
Type Inference of Turbo Pascal

Ole I. Hougaard, Michael I. Schwartzbach, Hosein Askari
{hougaard,mis,hosask}@daimi.aau.dk

BRICS∗

Computer Science Department
Aarhus University

8000 Aarhus C, Denmark

Abstract

Type inference is generally thought of as being
an exclusive property of the functional pro-
gramming paradigm. We argue that such a
feature may be of significant benefit for also
standard imperative languages. We present a
working tool (available by WWW) providing
these benefits for a full version of Turbo Pas-
cal. It has the form of a preprocessor that
analyzes programs in which the type annota-
tions are only partial or even absent. The
resulting program has full type annotations,
will be accepted by the standard Turbo Pascal
compiler, and has polymorphic use of proce-
dures resolved by means of code expansion.

Keywords: imperative languages, type in-
ference.

1 Explicit versus
Implicit Typing

Several quite different programming
paradigms are today proposed for general-
purpose programming. Two notable

∗Basic Research in Computer Science, Center of
the Danish Research Foundation

candidates are the imperative languages
(exemplified by Pascal) and the functional
languages (exemplified by ML).

There has been much debate about the rel-
ative merits of these paradigms. Some argu-
ments have an ideological flavor, while others
focus on differences in the implementations
of existing systems. In the latter category,
functional languages have been criticized for
being somewhat inefficient but commended
for supporting simple yet powerful features,
while imperative languages seem almost to
be ascribed the dual properties.

However, some of the attractive features of
e.g. ML are not necessarily exclusive proper-
ties of the functional programming paradigm.
For example, heap-allocated recursive data
types could equally well be incorporated into
a Pascal-like language [3]. In this paper we fo-
cus on another often cited advantage of mod-
ern functional languages, viz. automatic type
inference, and we argue that such a feature
may be of significant methodological bene-
fit for also traditional imperative languages.
We present an algorithm that allows type in-
ference of general Pascal programs. Further-
more, this algorithm has been implemented
for a full version of Turbo Pascal.

1

What is then the task of type inference?
This is a well-defined problem for any lan-
guage that supports type annotations and
type checking. Normally, the programmer
provides type annotations for all variables
and the type checker then proceeds to ver-
ify that all the type constraints are respect-
ed. Type inference is the more difficult task
of accepting a program in which the type an-
notations are only partial or even absent and
then deciding if there exists a choice of type
annotations with which the program would
be accepted by the normal type checker. Gen-
erally, the annotated program should be pre-
sented as well. A separate notion is that of
polymorphism which, as we shall see, is inti-
mately connected with type inference.

Note that with type inference we do not fall
back to untyped programs, which of course
are subject to all sorts of damaging type
errors. Rather, our programs are implicit-
ly typed, as valid types must certainly exist
even if they are not supplied by the program-
mer. The ambition behind type inference is
to obtain all the safety benefits of typed pro-
grams while avoiding the problems with ver-
bose and cumbersome annotations.

It can certainly be argued that there are
further benefits to having programs be explic-
itly typed. After all, when the programmer
states his intentions up front, then certain
logical errors may be caught by the element
of redundancy that separates type checking
from type inference.

This aspect is clearly realized by propo-
nents of type inference who offer several argu-
ments in reply. First of all, comparing the in-
ferred types to those that were intended pro-
vides a similar degree of redundancy. Second-
ly, type inference may discover that parts of
your program are more general than you had
originally realized, thus widening its applica-
bility. And finally, if parameter types are only

given implicitly, then a procedure may be giv-
en more than one type in different contexts—
thus allowing polymorphism. All these ben-
efits are major selling points for functional
languages, and their potential applicability to
imperative languages should be given serious
consideration.

Detractors of e.g. Pascal could also interject
that its type system, in particular the notion
of type equivalence, makes it difficult for the
programmer to correctly state his actual in-
tentions in advance.

In any case, a language such as Pascal al-
ready performs a modicum of type inference.
Only the types of variables must be given ex-
plicitly, and from this information the types
of all expressions are inferred. For example,
if x is declared to be of type Real, then the
type of the expression x+1 is inferred as fol-
lows: the value of x is of type Real; there is
a version of + with type Real×Integer → Re-
al; the constant 1 has type Integer; thus we
can conclude that x+1 has type Real. This
sort of inference is perhaps too trivial to gain
much notice, but it is there and forms a ba-
sis for using implicit types in larger parts of
programs.

In present Pascal implementations the
types of variables are given by explicit an-
notations. Our algorithm allows the possi-
bility of supplying only some of these anno-
tations. This yields several contributions: a
proof-of-concept that type inference is pos-
sible for traditional imperative languages; a
tool for Turbo Pascal that implements this al-
gorithm and allows polymorphic procedures;
and a platform for studying the methodolog-
ical impact of implicit typing.

In the following sections we show how to
generalize the techniques for type inference
from unification to constraint solving; we s-
ketch the constraint solver that is necessary
for a Pascal type system; and we describe a

2

concrete tool that has been built as a prepro-
cessor for a version of Turbo Pascal.

2 Techniques for
Type Inference

Type inference algorithms have been suggest-
ed for a number of different type systems
and programming languages [5, 9, 6, 7, 8].
Although these algorithms are very different
and highly specialized, they all fall into one of
these two categories: They either use direct
inference of types from the types of subex-
pressions, or they use constraint-based tech-
niques.

In functional languages as ML, type in-
ference may be done by recursively going
through the parse tree and assigning a type
to each node. The type of a parse tree node
can be derived from the types of the subex-
pressions. For example when we want to find
the type of the expression (e1e2), we first find
the types of e1 and e2; let us call these τ1 and
τ2 respectively. We know that the type of e1

must be a function type, taking something of
the type of e2 as its argument. We can write
this as the equation τ1 = τ2 → α, where α
is a type variable corresponding to the return
type of e1 that can be instantiated with any
type. In order to solve the equation we apply
unification to the two sides of the equation.
Unification finds a most general instantiation
of type variables, so that the two types be-
come equal. The type of (e1e2) is simply the
instantiation that the unification algorithm
finds for α. This technique was used by Mil-
ner for type inference of ML in [5].

The above technique allowed type variables
to stand for any type. By using type variables
in this manner we can represent the set of all
possible types for a parse tree node (see [2]).

Thus the success of this approach relies on
said representation and the fact that we could
compute the representation of the solutions
to the constraint τ1 = τ2 → α.

In the general case we cannot expect to find
a proper representation and compute the so-
lutions to the constraints within this repre-
sentation. A more general technique is that
of generating and solving a set of constraints
for the specific program. In this case we
will not try to derive the type from those
of the subexpressions. Instead we gener-
ate type variables representing the (yet un-
known) types of all parse tree nodes and fur-
ther generate the appropriate constraints re-
lating these type variables. In the case of the
expression (e1e2) we generate the constraint
[[e1]] = [[e2]] → [[(e1e2)]], where we use [[e]] to
stand for the type variable representing the
type of expression e. Now we have reduced
the problem of type inference to that of find-
ing a solution to a set of constraints. In the
case of ML we can again solve the constraints
by a single application of the unification algo-
rithm. Wand [9] has used this technique for
type inference of the simply typed λ-calculus
(ML without polymorphic let).

In Pascal we use this constraint technique.
In ML we could limit ourselves to generating
constraints of the form [[e]] = [[e′]]→ [[e′′]], but
Pascal has much more complex typing rules
and we need a substantially richer class of
constraints. A special problem arises with the
fact that Pascal allows certain types that can
only be checked dynamically , e.g. subrange
types of the form 2..5. In this case we cannot
infer the range of the type, since this is clear-
ly uncomputable. Instead we infer statically
correct types. In this context all subranges
become equivalent to the Integer type, which
is arbitrarily selected, when no explicit type
information is present.

Consider the simple assignment, x:=e. The

3

typing rules of Pascal demands that the type
of e is assignment compatible to the type of x,
that is, [[x]] := [[e]] is the generated constraint,
where we use := to denote the assignment
compatibility relation. Similarly, we gener-
ate constraints of the form [[e]] Tc [[e’]] when
the types of e and e’ should be type compat-
ible; Op([[e]], [[e’]], [[e”]]) when the type of e”
should be the result type of a binary opera-
tion between e and e’; and [[e]] Io [[e’]] when
e’ should be writable to a file which has the
type of e.

For example, we generate the constraint
Op([[e]], [[e’]], [[e+e’]]) for the expression e+e’
and the constraint [[f]] Io [[e]] for the statement
write(f,e).

In Turbo Pascal the expression e-e’ does not
apply to strings as opposed to e+e’. Hence
the constraint Op([[e]], [[e’]], [[e-e’]]) is too lib-
eral. We restrict it by imposing further con-
straints on the types of e, e’ and e-e’, namely
[[e]], [[e’]], [[e-e’]] ∈ M−, where M− is the set
of types on which ‘-’ can operate.

As a further example of the use of con-
straints of the form [[e]] ∈M we can regard a
for-statement. Among the constraints gener-
ated for the statement:

for x := e to e’ do S

we have [[e]], [[e’]] ∈ O, where O is the set of
ordinal types.

In connection with structured types we get
the constraints Recα([[e]], [[e’]]) requiring that
[[e]] is a record with a field α that has type
[[e’]], and [[e]] = T ([[e1]], . . . , [[en]]), where T is
a type constructor. For example, we get the
constraint Recα([[x]], [[x.α]]) for the expression
x.α and [[x]] = ∧[[x∧]] for the expression x∧.

Finally, we have the simple constraint
[[e]] = [[e’]] in connection with variable param-
eters, where the actual type must equal the
formal type, and expressions like -e, where
we have the constraint [[-e]] = [[e]].

All in all, we have the following kinds of
constraints:

• [[e]] ∈M, whereM is from a fixed, finite
set of sets of types.

• [[e]] = T ([[e1]], . . . , [[en]]), where T is a type
constructor.

• Recα([[e]], [[e’]])

• [[e]] = [[e’]]

• [[e]] Tc [[e’]], [[e]] := [[e’]],
Op([[e]], [[e’]], [[e”]]), and [[e]] Io [[e’]]

Example: Consider the following recursive
function for computing the factorial of a num-
ber.

Function fac(n: Integer): Integer;
begin

if n=0 then
fac := 0

else
fac := n*fac(n-1)

end

We generate the following set of constraints
for the function:

[[1]] ∈ I
[[0]] ∈ I
[[n]] = Integer
[[fac]] = Integer
[[n=0]] = Boolean
[[n]] Tc [[0]]
[[n]], [[0]] ∈M=

[[fac]] := [[1]]
[[fac]] := [[n*fac(n-1)]]
Op([[n]], [[fac(n-1)]], [[n*fac(n-1)]])
[[n]], [[fac(n-1)]], [[n*fac(n-1)]] ∈M∗
[[fac(n-1)]] = Integer
Op([[n]], [[1]], [[n-1]])
[[n]], [[1]], [[n-1]] ∈M−

4

where I ⊂ O is the set of integer types
including all subranges of integers. The fol-
lowing is a solution to the set of constraints:

[[n]] = Integer
[[0]] = Integer

[[n=0]] = Boolean
[[fac]] = Integer

[[1]] = Integer
[[n*fac(n-1)]] = Integer

[[fac(n-1)]] = Integer
[[n-1]] = Integer

2

Note that even in the case of a program
with explicit type annotation, we must in-
fer some of the types. In the above example
we inferred the type Integer for the expres-
sion n*fac(n-1). When the type annotation
is present, we can use the technique of de-
riving the possible types of a parse tree node
from the possible types of the subexpressions.
This technique is widely used in type check-
ers. When some or all of the type annotations
are missing, we have to use the technique of
generating and solving constraints.

Example: Consider the implicit version of
the above example function:

Function fac(n);
begin

if n=0 then
fac := 0

else
fac := n*fac(n-1)

end

The set of constraints has no direct informa-
tion about the types of n or fac:

[[1]] ∈ I
[[0]] ∈ I
[[n=0]] = Boolean
[[n]] Tc [[0]]
[[n]], [[0]] ∈M=

[[fac]] := [[1]]
[[fac]] := [[n*fac(n-1)]]
Op([[n]], [[fac(n-1)]], [[n*fac(n-1)]])
[[n]], [[fac(n-1)]], [[n*fac(n-1)]] ∈M∗
Op([[n]], [[1]], [[n-1]])
[[n]], [[1]], [[n-1]] ∈M−

The solution from the previous example is a
solution here, too; but there is also a very
different solution:

[[n]] = Real
[[0]] = Integer

[[n=0]] = Boolean
[[fac]] = Real

[[1]] = Integer
[[n*fac(n-1)]] = Real

[[fac(n-1)]] = Real
[[n-1]] = Real

2

Since all the type rules of Turbo Pascal can
be expressed in this manner, we have reduced
the problem of type inference to that of find-
ing a solution to a set of certain kinds of con-
straints. We now have to exhibit an algo-
rithm that solves such a set of constraints.

3 An Algorithm for
Pascal

In the algorithm we will maintain a data
structure containing all the solutions to an in-
creasing set of constraints generated dynam-
ically from the program. This just leaves the
task of selecting one of these solutions from
the data structure. Selecting a solution from

5

the data structure we will present here is in
general a non-trivial task, but in Pascal we
can use some specific features of the type sys-
tem to obtain a solution quite easily.

We represent the set of solutions by a
graph, where the nodes contain a set of ba-
sic types and type constructors, e.g. a node
could contain the type Integer or the con-
structor array. We shall use the term label
as a common name for basic types and type
constructors. For each constructor there are
edges to the nodes representing its compo-
nent types. We let every type variable point
to the node representing its type. It is possi-
ble for several type variables to point to the
same node.

Example: Assume that we have the type
variables [[e1]], [[e2]], . . . , [[e5]], and the con-
straints (possibly not from any real Pascal
program):

[[e1]] = [[e5]]
[[e5]] ∈ {Integer,Char,

array Integer of Real,
array Integer of Integer}

[[e1]] ∈ {Char, array Integer of Real,
array Integer of Integer,
array Boolean of Integer}

[[e2]] = array [[e3]] of [[e4]]

We can represent the set of all solutions to
the above constraints as follows:

��
��

�
�

�
�
�
�

�
�

�
�

�
�

? ?

�
�

�
�

? ?

{Integer,Real}

{Char,array}

��
��

{Integer}

{array}

(array,1) (array,2)

[[e1]], [[e5]]

O ∗

(array,1) (array,2)

[[e3]]

[[e2]]

[[e4]]

The label ‘∗’ stands for any Pascal type.
Note that the set of possible types for [[e1]]
and [[e5]] is found through the intersection
of the set of possible types for [[e1]] and the
set of possible types for [[e5]]. Note also
that the representation incorporates the
extra constraint that the index type of an
array-type must be an ordinal type.
2

An arbitrary solution can be found simply
by choosing a label for each node. In the
above example the types of [[e1]] and [[e5]] are
guaranteed to be equal, since they point to
same node. This represents the Turbo Pascal
notion of name equivalence.

In the above example it was possible to
choose a type for each node independent-
ly of the types chosen for other nodes. In
the presence of complicated constraints like
[[x]] := [[e]], this is not the case. Assume for
example that [[x]] and [[e]] both point to (differ-
ent) nodes containing the set {Integer,Real}.
If [[x]] is a Real, then [[e]] can be either a Real
or an Integer, but if [[x]] is an Integer, then [[e]]
will have to be an Integer as well. We rep-
resent this by introducing relations between
nodes in the graph.

Example: Consider the constraints:

6

[[e1]] ∈ {Integer,Real}
[[e2]] ∈ {Integer,Real}
[[e1]] := [[e2]]

We represent these as:

�
�

�
� {Integer,Real}

�
�

�
�

Integer := Integer

[[e2]]

Real := Integer
Real := Real

{Integer,Real}[[e1]]

The box is representing the relation :=. Each
line of the box represents a possible solution
to the relation. We use this representation
of the relation to reduce the graph in the fol-
lowing way. Suppose we read the constraint:

[[e2]] = Real

Now we can reduce the set of labels for the
right node to {Real}. Looking at the box
we can see that the possibilities Integer :=
Integer and Real := Integer are no longer
relevant. We can thus remove them, and the
only remaining possibility is Real := Real.
We get the following representation:

�
�

�
� {Real}

�
�

�
�[[e2]]

Real := Real

{Real}[[e1]]

2

There are four different relations correspond-
ing to the constraints [[e]] Tc [[e’]], [[e]] := [[e’]],
Op([[e]], [[e’]], [[e”]]), and [[e]] Io [[e’]]. In Turbo
Pascal these relations have arity 2 or 3, but in
general we may consider relations of a greater
arity as well. The relations are adjusted to
the sets of labels in the corresponding nodes,
so that only the relevant cases are present.

A further aspect of these constraints can be
seen in an example using pointers.

Example: Consider the constraints:

[[x1]]∈{Pointer} ∪ {∧(T) |T is a type}
[[x2]]∈{Pointer} ∪ {∧(T) |T is a type}
[[x1]]:=[[x2]]

They give rise to the following representation:

�
�

�
�

�
�

�
�[[x1]] [[x2]]

Pointer := Pointer

{∧,Pointer} {∧,Pointer}

∧ := ∧ if [[x1]]=[[x2]]
Pointer := ∧

∧ := Pointer

? ?

��
��

��
��
∗∗

∧ ∧

Note the fourth line in the box:
∧ := ∧ if [[x1]] = [[x2]]. It is a condition-
al possibility. It says, that if x1 and x2

are both pointers to some other type, then
they have to be name equivalent in order to
be assignment compatible. If we read the
constraints:

[[x1]] = ∧[[x3]]
[[x2]] = ∧[[x4]]

in the above situation we get that the only
remaining possibility is the conditional
∧ := ∧ if [[x1]] = [[x2]]. We will thus identify
the nodes, and we get the following repre-
sentation.

��
��

?
∗��
��∧

[[x3]], [[x4]]

{∧}[[x1]], [[x2]]

7

Note how this collapsing of nodes results in
a subsequent collapsing of their successor
nodes.
2

There are three operations on graphs as the
above.

• Collapsing two nodes. The labels of the
collapsed node are intersections of the la-
bels of the original nodes. The relations
connected to the nodes are transformed
accordingly (their arities may decrease).
This operation may result in subsequent
collapsings of successor nodes and reduc-
tions of relations.

• Reducing a relation. Remove all cases
that are no longer possible. May result
in collapsing and reduction of nodes.

• Reducing a node. Remove one or more
labels from the set of labels contained
in the node. May result in reduction of
relations.

As it is seen, the operations are mutually de-
pendent (i.e. recursive). The termination of
the operations is ensured by the fact that all
operations reduce the size of the graph. As
it is described here the algorithm uses most
of the time in the collapsing of nodes. It is
possible, however, to modify the algorithm to
reduce the work needed for collapsing. With
a suitable representation of the graph the op-
erations can then be implemented in such a
way that the total time of any sequence of
operations is O(nα(n)), where n is the size of
the Pascal program.

The remaining task is that of choosing one
of the solutions represented in the graph.
This could be a nontrivial task because the
relations may not “fit”. That is, there may
not be a global solution corresponding to a

certain case in a particular relation. Simi-
larly, even if a node contains a certain label,
there is no guarantee that the node has this
label in any global solution. The problem is
that the local information can collide with
demands in other parts of the graph. In gen-
eral, finding whether a solution exists is NP-
complete.

We must examine more closely the rela-
tions generated for a Pascal program. Con-
sider a node which contains the label Boolean.
This node could be attached to a number of
relations, Tc being one of them. In Pascal,
Boolean is only type compatible to itself, so
the node in the other end of the Tc relation
must contain Boolean as well. If we have a
solution to this particular relation, then both
nodes have type Boolean which we can safely
choose. Similar arguments apply to the other
relations.

Assume now that a particular node con-
tains not Boolean but rather Real. Consider
the case where the node represents the re-
turn type of a binary operation, for example
+. Then either the two other attached nodes
will both contain Real or one will contain Real
and the other will contain Integer. In the for-
mer case we can safely choose Real as a type
for all the nodes. In the latter there will be
a solution in which the two types that con-
tain Real have type Real, and the one that
does not has type Integer. So we can apply
a strategy of always preferring Real if there
is no Boolean, and Integer if there is neither
Boolean nor Real. Note that if the node of
the return type did not contain Integer, then
there will be no solution where the two oth-
er nodes both have type Integer. Thus we
cannot interchange Integer and Real in this
strategy.

The above represents an ordering between
the labels. Boolean is the least, then comes
Real followed by Integer. By looking at all

8

the labels we can see that there exists a gen-
eral ordering of all the labels, such that it is
a sound strategy always to pick the least of
the labels contained in a node. hence in the
case of Pascal it is straightforward to find a
solution from the graph in linear time. The
total time for the type inference of a program
of size n thus remains at O(nα(n)).

4 The Turbo Pascal
Tool

The Turbo Pascal programming language
comes equipped with a fast and efficient com-
piler. Hence there is no need to reinvent
the wheel by writing a new compiler. In-
stead we have implemented the Turbo Pascal
tool as a preprocessor, which accepts a Turbo
Pascal program without or partially without
type annotations and returns a typed pro-
gram that can in turn be compiled by the
Turbo Pascal compiler. This means that when
given the implicit version of the factorial func-
tion (as part of a whole program) it returns
the following explicit version:

Type T1 = Real;

Function fac(n: T1): T1;
begin

if n=0 then
fac := 0

else
fac := n*fac(n-1)

end

Note the introduction of a new type identifier.
The tool will always do this in order to get
the name equivalence right. The tool is of
course able to handle recursive types as in
the following example:

Var z;

begin
z∧.a := z

end.

The resulting program is this:

Type T1 = ∧T2;
T2 = record

a: T1;
end;

Var z: T1;

begin
z∧.a := z

end.

As in the explicitly typed version of Pascal we
must demand that recursive types contain a
pointer type. If the ‘∧’ is left out in the above
example the tool will respond with an error
message.

Both of the above examples are reasonably
small and simple. The tool handles them us-
ing these resources:

factorial recursive
constraints 24 3
graph size 70 28
type vars 12 3

The graph size is the largest number of nodes
through the running of the program.

In the initial phase of a programming task
it is usually unclear how the program will de-
velop. In such cases it is not easy to provide
the actual types that the program must use.
Nevertheless this information must be pro-
vided in advance when programming in an
explicitly typed language. By using type in-
ference the programmer gets the freedom not
to choose the actual types in advance, but

9

instead concentrate on the algorithmic devel-
opment of the program. Type inference is al-
so a way to avoid cluttering up the program
with a lot of redundant information.

However there are situations where it
might be preferable to annotate some of the
variables. In the above factorial example the
inferred type for the variable n is Real. But
this is not the preferred type. The call facto-
rial(3.7) would never terminate anyway, and
thus we might want to add the type annota-
tion n: Integer to make sure that the facto-
rial function is always called with an integer
number. The tool is able to handle the ex-
tra information from type annotations. As a
special case, the tool is able to handle explic-
it type information concerning types, which
cannot be inferred, i.e. subrange and enumer-
ation types. The subrange types are handled
by the inference algorithm as an Integer type
and then passed on to the compiler at the
end. The enumeration types introduces new
constants, which are defined to be the values
of that type. There is no unambiguous way
to infer these types from the program. The
problem is simply not well-defined. What we
do instead is to allow the programmer to ex-
plicitly define the enumeration types. If the
enumeration type (c1, . . . , cn) is defined in
the program, we generate the constraint [[ci]]
= (c1, . . . , cn) for the expression ci. An enu-
meration type can now be treated as any oth-
er type.

One of the acclaimed features of ML
and other functional languages is that of
polymorphism[1]. In a language with poly-
morphic procedures and functions, you can
use the same function or procedure on argu-
ments of different types. An often used ex-
ample of this is the polymorphic length func-
tion. The polymorphic length function has
type α list → Integer. The free type variable
α can be instantiated with any type. This

means that the length function can be ap-
plied to lists with any element type. This
makes perfect sense because the length of a
list has nothing to do with the elements of
that lists. In ML polymorphism is inherent
in the type system by allowing free type vari-
ables in the types, but with a more pragmat-
ic view it can be seen as a consequence of
the type inference. In this pragmatic view
polymorphism is understood as code reuse: A
polymorphic procedure is a procedure, which
code can be used for parameters of different
types. Take as an example the following code
without type annotations:

Procedure double(Var x; y);
begin

x := y+y
end;

Var a; b;

begin
double(a,4);
double(b,’cat’)

end.

The constraints for the procedure double have
among others the following solutions: [[x]] =
[[y]] = Real and [[x]] = [[y]] = String. This
means that both of the calls of the function
are type correct when seen in isolation. Un-
fortunately, we have to annotate the proce-
dure with a single type for both x and y. This
is impossible, since the types being forced on
x and y from the two calls are completely in-
comparable. Instead we can lift the restric-
tion that the types should be equal in the two
cases by copying the procedure:

Type T1 = Real;
T2 = String;

10

Procedure double(Var x: T1; y: T1);
begin

x := y+y
end;

Procedure double1(Var x: T2; y: T2);
begin

x := y+y
end;

Var a: T1; b: T2;

begin
double(a,4);
double1(b,’cat’)

end.

The above example might suggest that a
good strategy for implementing polymor-
phism would be simply to repeat copying pro-
cedures (and functions) until no two proce-
dure calls are to the same procedure. This
strategy, however, has two major deficiencies:

• In the presence of recursive procedures
it will lead to infinite copying.

• Even when there are no recursive proce-
dures it is inefficient.

The first problem can be solved simply by
ignoring recursive calls and by always copy-
ing mutually recursive procedures together.
To solve the second problem the preproces-
sor applies another strategy: It will not copy
any procedure unless it is apparent from the
constraints that the call of the procedure will
lead to a type error. It will repeat this copy-
ing until it can find no more procedures which
must be copied. Then no further copying will
take place. Furthermore, before copying the
preprocessor checks whether there is anoth-
er copy of the procedure that can safely be
called instead of the original. Thus the pre-
processor employs a strategy of conservative

copying. That is, the total size of the ex-
panded program is no larger than an explicit-
ly typed monomorphic program will have to
be. However, when employing conservative
copying we lose the full generality of poly-
morphism. In a realistic program, though, it
is not likely that the type inference will fail
due to insufficient copying.

As a more interesting example of the use
of polymorphism see the following implicitly
typed implementation of a polymorphic
stack:

Procedure push(Var s; e);
Var temp;

begin
new(temp);
temp∧.next := s;
s := temp;
s∧.elm := e;

end;

Function pop(Var x);
Var temp;

begin
temp := s;
s := s∧.next;
pop := temp∧.elm;

end;

Var a;
b;
c;
d;

begin
push(a, 94);
push(b, true);
c := pop(a);
d := pop(b);

end.

There is no assumption about the types of

11

the elements of the stack in the procedures
push and pop, so the implementation should
work for stacks of any type. For example
Real and Boolean as in the example. The
tool recognizes that the two calls to push
have different types, and consequently makes
a copy of push. This will give the two stacks
a and b different types and thus result in a
subsequent copying of the function pop. The
result is as follows:

Type T1 = ∧T5;
T2 = ∧T6;
T3 = Real;
T4 = Boolean;
T5 = record

elm: T3;
next: T1;

end;
T6 = record

elm: T4;
next: T2;

end;

Procedure push(Var s: T1; e: T3);
Var temp: T1;

begin
new(temp);
temp∧.next := s;
s := temp;
s∧.elm := e;

end;

Procedure push1(Var s: T2; e: T4);
Var temp:T2;

begin
new(temp);
temp∧.next := s;
s := temp;
s∧.elm := e;

end;

Function pop(Var x: T1): T3;
Var temp: T1;

begin
temp := s;
s := s∧.next;
pop := temp∧.elm;

end;

Function pop1(Var x: T2): T4;
Var temp: T2;

begin
temp := s;
s := s∧.next;
pop := temp∧.elm;

end;

Var a: T1;
b: T2;
c: T3;
d: T4;

begin
push(a, 94);
push1(b, true);
c := pop(a);
d := pop1(b);

end.

Note that the inferred types are recursive.
The polymorphic examples are larger than

the monomorphic ones. Especially the stack
requires a large graph:

double stack
constraints 14 50
graph size 77 192
type vars 10 42

The obvious advantage with polymorphism
is the compactness of the written code. Let-
ting the tool do the necessary copying saves
a lot of the programmers time. Who has not
sighed with exasperation when programming
the 17th identical version of linear search for

12

the 17th version of a linked list? Further-
more, since the tool only performs the nec-
essary copying it might in some cases find a
solution having procedures than the one the
programmer would come up with.

Even though the tool makes as few copies
as possible, there are still examples in which
the resulting program becomes very large.
As an example take the following program:

Procedure Pn+1(x);
begin
end;

Procedure Pn(x);
Var y; z;

begin
y.a := x;
z.a := x;
y.b := 7;
z.b := false;
Pn+1(y);
Pn+1(z)

end;
...

Procedure P1(x);
Var y; z;

begin
y.a := x;
z.a := x;
y.b := 7;
z.b := false;
P2(y);
P2(z)

end;

begin
P1(0)

end.

The expanded version of this program will
contain 2n+1− 1 procedures. In ML there are

similar problems with types of exponential
size [4]. In both cases it can be argued that
the examples are highly artificial and that we
will not encounter this behavior in practice.

A fully implemented prototype of
the Turbo Pascal tool can be found at
http://www.daimi.aau.dk/~hougaard/itp.
This site contains the source code written in
Turbo Pascal, together with the 220K binary
executable file and some example files.

5 Conclusions and
Future Work

The main result of this paper is that we have
shown it to be possible to implement auto-
matic type inference and polymorphism for a
standard imperative language. This empha-
sizes that we should not always prefer one
programming paradigm to another just on
the grounds of the implemented features. In
our case, one of the key advantages from ML
has been lifted into a new context.

By implementing the tool for Turbo Pas-
cal we have provided the means for exper-
imenting and studying the impact of these
new features on programming methodology.
The examples shown here and the experiences
with type inference and polymorphism in oth-
er programming languages certainly suggest
that they are useful features. Especially so in
a development phase where the lack of type
annotations allows for greater flexibility.

The tool currently handles only the basic
constructs from Turbo Pascal. Some of the
more advanced features have not yet been im-
plemented. Among the features that need to
be considered is Turbo Pascal’s units . The
most straightforward way of handling units
would be to apply type inference only in-
side of the unit. Once we have obtained a

13

correct typing of the interface we will leave
the interface as it is, thus demanding that all
subsequent changes to the implementation of
the unit respects this interface. In this way
we can still provide separate compilation and
use the built-in compiler. If we want separate
compilation along with polymorphic units we
will have to write a new compiler that can
generate polymorphic code.

References

[1] Luca Cardelli and Peter Wegner. On
understanding types, data abstraction,
and polymorphism. Computing Surveys,
17(4):471–520, December 1985.

[2] Luis Damas and Robin Milner. Principal
type schemes for functional programming.
In 9th ACM conf. on Principels Of Pro-
gramming Languages, 1982.

[3] C.A.R. Hoare. Recursive data structures.
International Journal of Computer and
Information Sciences, 4:2:105–132, 1975.

[4] Harry G. Mairson. Decidability of ML
typing is complete for deterministic ex-
ponential time. In Seventeenth Sympo-
sium on Principles of Programming Lan-
guages, pages 382–401. ACM Press, Jan-
uary 1990.

[5] Robin Milner. A theory of type polymor-
phism in programming. Journal of Com-
puter and System Sciences, 17:348 – 375,
1978.

[6] Jens Palsberg. Efficient inference of ob-
ject types. In 9th Logic in Computer Sci-
ence, pages 186–195. IEEE Computer So-
ciety Press, July 1994.

[7] Jens Palsberg and Michael I.
Schwartzbach. Object-oriented type
inference. In 6th Annual Conference
on Object-Oriented Programming Sys-
tems, Languages and Applications, pages
146–161. ACM SIGPLAN, October 1991.

[8] Michael I. Schwartzbach. Type infer-
ence with inequalities. In Proceedings
of TAPSOFT’91. LNCS 493, Springer-
Verlag, 1991.

[9] M. Wand. A simple algorithm and proof
for type inference. Fundamentae Infor-
maticae, X:115 – 122, 1987.

14

