0. The test � / E 0[[�]] will succeed due to lemma 6.7. The

remaining tests will succeed due to lemma 6.14. Hence, if an A exists for E,

24

then it can also exists for E 0. 2

At long last we can summarize the proof of the soundness theorem.

Proof of theorem 6.4: Preservation of correctness can be argued for each

individual condition. Condition 1) is covered by lemma 6.5. Conditions 2){

12) are covered by lemmas 6.6 and 6.7. Condition 13) follows from lemma

6.15. Finally, decidability of condition 13) is proved in lemma 6.11. 2

Notice, that all will be sound for any extension of the language which still

allows the static correctness conditions to be expressed in terms of 1 and /.

The author believes that this covers most imaginable cases.

We conclude this section by proving the optimality of all.

Lemma 6.16: If S 6� T , then there is a constant expression � such that for

all E we have S1E[[�]] but not T 1E[[�]].

Proof: If S 6� T , then by de�nition there is a �nite A � S such that A 6� T .

We construct an appropriate � by induction in the structure of A; obviously,

we can ignore the case A =
.

1) If A is Int, then � is 0.

2) If A is Bool, then � is 0=0.

3) If A=�A1, then we have two cases:

3.1) if T is not a list, then � is [].

3.2) if T =�T1, then A1 6� T1; we can inductively �nd a �1 and de�ne

�=[�1].

4) If A=(ni : Ai), then we have three cases:

4.1) if T is not a product, then � = ().

25

4.2) if T =(mj : Tj) and fnig � fmjg, then there is some n�=m�

such that A� 6� T�. We �nd recursively a �� and de�ne � =

(m�:��).

4.3) if T =(mj : Tj) and n� 62 fmjg, then we have four cases:

4.3.1) if A� is Int, then �=(n�:0).

4.3.2) if A� is Bool, then �=(n�:0=0).

4.3.3) if A� is a list, then �=(n�:[]).

4.3.4) if A� is a product, then �=(n�:()).

This completes the construction. 2

Theorem 6.17: all is optimal, i.e., if req is sound, then req) all.

Proof: Let us assume req(F ;A). If all(F ;A) is false, then there is some

�; �0 for which we have F # � = F # �0 but A # � 6=A # �0 or there is some

xi such that F(xi) 6� A(xi). In the former case correct(F ; �:=�0) holds

but correct(A; �:=�0) does not. In the latter case lemma 6.16 gives us

a � such that F(xi)1F [[�]] but :A(xi)1A[[�]]. Now, correct(F ; xi:=�)

holds but correct(A; xi:=�) does not. In either case req is shown to be

unsound. 2

Soundness and optimality of allmeans that we have found the most
exible

polymorphism that can be obtained.

7 Local Variables

The example language is less than typical in one important respect: It lacks

local variables. In this section we generalize the results to include this pos-

sibility. We extend the syntax of our language with the production

S ::= local x:� S end

The semantics of the local-statement is to execute S in a locally extended en-

vironment where the new variable x has type � . We can nest local-statements

26

in arbitrary levels.

The static correctness of this construct is de�ned as follows:

correct(E; local x:� S end) � correct(E[x �];S)

which is hardly controversial. What happens to hierarchical calls? We do

not get any suggestion for the type of the local variable, since it does not

correspond to an actual parameter. If the situation is still to work, then we

must strengthen the properties of sound requirements.

De�nition 7.1: A sound requirement req must also satisfy

req(F ;A)) 8x; � 9� : req(F [x �];A[x �])

In this situation, we can always assign a type to the local variable that will

make sense in the hierarchical situation. We can, in fact, pretend that the

local variable was a parameter whose actual type was �. Hence, the dis-

cussion of the dynamic aspects of static correctness carries through without

modi�cations. 2

Theorem 7.2: all is still sound and optimal.

Proof: Assume all(F ;A). We shall construct an � that always works; as

we shall see, this � will be an appropriate mixture of formal and actual types.

Being regular, the type � has �nitely many di�erent subtypes �1; �2; : : : ; �k,

where � = �1. The �i's can be uniquely de�ned [5] through a set of type

equations of the form

�i = fi(�1; �2; : : : ; �k)

Now, the type � = �1 is de�ned by the equations

�i =

(
A#� if F #� = �i
fi(�1; �2; : : : ; �k) otherwise

27

This is well-de�ned since, because all holds, F # � = F # �0 = �i implies

A#� = A#�0.

From monotonicity of the fi's and F #� � A#� we see that �i � �i. From

this we conclude F [x �]� A[x �]. Next, we must show

8�; �0 : (F [x �]#�=F [x �]#�0)) (A[x �]#�=A[x �]#�0)

We have two new cases:

1) if two subtypes of � are equal, then by de�nition the corresponding

subtypes of � are equal.

2) if F #� = �i, then A#� = �i and we are done.

We conclude that all(F [x �];A[x �]) holds, so all is still sound. Op-

timality is immediate, since we have reduced the set of sound requirements.

2

We can, of course, extend the language further by changing the local-statement

to

S ::= local P end

which will in no way in
uence the validity of the results.

7.1 Global Variables

On a more negative note, we can eliminate the possibility of allowing global

variables to be accessible from within procedures.

Proposition 7.3: If global variables belong to the formal environments of

procedure bodies and req is sound, then req) equal.

Proof: Assume that �i=F(xi) 6=A(xi). Then the situation

28

var y:�i

Proc P(: : :,xi:�i,: : :)

y:=xi
end P

will not remain statically correct when we substitute A for F . 2

The problem is that, unlike the situation with local variables, the types of

global variables are �xed in all actual environments.

We do not view this as a major drawback of our system, but rather as an

observation of one more de�ciency of this variable mechanism.

8 Opacity

A transparent type de�nition such as

Type Money = Int

provides Money as a synonym for the type Int. This allows us to arbitrarily

mix values of types Money and Int, which may not be what we wanted. In

particular, if we had two de�nitions such as

Type Apples = Int

Type Oranges = Int

then it is possibly a conceptual mistake to compare such values.

The usual alternative is an abstract type de�nition where the representation

type is completely hidden. This certainly provides the desired protection.

However, it is now necessary to re-implement all the standard Int operations

29

for the abstract type. This is clearly unwanted in this situation and a high

price to pay for protection.

A third possibility is an opaque type de�nition that o�ers protection but

simultaneouslymakes all the usual operations available. This is a compromise

between the two other kinds of type de�nitions. The types de�ned by

Type Apples Int

Type Oranges Int

are di�erent from each other and from Int, but they all allow the usual integer

constants, + and � operations, and so on.

In this section we incorporate opaque types into the type system. We in-

dicate the minor modi�cations that are required to carry all major results

through. As a very signi�cant special case we obtain a more
exible hierar-

chical polymorphism by using opaque versions of the type
 as distinct type

\variables".

8.1 Opaque Types

Rather than merely provide opaque de�nitions, we introduce opaque types

through an opacity operator. This is preferable to introducing directly and

axiomatizing its properties.

We extend the language of types as follows

� ::= Int j Bool j simple types

Ni j type names

�� j lists

(n1 : �1; : : : ; nk : �k) j partial products, k � 0, ni 6= nj
n2� opaque versions

We consider 2 to be a unary type constructor that creates named, opaque

versions of its argument type. The values of an opaque version are the same

as those of the original.

30

Type Equivalence

Type equivalence is de�ned to be equality of normal forms. The normal form

of a type is a (possibly in�nite) labeled tree that, informally, is obtained by

the unfolding of the type de�nitions. This technique generalizes without

problems, so that

n12T1 � n22T2 i� n1=n2 ^ T1 � T2

Thus, among the following types

Type A = Int

Type B = b2Int

Type C = c2Int

Type D = b2B

Type E = b2A

only B and E are equivalent. Type equivalence is still decidable.

Type Ordering

The type ordering concerns itself with possibilities for code reuse. The idea

is that code written for smaller types can be reused for larger types. For this

purpose we want to ignore the protection o�ered by opacity. Thus, the �nite

ordering �0 must further satisfy

(n2T �0 S , T �0 S) ^ (T �0 n2S , T �0 S)

As before, the type ordering � is the closure of �0. Notice that we now

have a preorder rather than a partial order; for example, Int � m2Int and

m2Int � Int but Int 6� m2Int. This will in no way in
uence our results;

it is just an observation that two types may be unequal and still be able to

reuse each other's code. In general, two types S and T are opaquely related,

if S � T , T � S, and S 6� T . They are di�erent but they have the same

order relations to all other types, which may be illustrated as follows

31

�
�

�
�

��

@
@
@
@
@@

�
�

�
�

�
�

�
��

Q
Q
Q
Q
Q
Q
Q
QQ

A
A
A
A
AA

�
�
�
�
�� �

�
�
�
��A

A
A
A
AA

TS

� � �

� �

The type (pre)ordering, least upper bounds, and greatest lower bounds re-

main computable.

The Language

The only required extension to the example language is the opaque types

themselves. We add to our grammar the production

� ::= n2�

For convenience, we also introduce type equations of the form

D ::= Type N �

They abbreviate the more involved equations

Type N = N2�

While the N on the left-hand side is simply a type variable that can be �-

reduced, the N on the right-hand side is an integral part of the type. This

allows us to write opaque de�nitions such as

Type Money Int

32

Here, Money is no longer merely a synonym for Int; it is a new and di�erent

type.

Since opaque de�nitions merely abbreviates opaque types, we also have a

natural interpretation of recursive opaque de�nitions such as

Type F F

Type G �G

While the usefulness of such types may be questioned, their properties are

at least simply understood. For example, F enjoys the unique property of

being equal to an opaque version of itself.

8.2 Extended Types

We now have a new class of polymorphic constants besides [] and (b:87);

for example, the constant 7 denotes a value not only of type Int, but also of

all opaquely related types.

To handle this situation we extend the x-types to

X ::= � j

�X j

� j

�(n1 : X1; : : : ; nk : Xk) j

2X

The elements of 2X are the elements of X and their opaque versions. The

computations on x-types must be modi�ed as follows.

Proposition 5.6+: 1 is the smallest symmetric relation which satis�es

33

� T11T2, if T1=T2 are types

� �1�

� �1�X

� �X11�X2 i� X11X2

� (ni : Ti)1�(mj : Yj) i� fmjg � fnig ^ (8i; j : ni=mj) Ti1Yj)

� �(ni : Xi)1�(mj : Yj) i� (8i; j : ni=mj) Xi1Yj)

� X12X

� 2X112X2 i� X11X2

� n2T 12X i� T 12X

2

Proposition 5.8+: Whenever its arguments are related by 1, then
 can

be computed as follows

� T1
 T2=T1, if T1=T2 are types

� �
 �=�

� �
 �X=�X

� �X1
 �X2=�(X1
X2)

� (ni : Ti)
�(mj : Yj)=(ni : Ti)

� �(ni : Xi)
�(mj : Yj)=�(zk : Zk) where fzkg=fnig [fmjg and

Zk =

8><
>:
Xi if zk=ni 62 fmjg

Xi
 Yj if zk=ni=mj

Yj if zk=mj 62 fnig

� X
2X = X

� 2X1
2X2 = 2(X1
X2)

� n2T
2X = n2T

2

Proposition 5.11+: The relation S / X determines if there is an element

of the x-type X which is larger than the type S. It is the smallest relation

which satis�es

� S / T , if T is a type and S � T

34

�
 / X

� �S / �X i� S / X

� �S / �

� (ni : Si) /�(mj : Xj) i� (8i; j : ni=mj) Si / Xj)

� n2S / X i� S / X

� S / 2X i� S / X

2

All proofs of propositions in section 5 generalize without di�culties.

8.3 Correctness

These extensions allow us once again to assign unique x-types to expressions

De�nition 5.14+: If E is an environment and � is an expression, then E[[�]]

is de�ned inductively as follows

� E[[0]] = 2Int

� E[[�+1]] = E[[�-1]] = E[[�]]

� E[[�]] = E #�

� E[[�1 = �2]] = 2Bool

� E[[[�1,: : :,�k]]] = 2�(
iE[[�i]]), if k > 0

� E[[[]]] = 2�

� E[[|�|]] = 2Int

� E[[(ni:�i)]] = 2�(ni : E[[�i]])

� E[[has(�,ni)]] = 2Bool

2

Until the type of an expression has been �xed, it will match all opaquely

related types alike.

35

No other de�nitions need to be changed; in particular, the de�nitions of

correctness and soundness remain the same.

The proofs of lemmas 6.5{6.7, 6.9, and 6.12{6.15 only require minor modi�-

cations to handle the extra cases in the structural induction. The proofs of

the main results, lemma 6.11 and theorem 6.4, can remain unchanged. The

proof of optimality in theorem 6.17 only requires a trivial modi�cation of

lemma 6.16. All of section 7 goes through unchanged.

This shows how opaque types with remarkably little e�ort can be integrated

into this hierarchical type system. In the following section we demonstrate

how they even provide an added
exibility.

8.4 Hierarchical Procedures

As demonstrated earlier, it is pragmatically useful to distinguish between

intended and unintended type equalities. In connection with the hierarchi-

cal polymorphism, opaque types can serve another important function. A

hierarchical call of a procedure such as

Proc P(var x,y:
)

x:=x; y:=y

end P

requires that the actual types of x and y are equal, since their formal types

are equal. However, since the procedure keeps the two variables separate this

is actually too strict. By specifying the formal types as two opaque versions

of
 we guarantee that they will never be mixed and, hence, we can allow

more hierarchical calls of the procedure.

As a more telling example, consider the following \generic" type of �nite

maps. Without opaque types we could not avail ourselves of two type \vari-

ables".

36

Type Arg

Type Res

Type Map = (a:Arg, r:Res, next:Map)

Proc Update(var m:Map, val a:Arg, val r:Res)

m:=(a,r,m)

end Update

...

All these Map-procedures can now be reused for maps with arbitrary types

in place of Arg and Res.

9 Conclusions and Future Work

The results in this paper establish the theoretical basis for a powerful and

general type hierarchy with static type checking. Naturally, we hope that

this can develop into a complete programming language.

It is worth noting that all in fact de�nes a partial order � on types. This

seems to suggest that the hierarchical mechanism may be viewed as a ver-

sion of (implicit) bounded parametric polymorphism [3]. The ordering � is,

however, radically di�erent from the usual subtyping relation, as it satis�es

8S1 � T1 9S2 � T2 : (S1; S2) 6� (T1; T2)

which we might call anti-compositionality, to coin a phrase.

An obvious direction of research concerns higher-order types. A naive inclu-

sion of function (or procedure) types will be quite consistent with the present

system. However, as is usually the case, the valid relations between higher-

order types are not the ones that we would hope for. A more promising

approach is to directly develop a module concept.

The introduction of opaque types seems to �ll a gap between synonym types

and abstract types. Another view is that they provide a uni�cation of struc-

37

tural and name equivalence of types; the programmer can decide on the

combination which is most suited for the application. Opaque types have

been smoothly integrated with the hierarchical system; they can even be

seen to increase the available polymorphic
exibility.

10 References

[1] Cardelli, L. \Typeful Programming" DEC Research Report 45, 1989.

[2] Cardelli, L. & Mitchell, J. \Operations on Records" in Proceedings

of MFPS'90, LNCS Vol 442, Springer-Verlag, 1990.

[3] Cardelli, L. & Wegner, P. \On Understanding Types, Data Ab-

straction, and Polymorphism" in Computing Surveys, Vol 17 No 4,

ACM 1985.

[4] Courcelle, B. \In�nite Trees in Normal Form and Recursive Equa-

tions Having a Unique Solution" in Mathematical Systems Theory 13,

131-180. Springer-Verlag 1979.

[5] Courcelle, B. \Fundamental Properties of In�nite Trees" in Theoret-

ical Computer Science Vol 25 No 1, North-Holland 1983.

[6] Reynolds, J.C. \Three approaches to type structure.", InMathemat-

ical Foundations of Software Development, LNCS Vol 185, Springer-

Verlag 1985.

[7] Schmidt, E.M. & Schwartzbach, M.I. \An Imperative Type Hi-

erarchy with Partial Products" in Proceedings of MFCS'89, LNCS Vol

379, Springer-Verlag 1989.

[8] Schwartzbach, M.I. \In�nite Values in Hierarchical Imperative Types"

in Proceedings of CAAP'90, LNCS, Springer-Verlag 1990.

[9] Schwartzbach, M.I. & Schmidt, E.M. \Types and Automata".

PB-316, Department of Computer Science, Aarhus University, 1990.

[10] Wirth, N. \Type Extensions.", In Transactions on Programming Lan-

guages and Systems Vol 10 No 2, ACM 1988.

38

