
Injectivity of Composite Functions

Kim S. Larsen∗ Michael I. Schwartzbach
Computer Science Department, Aarhus University

Ny Munkegade, 8000 Aarhus C, Denmark

∗Present address: Department of Mathematics and Computer Science, Odense Univer-

sity, Campusvej 55, 5230 Odense M, Denmark.

1

Abstract

The problem of deciding injectivity of functions is addressed. The

functions under consideration are compositions of more basic functions

for which information about injectivity properties is available. We

present an algorithm which will often be able to prove that such a

composite function is injective. This algorithm constructs a set of

propositional Horn clause axioms from the function specification and

the available information about the basic functions. The existence of

a proof of injectivity is then reduced to the problem of propositional

Horn clause deduction. Dowling and Gallier have designed several very

fast algorithms for this problem, the efficiency of which our algorithm

inherits. The proof of correctness of the algorithm amounts to showing

soundness and completeness of the generated Horn clause axioms.

2

1 Introduction

Many fundamental mathematical concepts have significant impact on com-
puter science, and the concept of injectivity is no exception. For a computer
scientist, the most natural question to ask in connection with this concept is:
“Given a description of a function f , is f injective”? It is well known that
this problem is undecidable in general, and this fact might be what has kept
researchers from further explorations. However, just as some NP-complete
problems have extremely fast approximations algorithms, there might exist
natural classes of functions for which injectivity can be decided.

This paper is a first step in that direction. Our starting point is a collection
of basic or built-in functions, each of which has some information attached,
reflecting its properties of injectivity. We present an algorithm which takes
as input a term f composed of the basic functions. There are two possible
outputs from the algorithm: “proved injective” and “no proof”. If the answer
is “no proof”, then the composite function f could still be injective—our
algorithm just failed to provide a proof. However, our algorithm is complete
in the sense that if the answer is “no proof”, then there exists a non-injective
function to which the same information could have been attached. Thus, we
have exhausted the potential of our approach.

Our algorithm works as follows. From the term f and the information at-
tached to function symbols, a set of propositional Horn clause axioms is
generated. The result of evaluating one query on these axioms gives us the
answer to whether a proof of injectivity can be found or not, given the in-
formation available. The size of the axioms will be proportional to the size
of the function description, |f |. Dowling & Gallier (1984) have designed a
linear-time algorithm for evaluating propositional Horn clause queries, so via
this reduction, we obtain an O(|f |) algorithm.

We will not try to account for all the possible applications for an “injectivity
tester”. In the following, we concentrate on one application, which we find
to be of primary interest.

In mathematical tools like Mathematica Wolfram (1988) and in functio-
nal programming languages like Miranda Turner (1985), Ml Milner et al.

(1990), or Scheme Abelson et al. (1989), sets are of great importance. Eit-
her because set is a type in the language, or because users tend to write

3

applications involving sets. In either case, lists will probably be used to im-
plement the set type. So, sets are lists with the invariant that there are no
duplicate elements.

Consider the functional program fragment map f l, where f is a function and
l is a set (implemented as a list). This is a frequently occurring construction
in functional languages with the interpretation that if l is the list [a1, . . . , an],
then map f l is [f(a1), . . . , f(an)]. Obviously, if f is not injective, then the
list [f(a1), . . . , f(an)] might contain duplicates. In order to maintain the set
invariant, the list will then have to be sorted to check for duplicates and to
remove these if necessary.

This is where our “injectivity tester” comes in. If it can be determined that
f is injective, then this sorting can be avoided, and the complexity would
be brought down from O(n logn) to O(n). Our algorithm could be a part of
the implementation of languages supporting a set type. For other languages,
it could be a library routine, which could be used to improve efficiency of
user-defined set manipulations.

In languages supporting lazy evaluation, lists can be (potentially) infinite.
This implies that the set invariant cannot be maintained as described above
by first computing the whole list and then sorting to remove duplicates.
Instead, insertion sort has to be used. Dynamically, the value f(ai) has to be
compared with the set of values {f(a1), . . . , f(ai−1)}, and it should only be
output if it has not already appeared. Under these circumstances, knowing
that f is injective would reduce the complexity dramatically from O(n2) to
O(n).

There are also possible applications in the area of databases. In the rela-
tional model, a relation is a set of tuples, but again, the implementation is
often in the form of lists without duplicate tuples. In the relational model,
a few unary operators are singled out, but in real database query languages,
more powerful mechanisms for constructing complex unary queries are usu-
ally supplied. Clearly, the prospect of an “injectivity tester” is once again
to avoid sorting. This is particularly interesting in connection with relations
since these are often huge, and must be stored on secondary memory.

4

2 The Framework

This section contains a precise statement of the problem.

2.1 Axioms for Injectivity

Properties about the injectivity of the basic functions must be provided. A
full equational theory would be an obvious choice, but injectivity is not de-
cidable in this framework. Also, a particular function could be very easy to
implement and yet very difficult to axiomatize. Furthermore, such specifi-
cations need not be very modular; if we introduce a new function, then we
may have to relate it to all the existing ones. We would prefer to specify
information for each function purely locally.

A different and natural approach addresses all the concerns. The most sim-
plistic solution would be to attach one bit of information to each function,
stating whether it was injective in all its arguments. In this case, a com-
posite function would be injective if it was composed of only injective basic
functions. We can refine this technique considerably. For each k-ary basic
function we specify a set of propositional Horn clause axioms, the proposi-
tions of which are among the integers {1, . . . , k}. Clauses such as

1← 2 and 2← 1

state that the resulting value, together with the second argument, completely
determines the first argument, and vice versa. Both are true of the + opera-
tion on integers, for example: if we know that x + y = 87 and y = 40, then
we can uniquely determine x (as x = 47). The append function satisfies the
same axioms. Such specifications are local to the function and they are easy
to construct and verify. Another example is the cons function which satisfies
the axioms 1← and 2←, since it is in fact injective in both arguments. The
sublist function, taking a list and two integer indices, satisfies the axioms
3← 1, 2 and 2← 1, 3. All functions satisfy trivial axioms such as i← i.

Note that compositions of non-injective functions may be injective. An e-
xample is the function defined by

(a, b, x) 7→ (append(a, b), reverse(b), x + length(a))

5

which is injective even though the functions append, length, and + are not. T-
he argument is as follows. Assume that the value of (append(a, b), reverse(b), x+
length(a)) is known. We prove that then the values of a, b, and x can
be determined. As reverse(b) is injective, we can determine b. Let us
denote this by b ← reverse(b). From b and append(a, b), we can deter-
mine a, i.e., a ← b, append(a, b). Finally, length(a) ← a and therefore,
x← length(a), x + length(a).

As another example consider

(x, y) 7→ (2(x + y), (x + y)/x)

Here, x + y ← 2(x + y) which gives us x as x ← x + y, (x + y)/x. Finally,
y ← x, x + y.

2.2 (Σ, ∆)-algebras

Working in a homogeneous algebraic framework we can formalize these ideas.
Standard definitions may be found in great detail in Wirsing (1989), for
example. However, our application is slightly non-standard. We use a fixed
set of variables X = {x1, . . . , xn}.

Definition 2.1 A signature is a ranked set

Σ =
⋃

k∈IN

Σk

where Σk contains the functions of arity k, and X ⊆ Σ0. 2

Definition 2.2 The terms over the signature Σ, Term(Σ), are defined in-
ductively to be the least set such that

• σ ∈ Σ0 ⇒ σ ∈ Term(Σ)

• σ ∈ Σk, k > 0, and t1, . . . , tk ∈ Term(Σ)
⇓

σ(t1, . . . , tk) ∈ Term(Σ)

6

Henceforth, a term is an element of Term(Σ). 2

Such terms will be used to denote function expressions.

Definition 2.3 A function clause is of the form ⌊d0 ← d1, . . . , dm⌋, where
m ∈ IN and d0, d1, . . . , dm ∈ IN \{0}. 2

Function clauses will be attached to functions to specify their properties of
injectivity. If σ is a function of arity k, then the clause ⌊d0 ← d1, . . . , dm⌋
should be interpreted: “from the result of an application of σ to k arguments
and the d1th to the dmth argument we can uniquely determine the d0th
argument”. (The floor symbols ⌊ and ⌋ are only used as delimiters).

Definition 2.4 A pair (Σ, ∆) is a specification if Σ is a signature and ∆
maps function symbols to sets of function clauses such that

σ ∈ Σk ∧ ⌊d0 ← d1, . . . , dm⌋ ∈ ∆(σ) ⇒ {d0, d1, . . . , dm} ⊆ {1, . . . , k}

We will use a fixed specification (Σ, ∆) throughout the paper. 2

Definition 2.5 If D is a set, then v̄ denotes the tuple 〈v1, . . . , vp〉, where
v1, . . . , vp ∈ D. If i ∈ {1, . . . , p} then v̄.i denotes the value vi. If p = n (the
cardinality of the fixed set of variables X) and a ∈ X, then a = xi for some
xi ∈ X and we let v̄.a denote vi. 2

Our models will be algebras over (Σ, ∆). Such algebras should, of course, be
faithful to the information in (Σ, ∆), i.e., for each function symbol in Σ, we
will have a function in our algebra with the correct arity (as specified by Σ)
such that the properties of injectivity promised in ∆ are actually fulfilled.

Definition 2.6 M is a (Σ, ∆)-algebra if it provides a carrier domain domM

and for each σ ∈ Σk\X a function σM such that

• σM : domk
M → domM

7

• for each ⌊d0 ← d1, . . . , dm⌋ ∈ ∆(σ) we have for all v̄, w̄ ∈ domk
M :

〈v̄.d1, . . . , v̄.dm, σM(v̄)〉 = 〈w̄.d1, . . . , w̄.dm, σM(w̄)〉
⇓

v̄.d0 = w̄.d0

Let Alg(Σ, ∆) be the set of all (Σ, ∆)-algebras. As the specification (Σ, ∆)
is fixed, an algebra, henceforth, denotes a member of Alg(Σ, ∆). 2

A term t can in a given algebra be interpreted as a function of arity n.

Definition 2.7 Let M be an algebra and t a term. The function tM : domn
M → domM

is obtained from t as follows:

• if t = xi ∈ X, then tM(v̄) = v̄.i

• if t ∈ Term(Σ)\X, then t = σ(t1, . . . , tk) for some σ ∈ Σk and

tM(v̄) = σM(tM1 (v̄), . . . , tMk (v̄))

This simply interprets t as a function of the n variables xi. 2

2.3 The Decision Problem

We are interested in injectivity in the usual mathematical sense. That is,
when is a term, interpreted as a function in an algebra, injective?

Definition 2.8 Let M be an algebra. A term t is called semantically injecti-

ve w.r.t. M if tM : domn
M → domM is an injective function in the usual

mathematical sense, i.e.,

∀v̄, w̄ ∈ domn
M : v̄ 6= w̄ ⇒ tM(v̄) 6= tM(w̄)

We will use Sem(t) to denote that t is semantically injective w.r.t. any alge-
bra. 2

8

We shall construct an algorithm to decide Sem(t). If this property holds,
then the answer is “proved injective”; this is safe, since we are in an algebra,
and t is injective in all algebras. Otherwise, the answer is “no proof”; this
is the best we can do, since all we know is that in some algebra t is not
injective.

3 The Algorithm

It is not at all obvious how to decide a “semantic” property like Sem(t).
Therefore, we find a more “syntactic” property to check instead. Of course,
we then have to show that these two properties are equivalent.

As seen from definition 2.2, terms are built from variables and constants using
function symbols to combine terms. We want to obtain complete information,
as a set of Horn clause axioms, as to which variable can be retrieved from a
term. That is, if we know the value of tM(v̄), for some algebra M and values
v̄, which vi’s can we then retrieve? If all vi’s can be retrieved, then tM has a
left inverse and, hence, is injective.

Definition 3.1 If t is a term, then Sub(t) is the set of subterms of t defined
recursively by

Sub(t) = {t} ∪
⋃

i

Sub(ti)

where t = σ(t1, . . . , tk). 2

Definition 3.2 Let t be a term. Then a t-clause is of the form

⌊s0 ← s1, . . . , sk⌋

where si ∈ Sub(t). 2

Definition 3.3 The denotation [[t]] of a term t is the least finite set of t-
clauses containing

9

• The main clause ⌊t←⌋.

• The clauses in ∆̃, defined as

∆̃ =
⋃

s∈Sub(t)

⋃

δ∈∆(σ)

{⌊sd0
← sd1

, . . . , sdm
, s⌋|s = σ(s1, . . . , sk), δ = ⌊d0 ← d1, . . . , dm⌋}

• For each σ ∈ Σk\X and σ(s1, . . . , sk) ∈ Sub(t), a functionality clause

⌊σ(s1, . . . , sk)← s1, . . . , sk⌋

As we shall later see, the denotation contains all the information pertinent
to t. 2

The desired syntactic property can now be expressed by deductions in the
denotation.

Definition 3.4 A term s can be deduced in [[t]], written [[t]] ⊢ s, if ⌊s ←
s1, . . . , sk⌋ ∈ [[t]] and ∀i ∈ {1, . . . , k} : [[t]] ⊢ si. Deductions can conveniently
be represented as proofs of the form

...

s1
. . .

...

sk

s

i.e., finite trees where each line represents an application of a clause. 2

Definition 3.5 A term t is syntactically injective, written Syn(t), if

∀xi ∈ X : [[t]] ⊢ xi

As we shall see, this property exactly captures injectivity. 2

Taking this alternative definition on faith, we can present an algorithm.

10

We first compute the denotation. It is a set of Horn clause axioms with
subterms as propositions. Continuing the example from section 2.1, we list
the denotation for

exp = (append(a, b), reverse(b), x + length(a))

[[exp]] is:

exp← main clause
append(a, b)← exp property of (·, ·, ·)
reverse(b)← exp property of (·, ·, ·)
x + length(a)← exp property of (·, ·, ·)
a← b, append(a, b) property of append

b← a, append(a, b) property of append

append(a, b)← a, b functionality
b← reverse(b) property of reverse

reverse(b)← b functionality
x← length(a), x + length(a) property of +
length(a)← x, x + length(a) property of +
x + length(a)← x, length(a) functionality
length(a)← a functionality

Of course, we will not represent the subterms directly. Instead, by traversing
the parse tree of t, we enumerate all such subterms and use these numbers
for proposition symbols. We have O(|t|) subterms of t. The enumeration
can be done in linear time, and the same expenditure can provide a table
connecting the number of each subterm to those of its immediate subterms.

Apart from the main clause, the denotation contains ∆̃-clauses and functio-
nality clauses. Let |σ| denote the total number of propositions in ∆(σ). Then
each subterm of t contributes at most maxσ∈Σ |σ| propositions to the ∆̃-part
of the denotation. As each subterm appears as a proposition at most twice
in a functionality clause, this part of the denotation contains at most 2|t|
propositions.

Thus, the denotation has size O(|t|maxσ∈Σ |σ|), and it can clearly be compu-
ted in this time, too. We are left with verifying the deductions [[t]] ⊢ xi. Con-
tinuing the example from above, the longest derivation is the one deducing

11

x. It follows here (for clarity, we use the subterms instead of numbers):

exp

reverse(b)

b

exp

append(a, b)

a
length(a)

exp

x + length(a)

x

An algorithm in Dowling & Gallier (1984) can verify x1 ∧ x2 ∧ · · · ∧ xn in a
single computation in time O(|[[t]]|). In conclusion, Syn(t) can be decided in
time O(|t|maxσ∈Σ |σ|). For the usual case of a fixed (Σ, ∆), the algorithm
runs in time O(|t|), i.e., the algorithm is linear in the size of the input.

4 Proof of Correctness

Since we have given a correct algorithm for deciding Syn(t), we need only
show that Syn(t) is equivalent to Sem(t). This obligation is decomposed into
two parts: soundness and completeness.

4.1 Soundness

We set out to prove that syntactic injectivity implies semantic injectivity.

Definition 4.1 A t-clause ⌊s0 ← s1, . . . , sk⌋ is sound if for all algebras M
and v̄, w̄ ∈ domn

M we have

〈sM
1 (v̄), . . . , sM

k (v̄), tM(v̄)〉 = 〈sM
1 (w̄), . . . , sM

k (w̄), tM(w̄)〉
⇓

sM
0 (v̄) = sM

0 (w̄)

This is in line with the definition of function clauses. 2

Lemma 4.2 All clauses in [[t]] are sound.

12

Proof For all algebras, M , we have

• Soundness of the main clause states that

〈tM(v̄)〉 = 〈tM(w̄)〉 ⇒ tM(v̄) = tM(w̄)

• Soundness of the ∆̃-clauses states that

〈sM
d1

(v̄), . . . , sM
dm

(v̄), sM(v̄), tM(v̄)〉

= 〈sM
d1

(w̄), . . . , sM
dm

(w̄), sM(w̄), tM(w̄)〉

implies sM
d0

(v̄) = sM
d0

(w̄).

By definition 2.7, it follows that sM(v̄) = σM(sM
1 (v̄), . . . , sM

k (v̄)) and
sM(w̄) = σM(sM

1 (w̄), . . . , sM
k (w̄)). Since M is an algebra, it follows

from definition 2.6 that sM
d0

(v̄) = sM
d0

(w̄).

• The functionality clauses are sound since each σM is a function in the
algebra.

2

We show that the deduced terms can be retrieved semantically.

Lemma 4.3 Let t and s be terms. Then for all algebras, M , we have

[[t]] ⊢ s
⇓
∀v̄, w̄ ∈ domn

M : tM (v̄) = tM (w̄)⇒ sM(v̄) = sM(w̄)

Proof We proceed by induction in the size of a proof of the form

...

s1

. . .

...

sk

s0

13

By hypothesis, the result holds for the si’s since they have smaller proofs.
We have used the clause ⌊s0 ← s1, . . . , sk⌋, which is already proved sound in
lemma 4.2. But then

tM(v̄) = tM(w̄)
⇓
∀i ∈ {1, . . . , k} : sM

i (v̄) = sM
i (w̄), by the induction hypothesis

⇓
sM
0 (v̄) = sM

0 (w̄), by soundness of the clause

Notice that the base case is when s0 is a fact. 2

Theorem 4.4 (soundness) Let t be a term. If t is syntactically injective,
then t is also semantically injective, i.e., Syn(t) ⇒ Sem(t).

Proof

Syn(t)
⇓
∀xi ∈ X : [[t]] ⊢ xi, by definition

⇓
∀M ∈ Alg(Σ, ∆) ∀xi ∈ X ∀v̄, w̄ ∈ domn

M :

tM(v̄) = tM(w̄)⇒ v̄.xi = w̄.xi, by lemma 4.3
⇓
∀M ∈ Alg(Σ, ∆) ∀v̄, w̄ ∈ domn

M : tM(v̄) = tM(w̄)⇒ v̄ = w̄
⇓
∀M ∈ Alg(Σ, ∆) ∀v̄, w̄ ∈ domn

M : v̄ 6= w̄ ⇒ tM (v̄) 6= tM (w̄)
⇓

Sem(t), by definition

2

4.2 Completeness

We now endeavor to prove that the other implication holds too, i.e., that
semantic injectivity implies syntactic injectivity. Inspired by completeness

14

proofs in logic, the most natural approach is to construct a falsifying model
when syntactic injectivity fails. In our case, this means finding two different
arguments which yield equal results. In order to obtain these, we introduce
some distinct constants.

Definition 4.5 Let Σ+ be Σ with the addition of two extra constants, x◦

i

and x•

i , for each xi ∈ X. More formally,

Σ+
0 = Σ0 ∪ {x

◦

i | xi ∈ X} ∪ {x•

i | xi ∈ X}

and Σ+ = Σ+
0 ∪ Σ.

If t ∈ Term(Σ), then t◦ ∈ Term(Σ+) is obtained by replacing each xi with
x◦

i . We similarly define t• by replacing each xi with x•

i . 2

In the following, the X◦

i ’s can be thought of as one input to a function t giving
rise to one result t◦, and the x•

i ’s as another input giving rise to another result
t•.

We want to generate the term algebra from a very weak theory that is desig-
ned to be only just strong enough to prove the two results equal. We then
show that this theory is too weak to force the arguments to be equal. This
would then be our falsifying model.

Definition 4.6 If t ∈ Term(Σ), then Mod(t) is the initial algebra over Σ+,
where the defining equations are:

• The main equation: t◦ = t•.

• The ∆̃-equations: for each ⌊s0 ← s1, . . . , sk⌋ ∈ ∆̃, we include

(s◦1 = s•1) ∧ . . . ∧ (s◦k = s•k)⇒ s◦0 = s•0

Values are congruence classes of Term(Σ+) under the least congruence gene-
rated by the defining equations. The class with representative s is denoted
[s]. 2

There is a standard theory of term algebras:

15

Lemma 4.7 Mod(t) is completely axiomatized by the theory Eq(t)X obtai-
ned by adding to the defining equations:

• reflexivity: a = a

• symmetry: a = b⇒ b = a

• transitivity: (a = b) ∧ (b = c)⇒ a = c

• substitutivity: (a1 = b1) ∧ · · · ∧ (ak = bk)
⇓

σ(a1, . . . , ak) = σ(b1, . . . , bk)

i.e., in Mod(t) we have [t1] = [t2] if and only if Eq(t) ⊢ t1 = t2.

Proof Immediate from definitions; for details see Wirsing (1989). 2

The following result will facilitate the analysis of transitivity inferences in
later proofs.

Lemma 4.8 Any proof in Eq(t) concluded with a transitivity inference has
a normal form of the following kind:

�
�

�
�

�
�

�
�

�
�

�
�

Pp

P2

f3 = bf2 = f3P1

f2 = bf1 = f2P0

f1 = ba = f1

a = b

16

where the concluding inferences in the Pi’s are not transitivity. If such a
concluding inference is symmetry, then the inference immediately above is
neither symmetry nor transitivity. Let Ri be the last inference in Pi that is
not symmetry. We call R0 the left-hand inference and R1, . . . , Rp the right-

hand inferences.

Proof By applying the transformation,

b = c c = a

b = a
a = b

→

c = a

a = c

b = c

c = b
a = b

we eliminate the symmetry inferences below transitivity inferences. Next,
sequences of symmetry inferences are replaced by a single or none. Finally,
by applying the transformation,

a = d d = c

a = c
c = b

a = b
→

a = d
d = c c = b

d = b
a = b

we move transitivity inferences to the right. 2

The theory Mod(t) was designed to be weak. In the following, we show that
it is so weak that only structurally equivalent terms can be proved equal.

Definition 4.9 Two terms in Mod(t) are called structurally equivalent if,
when every x◦

i and x•

i are replaced by xi, they become identical. 2

Proposition 4.10 If a = b can be proved in Mod(t), then a and b are
structurally equivalent.

Proof By induction in the size of a proof of a = b in Eq(t). The base
cases are reflexitivity and the main equation. The remaining case, symme-
try, transitivity, substitutivity, and ∆̃-equations are handled inductively. All
cases are trivial. 2

Next, we show that we are justified in calling Mod(t) an algebra.

17

Lemma 4.11 Mod(t) is a (Σ, ∆)-algebra, when σ ∈ Σk\X is interpreted as
the function σMod(t) : ([r1], . . . , [rk]) 7→ [σ(r1, . . . , rk)].

Proof Substitutivity ensures that σMod(t) is in fact a function. We must
further show that it satisfies the requirements given by ∆(σ). Look at the
definition of any such requirement. It is vacuously satisfied unless we have
an equality of the form

σMod(t)([a1], . . . , [ak]) = σMod(t)([b1], . . . , [bk])

By lemma 4.7, we have such an equality if and only if

Eq(t) ⊢ σ(a1, . . . , ak) = σ(b1, . . . , bk)

We proceed by induction in the size of such a proof and look at the last
inference performed. From lemma 4.8, we can assume that the proof is in
normal form.

• ∆̃-equation or the main equation: The conclusion is of the form s◦ =
s•, where s ∈ Sub(t). By definition, all ∆(σ)-requirements on such
subterms are directly included as defining equations.

• Reflexivity: Here ai = bi and we are done.

• Symmetry: The result follows trivially from the induction hypothesis.

• Transitivity: We use the terminology from lemma 4.8. We consider all
cases based on the left-hand and the right-hand inferences. Notice that
these can only be reflexitivity, substitutivity, the main equation, or a
∆̃-equation.

– If the left-hand or some right-hand inference is reflexitivity, then
that part of the proof looks like:

fi = fi

P

fi = b
fi = b

So, we have a smaller proof of fi = b and therefore also of a = b,
and we can apply the induction hypothesis. Similarly, if a sym-
metry inference follows the reflexitivity inference in question.

18

– If the left-hand inference is substitutivity, then the proof is of the
form:

a1 = c1 · · · ak = ck

σ(a1, . . . , ak) = σ(c1, . . . , ck)
σ(c1, . . . , ck) = σ(b1, . . . , bk)

σ(a1, . . . , ak) = σ(b1, . . . , bk)

If the equality we want to prove is ai = bi, then we apply t-
he induction hypothesis to σ(c1, . . . , ck) = σ(b1, . . . , bk) to obtain
ci = bi. The equality ai = ci can be found among the premi-
ses for the substitutivity inference, so ai = bi can be deduced
using transitivity. If a symmetry inference follows the substituti-
vity inference, then we still have the pair-wise equality among the
arguments, which is all we need.

– If every right-hand inference is substitutivity, then the argument
is much like the above. From proposition 4.10, it follows that t-
he outer-most function symbol must be the same everywhere in
the part of the proof which is of the form depicted in lemma 4.8.
Additionally, for every equality σ(c1, . . . , ck) = σ(d1, . . . , dk), we
have proofs of equality among arguments in the same position,
i.e., ci = di. This either follows directly from the substitutivi-
ty inferences (possibly followed by symmetry), or it follows from
these proofs combined with a number of transitivity inferences.

The last part of the proof looks like:

σ(a1, . . . , ak) = σ(c1, . . . , ck) σ(c1, . . . , ck) = σ(b1, . . . , bk)

σ(a1, . . . , ak) = σ(b1, . . . , bk)

If ai = bi is the desired equality, then we apply the induction
hypothesis to σ(a1, . . . , ak) = σ(c1, . . . , ck) to obtain ai = ci. As
argued above, we have proofs of pair-wise equality among any of
the arguments to the right; ci = bi in particular. By transitivity,
the result follows.

– If the left-hand inference and some right-hand inference both are
∆̃-clauses or main clauses, then the conclusion of the proof looks
like:

s◦ = s• s• = b

s◦ = b

19

Somewhere up to the right, we have a situation as illustrated be-
low:

q◦ = q• q• = b

q◦ = b

By proposition 4.10, two terms which are proved equal are struc-
turally equivalent. As all the inferences below the left-hand and
right-hand inferences are either symmetry or transitivity, this me-
ans that all the terms depicted in lemma 4.8 are structurally equi-
valent. In particular, this implies that q◦ and s◦ are structurally
equivalent. Since they are both all white, they must be identical.
Thus, q◦ = b is really a smaller proof of the equality s◦ = b. The
result follows by applying the induction hypothesis to this smaller
proof.

• Substitutivity: Here all the arguments must be pairwise equal, so ai =
bi, and any ∆(σ)-requirement is trivially satisfied.

2

The next result provides the important link between the term algebra and
the denotation.

Lemma 4.12 Model equality implies denotational deduction, i.e.,

∀s ∈ Sub(t) : ((Eq(t) ⊢ s◦ = s•) or (Eq(t) ⊢ s• = s◦)) ⇒ [[t]] ⊢ s

Proof We inductively transform one proof into another. In Eq(t), we have
a proof with conclusion s◦ = s• or s◦ = s•. From lemma 4.8, we can assume
that this proof is in normal form. We consider the last inference performed:

• The main equation:

t◦ = t•

The result is trivial since ⌊t←⌋ ∈ [[t]].

20

• A ∆̃-equation:
...

s◦1 = s•1
. . .

...

s◦k = s•k
s◦ = s•

By si ∈ Sub(t) and the induction hypothesis, we have [[t]] ⊢ si. The
∆̃-equation comes from the ∆-clause ⌊s ← s1, . . . , sk⌋, so we conclude
[[t]] ⊢ s.

• Reflexivity: We either have

s◦ = s•
or

s• = s◦

However, since we used the reflexitivity inference, s◦ and s• are actually
identical. This means that they contain no xi’s, so both conclusions
are actually s = s. An easy induction shows that any such s ∈ Sub(t)
can be derived from [[t]] using only functionality clauses.

• Symmetry: Since we have a situation like

...

s• = s◦

s◦ = s•
or

...

s◦ = s•

s• = s◦

we can apply the induction hypothesis to obtain the result.

• Transitivity: We use the terminology from lemma 4.8. We consider all
cases based on the left-hand and the right-hand inferences. Notice that
these can only be reflexitivity, substitutivity, the main equation, or ∆̃-
equations. We only treat the case, where the conclusion is s◦ = s•; the
other case is completely symmetric to this one.

– If the left-hand or some right-hand inference is a ∆̃-equation or the
main equation, then somewhere in the proof, we have an inference
as shown below:

q◦ = q• q• = b

q◦ = b

21

This is assuming that there was not a symmetry inference right
below the inference in question. If a symmetry inference was used,
this part of the proof would look like:

q◦ = q•

q• = q◦
q◦ = b

q• = b

In either case, the proof of the equation q◦ = b is smaller than the
entire proof.

Since the conclusion of the whole proof is s◦ = s•, it follows from
proposition 4.10 that all the terms depicted in lemma 4.8 are struc-
turally equivalent. Since both q◦ and s◦ are all white, they must
be identical. Thus, q◦ = b is really a smaller proof of s◦ = b. We
can now apply the induction hypothesis to obtain the result.

– If the left-hand or some right-hand inference is reflexitivity, then
we can construct a smaller proof of the original equality by exactly
the same technique as was used in the reflexitivity case in the
transitivity part of the proof of lemma 4.11.

– Now we assume that both the left-hand and all the right-hand
inferences are substitutivity. The proof is of the form:

s◦ = c c = s•

s◦ = s•

By proposition 4.10, c is structurally equivalent to s◦ and s•. If c
is identical to one of the two, then the induction hypothesis can
be applied to obtain the result. So, assume that c contains both
white and black variables. Such a term is from now on called a
mixed term.

We now discuss which inference rules can be used to obtain an
equality, where terms are mixed. Clearly, this rules out the main
equation and the ∆̃-equations. We are left with reflexitivity, sym-
metry, transitivity, and substitutivity.

Consider a path going up through the proof of s◦ = c, say, until
we meet an inference, which is reflexitivity, the main equation, or
a ∆̃-equation. If we found a reflexitivity inference, q = q, then q

22

can be derived, as we have already argued, using only functionality
clauses. If it is not reflexitivity, then we have something of the
form q◦ = q• or q• = q◦ and the induction hypothesis applies,
i.e., [[t]] ⊢ q. Assume that we have done this for all such paths.
All these deductions can now be combined as we go back down
the proof tree again through the symmetries, transitivities, and
substitutivities.

The terms in the conclusion of a symmetry or a transitivity in-
ference are structurally equivalent to the terms in the premises,
so the same deduction can be used. Going down through a sub-
stitutivity inference, we apply a functionality clause in order to
derive the fact corresponding to the terms in the conclusion of
that inference.

• Substitutivity:
...

s◦1 = s•1
. . .

...

s◦k = s•k
s◦ = s•

where s◦ = σ(s◦1, . . . , s
◦

1) and s• = σ(s•1, . . . , s
•

k). Since s ∈ Sub(t)
implies that Sub(s) ⊆ Sub(t), we can apply the induction hypothesis
to conclude that [[t]] ⊢ si. As we further have the functionality clause
⌊s← s1, . . . , sk⌋, we are done.

Since we have covered all cases, the result follows. 2

Theorem 4.13 (completeness) Let t be a term. If t is semantically injecti-
ve, then t is also syntactically injective, i.e.,

Sem(t) ⇒ Syn(t)

23

Proof Assume ¬Syn(t). Then Mod(t) is a falsifying model:

¬Syn(t)
⇓
∃xi ∈ X : [[t]] 6⊢ xi, by definition

⇓
∃xi ∈ X : Eq(t) 6⊢ x◦

i = x•

i , by lemma 4.12
⇓
∃xi ∈ X : [x◦

i] 6= [x•

i], by completeness of Eq(t)
⇓
〈[x◦

1], . . . , [x
◦

n]〉 6= 〈[x•

1], . . . , [x
•

n]〉

But in Mod(t) we have [t◦] = [t•], which is the same as

tMod(t)(〈[x◦

1], . . . , [x
◦

n]〉) = tMod(t)(〈[x•

1], . . . , [x
•

n]〉)

Hence, the interpretation of t is non-injective in Mod(t). The existence of
such a model implies ¬Sem(t). 2

5 Conclusion

This work represents one small step towards the goal of determining injecti-
vity of functions. This is a goal which can never be reached completely, but
as we have demonstrated, partial results can be obtained.

The results in this paper are of particular interest in functional languages,
mathematical tools, relational databases, and anywhere else, where lists are
to be maintained as sets

It is not clear to what extent our technique can cover other standard language
constructions. Recursion, or some other form of iteration, would be an inte-
resting study. Notice that if the “injectivity tester” fails to prove injectivity
before one iteration over a list, partial injectivity information may have been
deduced. This information can be used in the following iteration, making it
more likely that injectivity can be proved in that round.

Using recursion instead of a simpler iteration scheme, conditionals are ne-
cessary. It would be very useful, if our algorithm could be extended in that

24

direction as well. This seems quite difficult, but one could hope for some
conservative result, e.g., sometimes being able to prove injectivity if the two
statement parts of a conditional can never produce the same value.

A proposal independent of language constructions would be to give up the
completely automatic approach. Quite often it is obvious to the programmer
that some user-defined function is injective or partially injective. So, why
not let the programmer have the option of attaching this information to the
function declaration in the same way as type information is often provided
by the user. We believe that such a semi-automatic approach could be very
promising.

Acknowledgements

We would like to thank the anonymous referees for some very useful sugge-
stions.

25

References

[1] Abelson, H. et al. (1989). Revised report on the algorithmic language
Scheme.

[2] Dowling, W. F., Gallier, J. H. (1984). Linear-time algorithms for testing
the satisfiability of propositional Horn formulae. J. Logic Programming

1(3), 267-284.

[3] Milner, R., Tofte, M., Harper, R. (1990). The Definition of Standard ML.
MIT Press.

[4] Turner, D. A. (1985). Miranda: a non-strict functional language with
polymorphic types. In: Proc. Conference on Functional Programming

Languages and Computer Architecture. Lecture Notes in Computer Sci-

ence 201, 1-16.

[5] Wirsing, M. (1989). Algebraic specification. In: Handbook of Theoreti-

cal Computer Science, Vol. B: Formal Models and Semantics, 675-788.
Elsevier Science Publishers.

[6] Wolfram, S. (1988). Mathematica. Addison-Wesley.

26

