
Interpretations of
Recursively Defined Types

Michael I. Schwartzbach

Computer Science Department
Aarhus University

Ny Munkegade
DK-8000 Århus C, Denmark

Abstract

We consider a type system where types are labeled, regular trees.
Equipped with a type ordering, it forms the basis for a polymorphic,
imperative programming language. This paper studies interpretations,
which are homomorphic, monotonic functions from types to sets of val-
ues. We show that they form a partial order with a minimal and a
maximal element, and various characterizations of other interpreta-
tions are provided. We also briefly consider a unification of types and
values.

1 Introduction

In [7,9] we introduced a type system for an imperative programming lan-
guage. The types are labeled, regular trees containing tree-shaped data val-
ues. There is a natural partial order of types, defined as a refinement of the
standard approximation order on labeled trees. This type ordering is shown
to allow a subtype polymorphism that encompasses 1st order parametric
polymorphism and multiple inheritance. In fact, under various assumptions
one can show that this system allows optimal code reuse.

The values of a given type have been defined as the least solutions to the
recursive equations on sets of trees induced from the type equations. These

1



values are all finite trees. In this paper we investigate the full spectrum
of possible interpretations of types, given that the polymorphic mechanism
must remain correct. This is equivalent to classifying functions from types
to sets of trees that satisfy certain homomorphic and monotonic axioms.

We show that such interpretations form a partial order, with a minimal and
a maximal element. A similar distinction between small and large interpre-
tations of (more general) recursive type equations is discussed in [2,6]. Thus,
any interpretation can be expressed as a restriction of the maximal interpre-
tation, described by some predicate on values. We characterize the predicates
that yield legal interpretations; they must be decomposable, or equivalently
finitely stable.

The variety of interpretations contains many interesting possibilities, e.g. fi-
nite, regular, and computable values. Infinite values constitute an important
part of many programming languages, when they can be implemented lazily.

Finally, these investigations suggest that we may dissolve the distinction
between types and values, and work with a unified concept.

2 Recursively Defined Types

In this section we shall briefly review the type system of [7,9]. Types are
defined by means of a set of type equations

Type T1 = E1

Type T2 = E2

. . .
Type Tk = Ek

where the Ti’s are type variables and the Ei’s are type expressions, which are
defined as follows

E ::= Int | Bool | simple types
Ti | type variables
∗E | lists
(n1 : E1, . . . , nk : Ek) partial products, k ≥ 0, ni ∈ N , ni 6= nj

2



Here N is an infinite set of names. Types are denoted by type expressions.
Notice that type definitions may involve arbitrary recursion.

The ∗-operator corresponds to ordinary finite lists. The partial product is a
generalization of sums and products; its values are partial functions from the
tag names to values of the corresponding types, in much the same way that
products may be regarded as total functions. This partiality is essential to
the consistency of the hierarchy.

Structural Invariants

In [7] the partial product is combined with structural invariants to enable a
technique for specifying (recursive) types, which is more compact and con-
venient than the usual sums-and-products or records-and-pointers. A struc-
tural invariant is associated with a partial product as part of the type ex-
pression and specifies a set of legal domains for the corresponding partial
functions. Often a logical notation is used, so that for example the type of
binary integer trees may be specified as

Type Tree = (val: Int, left,right: Tree) ! { (left ∨ right) ⇒ val }

This invariant actually specifies the set of domains

{{val}, {val, left}, {val, right}, {val, left, right}}

Without the invariant the partiality would allow values that are not tree-like,
e.g. one with a left- but no val-component. Notice that sums and products
may be recovered as partial products with appropriate invariants; in fact, we
shall use the usual notation × for the binary partial product with a Cartesian
product-like structural invariant, i.e.

T1 × T2 ≡ (fst : T1, snd : T2) ! {fst ∧ snd}

Partial products with structural invariants are pragmatically superior to the
standard sums and products for two reasons. Firstly, the use of sums and
products is equivalent to expressing the invariants using only the xor and
and operators, which is clearly inconvenient; at the theoretical worst, the
size of the notation may expand exponentially. Secondly, the nesting of sums

3



and products force components belonging to the same conceptual level to
appear at different syntactical levels. The partial products alleviate these
disadvantages.

Another approach could be to employ more type constructors. We can think
of the partial product as the Cartesian product of domain-like sets with a ⊥
element to indicate undefinedness. In [1] a great number of binary domain
constructors are considered for the purposes of specifying various domains of
infinite values. Some of these correspond to logical operators in the above
sense; for example, the separated product ×⊥ seems to resemble the or
operator. Since ⊥ is always present it is, however, unclear how to insist
on the presence of a component, which is necessary to define e.g. the and
operator. Also, compositionality seems to break down, since at the same
time we want ¬A = {⊥} and ¬¬A = A. In any case, with unary or binary
constructors the notational disadvantages remain. The structural invariants
provide an n-ary type constructor for each n-place propositional statement.

Types as Regular Trees

We define an equivalence relation ≈ on type expressions, which identifies dif-
ferent type expressions denoting the same type. This equivalence is defined
as the identity of normal forms. To each type expression E we associate a
unique normal form nf (E), which is a possibly-infinite labeled tree. Infor-
mally, this tree is obtained by unfolding the type expression. If we regard
the definitions

Type IL = ∗Int
Type IS = (leaf: IL, node: ∗IS)

we would expect the normal form nf (IS) to be the infinite tree indicated by

4



@
@

@
@

�
�

�
�

nf (IS)Int

∗∗

(leaf,node)

This is merely a short-hand notation for the full tree. Formally, we use
the fact that the set of labeled trees form a complete partial order under
the partial ordering v, where t1 v t2, iff t1 can be obtained from t2 by
replacing any number of subtrees with the singleton tree Ω. In this setting,
normal forms can be defined as unique limits of chains of approximations, as
discussed in [3,4]. The singleton tree Ω is smaller than all other trees and
corresponds to the type defined by

Type T = T

which we shall refer to as the vacuous type. Note that if two type expressions
are equivalent, then their corresponding structural invariants must be equal.

The equivalence ≈ is unique in satisfying the following properties: no two
type expressions with a different outermost type constructor may be iden-
tified, and if F (S1, . . . , Sk) is equivalent to F (T1, . . . , Tk) then each Si must
be equivalent to Ti. The former requirement is self-evident; the latter is
necessary to allow consistent selection of subvariables.

Type equivalence is decidable; an efficient algorithm is presented in [8].

We let T denote the set of all types, i.e. normal forms of type expressions.
The notation labels(t) denotes the set of labels in t. Notice that all types
have finite label sets. We shall write t′ << t to denote that t′ is finite and
t′ v t.

5



The Type Ordering

To obtain our polymorphism we need a partial ordering � on types, which
ensures that if the relation T1 � T2 holds, then all applications written for
the type T1 may be reused for the type T2.

All types allow the definition and use of variables, including assignments. Int
and Bool come with the usual operations. Lists and partial products provide
expressions denoting arbitrary constants and the selection of subvariables.
Furthermore, the partial products have the usual operations of partial func-
tions, e.g. test for definedness and inclusion and exclusion of components.

The approximation ordering v may itself serve as a type ordering. However,
it can be refined further, by observing that a partial product allows all of
the manipulations that are possible for products with fewer components, i.e.
selection of components and (due to the partiality) formation of constants.

The complete type ordering is obtained in two stages. We first define �0 as
the least refinement of v such that

(ni : Ti) �0 (mj : Sj) if {ni} ⊆ {mj} ∧ ni= mj⇒ Ti �0 Sj

Extending this to infinite types, we define � in terms of finite approximants

T � S iff ∀T ′ << T : T ′ �0 S

To illustrate this ordering, we can observe that the relations

@
@

@
@

�
�

�
�

T2Ω

(a, b)

�
@

@
@
@

�
�

�
�

T2 T3Ω

(a, b, c)

�
@

@
@
@

�
�

�
�

T2 T3T1

(a, b, c)

hold for all Ti.

In the presence of structural invariants the ordering is somewhat more com-
plicated; for products with invariants we define

P1 ! I1 �0 P2 ! I2 iff P1 �0 P2 ∧ I1 � I2

6



where the ordering on invariants is defined by

I1 � I2 iff I1 ⊆ I2 ∧ I1|I2
The divisibility I1|I2 is defined in [7] as

I1 × (I2/I1) ⊆ I2

where

X × Y = {x ∪ y | x ∈ X, y ∈ Y }, X/Y = {x− basis(Y ) | x ∈ X}

and basis(Y ) is the set of components names in the product with which Y
is associated. This expresses a consistency condition on invariants. For this
presentation we need only to know that the ordering implies inclusion of
invariants.

In [7] it is described how this ordering can achieve a subtype polymorphism
for a Pascal-like language with assignments. The parameter passing mech-
anism is extended to exploit the order structure, essentially by allowing the
actual parameters to be larger than the formal parameters, subject to certain
homogeneity conditions. The semantics of such a hierarchical procedure call
is to substitute the types of the actual parameters for those of the formal pa-
rameters, recompile the procedure, and execute a normal procedure call1. In
[9] we introduce a general example language and provide a proof of soundness
and optimality of this system.

The least upper bounds of � correspond to multiple inheritance [7]: two
types can be joined by the (recursive) unification of their components. In
fact, we obtain a generalization of the ordinary multiple inheritance, since we
have recursive (infinite) types and the polymorphic type Ω. Dually, greatest
lower bounds correspond to multiple specialization [7]. Least upper bounds
may or may not exist, whereas greatest lower bounds always exist.

This type system, together with hierarchical procedure calls, allows the com-
bination of multiple inheritance and full 1st order polymorphism in a lan-
guage with assignments.

The type ordering is decidable, and least upper bounds as well as greatest
lower bounds are computable. Efficient algorithms are presented in [8].

1Of course, an actual implementation would employ a uniform data representation that
allowed direct code reuse.

7



3 Interpretations

In this setting we also regard the values as being labeled trees. With each
type T we shall associate a set of values.

Definition 3.1: An interpretation φ is a function from types to sets of values
that satisfies the following axioms. It must be homomorphic in the sense that

φ(Int) = {. . . ,−1, 0, 1, 2, . . .}
φ(Bool) = {true, false}
φ(∗T ) = ∗φ(T )

φ((ni : Ti) ! I) = (ni : φ(Ti)) ! I

where the type constructors have analogous value constructors defined below.
Furthermore, φ must be monotonic with respect to �; that is

∀T1, T2 ∈ T : T1 � T2 ⇒ φ(T1) ⊆ φ(T2)

The value constructors are defined as follows. Let S, Si be sets of values.
Then

∗S =




@
@

@
@

�
�

�
�

· · · sks1

∗

| k ≥ 0, si ∈ S




(ni : Si) =


 sij

(nij )

| {nij} ⊆ {ni}, sij ∈ Sij




8



In the presence of structural invariants the allowed subsets {nij} must belong
to the invariant, which yields the modified value constructor

(ni : Si) ! I =


 sij

(nij)

| {nij} ∈ I, sij ∈ Sij




The axioms are needed for the correctness proofs in [9] to be valid, but they
are quite easy to motivate on their own. Homomorphicity simply states the
intended meaning of the type constructors: the set ∗S corresponds to lists of
S-elements, and the set (ni : Si) corresponds to partial functions from {ni}
to the Si’s. Monotonicity states the intended meaning of the type ordering.

Proposition 3.2: The value constructors are all ⊆-monotonic and ω-continuous
functions on sets of values.
Proof: Immediate, since they are all syntactic operators, i.e. they merely
combine trees in their entirety. 2

Values of Finite Types

The homomorphic and monotonic axioms are fairly severe, but as we shall
see they allow for more than one interpretation. It is, however, the case that
all interpretations must agree on all finite types.

Definition 3.3: When T is finite, then Valfin(T ) is defined inductively in
T as follows

Valfin(Ω) = ∅
Valfin(Int) = {. . . ,−1, 0, 1, 2, . . .}

Valfin(Bool) = {true, false}

9



Valfin(∗T ) = ∗Valfin(T )

Valfin((ni : Ti) ! I) = (ni : Valfin(Ti)) ! I

Proposition 3.4: Valfin is homomorphic and monotonic.
Proof: It is by definition homomorphic. Monotonicity follows since the
value constructors are monotonic, ∅ is smaller than all other values set, and
a partial product clearly gets more values when more components are added
or the invariant is increased. 2

Proposition 3.5: If φ is any interpretation and T is finite, then φ(T ) =
Valfin(T ).
Proof: For any interpretation φ, monotonicity implies φ(Ω) = ∅, since Ω �
Int, Ω � Bool and hence φ(Ω) ⊆ φ(Int)∩φ(Bool) = ∅. Now the result follows
by straightforward structural induction. 2

For infinite types this structural induction is no longer well-founded and
several choices become available.

Recursive Values

Definition 3.6: The recursive interpretation of the (infinite) type given by
the equation

Type T = F (T )

is defined as
Valrec(T ) =

⋃
i≥0

F̃ i(∅)

where F̃ is the (composite) value constructor derived from the (composite)
type constructor F . This is the standard construction of the least fixed point,

10



which generalizes in the obvious way to mutually recursive type equations.

Proposition 3.7: Valrec is an interpretation.
Proof: The homomorphic axioms are satisfied since the two value construc-
tors are ω-continuous functions on sets. Regarding monotonicity, we may
initially observe that

Valrec(T ) =
⋃

S�T, |S|<∞
Valfin(S)

This follows from the facts that all the F n(Ω) are finite types, that Valfin
is monotonic, and that any finite S � T is smaller than some F n(Ω). Now,
if T1 � T2 then

Valrec(T1) =
⋃

S�T1, |S|<∞
Valfin(S) ⊆

⋃
S�T2, |S|<∞

Valfin(S) = Valrec(T2)

and monotonicity of Valrec follows. 2

Using Valrec we do not get any infinite values. The approximants to the
value set of the type

Type T = Int × T

never get any bigger than ∅, since ×̃ is strict on ∅. In fact, no interpretation
can be smaller than Valrec.

Proposition 3.8: If φ is any interpretation, then

∀T ∈ T : Valrec(T ) ⊆ φ(T )

Proof: Let v ∈ Valrec(T ) be a value. Now, v belongs to some ap-
proximant, say F̃ n(∅). Homomorphicity implies v ∈ Valrec(F n(Ω)) =
Valfin(F n(Ω)). Then v ∈ φ(F n(Ω)) = Valfin(F n(Ω)) and from mono-
tonicity and F n(Ω) � T it follows that v ∈ φ(T ). 2

11



4 The Maximal Interpretation

It is perhaps more surprising that we can find a maximal interpretation.
Using the fact that both types and values are labeled trees, we shall define a
rewriting system which transforms a type into any of its values.

Consider the following non-deterministic rewriting system on finite trees:

I T � Ω

II

T

∗

�
@

@
@
@

�
�

�
�

· · · TT

∗

︸ ︷︷ ︸
k

k ≥ 0

III

Ti

(ni)

�

Tij

(nij )

{nij} ⊆ {ni}

IV Int � i i ∈ Int

V Bool � b b ∈ Bool

For products with invariants we have the modified rewrite rule:

VI

Ti

(ni) ! I

�

Tij

(nij )

{nij} ∈ I

12



The results of these rewritings are not values, since they may contain Ω’s; we
shall call them protovalues. Protovalues are either just values or approximants
of infinite values.

Proposition 4.1: For all finite T we have

Valfin(T ) = {v | T �∗ v ∧ Int,Bool,Ω 6∈ labels(v)}

Proof: By induction in the structure of T . It is clearly true for Int, Bool, and
Ω. If T = ∗S we observe that any finite T -value can be obtained by securing
the appropriate fan-out using the II-rule and then inductively expanding the
S-subtrees. Similarly, if T = (ni : Si). 2

We want to generalize this mechanism to infinite types as well; however, this
confronts us with the problem of performing a countably infinite number of
rewriting steps. This is, in fact, possible in the present context, since we can
work with finite approximants.

Definition 4.2: t �ω v iff ∀β << v ∃α << t : α �∗ β A similar method for
defining functions is described in [3].

Definition 4.3: The maximal interpretation is defined by

Valmax(T ) = {v | T �ω v ∧ Int,Bool,Ω 6∈ labels(v)}

which mimics proposition 4.1.

Lemma 4.4: If t1 � t2 then t2 �ω t1.
Proof: If β << t1, then β << t2. Since β �∗ β, we are done. 2

Lemma 4.5: �ω is reflexive and transitive.

13



Proof: Reflexivity t�ω t holds since ∀β << t : β�∗β. For transitivity we as-
sume t�ωs�ωr, so that ∀β << s ∃α << t : α�∗β and ∀γ << r ∃β << s : β�∗γ.
But then ∀γ << r ∃β << s ∃α << t : α �∗ β �∗ γ. By transitivity of �∗ we
have ∀γ << r ∃α << t : α�∗ γ, so t�ω r. 2

Now we can show that the maximal interpretation satisfies the required ax-
ioms.

Theorem 4.6: Valmax is homomorphic.
Proof: Clearly, Valmax works correctly on Int, Bool, and Ω. Suppose
v ∈ ∗Valmax(T ). Then

v =
@

@
@
@

�
�

�
�

· · · vkv1

∗

where vi ∈ Valmax(T ), i.e. ∀βi << vi ∃αi << T : αi �∗ βi. Any β << v is
either Ω or of the form

@
@

@
@

�
�

�
�

· · · βkβ1

∗

Thus, if we choose α as Ω or

@
@

@
@

�
�

�
�

· · · αkα1

∗

we have ∀β << v ∃α << ∗T : α �∗ β. Hence, Valmax(∗T ) ⊇ ∗Valmax(T ).
Conversely, if v ∈ Valmax(∗T ), then ∀β << v ∃α << ∗T : α �∗ β. Since v

14



cannot have an Ω-label, we have

v =
@

@
@
@

�
�

�
�

· · · vkv1

∗

, β =
@

@
@
@

�
�

�
�

· · · βkβ1

∗

, α =
@

@
@
@

�
�

�
�

· · · αkα1

∗

where αi �∗ βi << vi. Since βi is arbitrary, we have ∀βi << vi ∃αi << T :
αi �∗ βi. Hence, Valmax(∗T ) ⊆ ∗Valmax(T ). The result for (ni : Ti) is
proved similarly. 2

Theorem 4.7: Valmax is monotonic.
Proof: Assume T1 � T2; we shall show that if T1 �ω v then T2 �ω v. By
lemma 4.4 we have that T2 �ω T1, so from lemma 4.5 and T2 �ω T1 �ω v we
conclude that T2 �ω v. 2

Theorem 4.8: If φ is any interpretation, then

∀T ∈ T : φ(T ) ⊆ Valmax(T )

Proof: If T = Ω, then φ(T ) = ∅ and we are done. Otherwise, let v ∈ φ(T )
and β << v. By induction in β, we shall construct α << T such that α�∗β. If
β = Ω, then α = Ω will do. If β is a simple value, then T is the corresponding
simple type and α = T will do. If T = ∗S then

β =
@

@
@
@

�
�

�
�

· · · βkβ1

∗

, v =
@

@
@
@

�
�

�
�

· · · vkv1

∗

where βi << vi ∈ φ(S). By induction hypothesis, we can find αi << S such

15



that αi �
∗ βi. But then

α =
@

@
@
@

�
�

�
�

· · · αkα1

∗

will do. We proceed similarly if β = (ni : βi). 2

For example, the maximal values of

Type A = (head: Int, tail: A) ! {tail ⇒ head}

are all finite and infinite lists of integers. In contrast, the values of

Type B = (head: Int, tail: B) ! {head ∧ tail}

are only the infinite lists. In general, any infinite type will contain some
infinite values, and only Ω is empty. An infinite type that is empty under
Valrec will exclusively have infinite values under Valmax, as exemplified
by the type B.

The following result shows that if monotonicity was not an axiom, then we
would not have a maximal interpretation.

Proposition 4.12: If only the homomorphic axioms are required, then in-
terpretations can be arbitrarily large.
Proof: The value function

ValXinf(T ) = lim
n→∞ F̃

n(X)

is homomorphic for any set X, due to ω-continuity of the value construc-
tors. We have ValXinf(Ω) = X, so in particular the sets of Ω-values are
unbounded. 2

16



5 Other Interpretations

So far, we have seen the two extreme interpretations, Valrec and Valmax,
between which all others must be contained. At a glance, it may not be
obvious that there are other possibilities, but in fact we have an infinitude
of proper interpretations.

All value sets will be subsets of the maximal ones. Such a subset can be
characterized in the following manner

Valψ(T ) = {v ∈ Valmax(T ) | ψ(v)}

where ψ is some predicate on values; for example, we clearly have

Valrec = {v ∈ Valmax(T ) | v is finite}

Obviously, not all predicates will yield legal interpretations; we shall charac-
terize the ones that do.

Definition 5.1: A predicate ψ on trees is decomposable when

ψ holds for t iff ψ holds for all proper subtrees of t

Thus, truth for t can be decomposed into truth for the subtrees.

Theorem 5.2: Valψ is an interpretation iff ψ is decomposable.
Proof: Monotonicity of Valψ is automatically inherited from Valmax. The
homomorphic properties on simple types tells us that ψ must hold for all
simple values. But this is equivalent to the fact that ψ is decomposable on
singleton trees, since ψ vacuously holds for the empty collection of proper
subtrees. For non-singleton trees we have two cases. First, we look at the
homomorphic property

Valψ(∗T ) = ∗Valψ(T )

which translates to

{v ∈ Valmax(∗T ) | ψ(v)} = ∗{v ∈ Valmax(T ) | ψ(v)}

17



Neither containment follows automatically, but they combine to the require-
ment

ψ




@
@

@
@

�
�

�
�

· · · vkv1

∗



iff ∀i : ψ(vi)

Similarly, for the homomorphic property

Valψ((ni : Ti)) = (ni : Valψ(Ti))

we get the requirement

ψ


 vi

(ni)




iff ∀i : ψ(vi)

This also works if invariants are employed. By induction in the depth of
subtrees it follows that Valψ being homomorphic corresponds to ψ being
decomposable. 2

18



Proposition 5.3: Valψ is the largest interpretation under which all values
satisfy ψ.
Proof: Immediate from maximality of Valmax. 2

Examples of decomposable predicates are

a) Is finite.

b) Is regular.

c) Is computable (in some additive time or space bound).

d) If every subtree contains a ∗-label, then every subtree contains an (x)-
label.

The case d) will serve as a counterexample in a later result. In contrast, the
following predicates are not decomposable

e) Is infinite.

f) Is uncomputable.

g) Contains a path with infinitely many ∗-labels.

h) Does not contain any ∗-labels.

i) Contains a ∗-label.

The examples h) and i) show that a predicate and its negation can both be
not decomposable.

The decomposable predicates provide a convenient method for defining in-
terpretations, since it is fairly easy to determine if predicates can be decom-
posed. It is tempting to believe that that the decomposable predicates form
exactly the theory of finite trees, but this is not so.

Proposition 5.4: If ψ is decomposable, then ψ holds for all finite trees; the
opposite implication is false.
Proof: ψ must hold for all singleton trees, since they have no proper sub-
trees. Hence, by induction ψ holds for all finite trees. To see that the opposite

19



implication is false, just consider the predicate “(is finite) or (has no leaves)”,
which clearly holds for finite trees, since they trivially satisfy the first dis-
junct, but which is not decomposable. 2

This provides a very simple proof of propositions 3.7 and 3.8.

Corollary 5.5: Valrec is the smallest interpretation.
Proof: Since “is finite” is decomposable Valrec is an interpretation. As
any other interpretation is described by a decomposable predicate it follows
from proposition 5.4 that it contains Valrec. 2

20



Proposition 5.6: The class of decomposable predicates is closed under con-
junction, but not under disjunction or negation.
Proof: Clearly true for ∧. For ∨, we look at the two decomposable predi-
cates b) and d) mentioned above. The unary tree t1 with labels ∗ ∗ ∗ ∗ ∗ · · ·
clearly satifies b). The unary tree t2 with labels ∗ (x) ∗ (x)2 ∗ (x)3 ∗ · · · clearly
satisfies d). However, a tree with subtrees t1, t2 does not satisfy b)∨d), since
t1 has no (x)-label and t1 is not regular. For ¬, we consider “finite” and
“infinite”. 2

Probably the best way to characterize the decomposable predicates is to ob-
serve that they are stable under finite computations.

Definition 5.7: If t1, . . . , tn, t are trees, then we write

t1, t2, . . . , tn 7→ t

if only finitely many subtrees of t are not also subtrees of some ti. We call t
a finite modification of the ti’s.

The intuition behind this definition is that t is the result of a finite computa-
tion with the ti’s as input. One can combine the ti’s while changing the labels
of finitely many nodes, making finite insertions or deletions, or rearranging,
copying or deleting finitely many subtrees.

Definition 5.8: A predicate ψ on trees is finitely stable if whenever ψ(t1), . . . , ψ(tn)
holds and t1, t2, . . . , tn 7→ t, then also ψ(t) holds.

Proposition 5.9: ψ is decomposable iff it is finitely stable.
Proof: Assume that ψ decomposable and ψ(t) holds. Then ψ holds for all
subtrees of t. Then ψ holds for all but finitely many subtrees of t, and by
induction ψ must hold for the rest, too. Now, assume that ψ is finitely stable.
If ψ(t) holds, then ψ holds for any subtree, since it can be obtained as a finite
modification of t. If ψ holds for all subtrees of t, then it particularly holds

21



for the finitely many immediate subtrees of t. But t is a finite modification
of these, so ψ(t) holds, too. 2

Even so, a decomposable predicate can detect an infinite pattern of labels or
tree-structure, as witnessed by the computability predicates.

An intuitive understanding of the situation may be given as follows. The
finite values are always present, since they can be explicitly constructed on
run-time. The infinite values cannot be computed in finite time, so they
must be given a priori. These infinite values are described by the predicate
ψ. The program is now free to perform finite modifications of the infinite
values. This should not create any unexpected infinite values.

6 Unifying Types and Values

In the preceding development, types and values are both labeled trees. This
suggests that we may be able to dissolve the distinction between them.

Proposition 6.1: �ω is anti-symmetric.
Proof: Suppose that t�ω s and s�ω t. Let β << s. Then we have an α << t
such that α�∗ β. We also have a β ′ << s such that β ′ �∗ α�∗ β. By a simple
inductive argument it follows that α << s. By symmetry, it follows that t
and s have the same finite approximants and, thus, are equal. 2

This, together with lemma 4.5, shows that ω� (as well as �ω itself) is a partial
order. It provides a unifying characterization of (sub)types and values in the
following sense

• if v is a value of type T then v ω� T

• if S is a subtype of T then S ω� T

A similar observation has been the basis for a unification of terms and sorts
in algebraic specifications [5].

22



We can now combine values, protovalues, and types. The “values” of “type”
T is

{v | T �ω v}
and the “type” ordering is ω�. A hybrid such as

(x : Bool, y : 7)

can be viewed simultaneously as a product type with an x-component of type
Bool and a y-component that must equal 7, and as a product value where
the y-component is 7 and the x-component is an undetermined Bool value.

Such a unification radically changes the basis for the polymorphic mechanism,
but it is possible to obtain results similar to those in [8,9].

One advantage of such an approach is the ability to deal with undetermined
values. It also solves the problem of how to initialize a variable of type T :
the natural initial value is just T itself. Since types are regular trees, it would
be natural to restrict “values” similarly, which is possible since “is regular”
is a decomposable predicate. This provides finite representations for a lazy
implementation, and makes equality and ω� decidable.

References

[1] Cartwright, R., Donahue, J. “The Semantics of Lazy (and Indus-
trious) Evaluation” in Proceedings of ACM Symposium on Lisp and
Functional Programming 1982.

[2] Constable R.L. et al. “Implementing Mathematics in the NuPrl
Proof Development System”. Prentice-Hall, 1986.

[3] Courcelle B. “Fundamental Properties of Infinite Trees” in Theoreti-
cal Computer Science Vol 25 No 1, 95-169, North-Holland 1983.

[4] Courcelle B. “Infinite Trees in Normal Form and Recursive Equations
Having a Unique Solution” in Mathematical Systems Theory 13, 131-
180. Springer-Verlag 1979.

23



[5] Mosses P.D. “Unified Algebras and Institutions” in Proceedings of
Fourth Annual Symposium on Logic in Computer Science, 304-312,
1989.

[6] Panangaden P. Mendler N. & Schwartzbach, M.I. “Recursively
Defined Types in Constructive Type Theory” in Resolution of Equa-
tions in Algebraic Structures Vol 1, 369-410 eds. Hassan Ait-Kaci &
Maurice Nivat, Academic Press 1989.

[7] Schmidt, E.M. & Schwartzbach, M.I. “An Imperative Type Hi-
erarchy with Partial Products” in Proceedings of MFCS’89, LNCS Vol
379, 458-470, Springer-Verlag, 1989.

[8] Schwartzbach, M.I. & Schmidt, Erik M. “Types and Automata”.
PB-3165, Department of Computer Science, Aarhus University, 1990.

[9] Schwartzbach, M.I. “Static Correctness of Hierarchical Procedures”
in Proceedings of ICALP’90, LNCS Vol 443, 32-45, Springer-Verlag,
1990.

24


