An Intermediate Language for Relational Algebra

Kim S. Larsen ${ }^{1}$
Michael I. Schwartzbach ${ }^{2}$
Erik M. Schmidt ${ }^{3}$
Computer Science Department
Aarhus University
Ny Munkegade
DK-8000 Århus C, Denmark

Abstract

We present an intermediate language for relational algebra. This factor language is based on a term-algebra as opposed to standard relational algebra which is, primarily, a combinator-algebra. We demonstrate how queries that use standard operators can be translated into factor queries. The translation is very simple and intuitive. In fact, code in the intermediate language is usually shorter than the source code and can be evaluated more efficiently. The factor queries never get longer or less efficient. In addition, more query optimization analysis than usual can be performed on this intermediate language. Finally, the factor language could often be used directly as a query language, as it is very expressive and easy to use.

1 Introduction

We present an intermediate language for relational algebra; the factor language. This language is very simple, but strong enough to implement all the standard relational operators that are described in e.g. [?]. The language can without problems be extended in many directions in order to support special constructs in the source language under consideration. Here, we will mainly consider a source language containing only the standard operators. However, even with this simple language, the intermediate code is usually shorter and can sometimes be

[^0]evaluated more efficiently than the source code. The intermediate code is never longer or less efficient.
The intermediate language can be viewed as a new relational operator, factor, which is why it can be used directly in a query language instead of (or together with) the usual operators. When used like this, many computations on relations seem to be expressible in a more direct and intuitive fashion.
The factor language is inspired by the group_by operator [?], but it is far more general and fundamental in its nature.
A factor expression takes any number of relations as arguments together with some additional information. It is based on a unique factorization of relations.

We propose to evaluate factor queries in three steps.
The first step is to decompose the relational arguments. The second step is to perform simple computations on these smaller components. The third and final step is to combine the individual results from step two.

The decomposition in step one belongs to a family of factorizations, as described in section 2. The computation in step two is specified by a small core language for manipulating tuples and atomic values, as described in section 3. The combination in step three is always the union of the results from step two.
In section 4, we describe the full syntax and semantics of the factor language. In sections 5, 6, and 7, we demonstrate how all standard relational operators, and many more, can be translated into the factor language.
In section 8, we observe that factor queries can be evaluated efficiently. In fact, the implementation of all the usual operators in terms of factor will preserve their original complexities. One can even obtain a speed-up in certain situations. The factor language has been implemented[?] and tests show a very good performance. Also, factor expressions are well-suited for parallel evaluation.

2 Factorizations

A tuple is a finite partial function from attribute names to atoms. A relation is a pair $R=(\sigma(R), \tau(R))$ where $\sigma(R)$, the schema, is a finite set of attribute names, and $\tau(R)$ is a finite set of tuples with common domain $\sigma(R)$.
The factorization is performed on a collection of relations, relative to a subset of their common attribute names. Operationally, the decomposition components can be found as follows. All tuples of all relations are projected onto the selected attribute names and duplicates are removed. This yields a set of component tuples. For each tuple in this set and for each relation argument, we determine a component relation, which contains exactly those complementary tuples that
combined with the component tuple are contained in this relation argument.

Definition 2.1 Let R_{1}, \ldots, R_{n} be relations and $\left\{a_{1}, \ldots, a_{k}\right\} \subseteq \cap \sigma\left(R_{j}\right)$ a set of attribute names. The factorization of the R_{j} 's on the a_{i} 's consists of

- a sequence of component tuples $\phi_{1}, \ldots, \phi_{m}$ with common domain $\left\{a_{1}, \ldots, a_{k}\right\}$
- for each $(i, j) \in\{1, \ldots, m\} \times\{1, \ldots, n\}$, a component relation $\Theta_{i j}$ with schema $\sigma\left(R_{j}\right)-\left\{a_{1}, \ldots, a_{k}\right\}$
such that

1) the following n equations hold

$$
\forall j: \quad R_{j}=\sum_{i=1}^{m}\left\{\phi_{i}\right\} \times \Theta_{i j}
$$

where $\left\{\phi_{i}\right\}$ denotes the singleton relation whose only tuple is $\phi_{i},+$ is interpreted as union, and \times as Cartesian product of relations. These n equations can be concisely expressed as the following matrix equation

$$
\left(\left\{\phi_{1}\right\},\left\{\phi_{2}\right\}, \ldots,\left\{\phi_{m}\right\}\right)\left(\begin{array}{cccc}
\Theta_{11} & \Theta_{12} & \cdots & \Theta_{1 n} \\
\Theta_{21} & \Theta_{22} & \cdots & \Theta_{2 n} \\
\vdots & \vdots & & \vdots \\
\Theta_{m 1} & \Theta_{m 2} & \cdots & \Theta_{m n}
\end{array}\right)=\left(R_{1}, R_{2}, \ldots, R_{n}\right)
$$

2) all the ϕ_{i} 's are pairwise different, i.e. $\forall i, j: i \neq j \Rightarrow \phi_{i} \neq \phi_{j}$
3) no row of the $\left(\Theta_{i j}\right)$ matrix has all "zeroes", i.e. $\forall i \exists j$: $\tau\left(\Theta_{i j}\right) \neq \emptyset$

Proposition 2.2 The factorization always exists and is unique up to reordering of the ϕ_{i} sequence.

Proof We can find $\left\{\phi_{1}, \ldots, \phi_{m}\right\}$ as $\cup R_{j} \downarrow a_{1}, \ldots, a_{k}$, where \downarrow is projection. Now, $\Theta_{i j}$ is found by selecting from R_{j} where a_{1}, \ldots, a_{k} equals ϕ_{i} and projecting this over $\sigma\left(R_{j}\right)-\left\{a_{1}, \ldots, a_{k}\right\}$ (this is the same as dividing R_{j} by $\left\{\phi_{i}\right\}$). Clearly, this satisfies the matrix equation. Also, since each ϕ_{i} belongs to $\cup R_{j} \downarrow a_{1}, \ldots, a_{k}$ then it must belong to some $R_{j} \downarrow a_{1}, \ldots, a_{k}$ and, hence, this particular $\Theta_{i j}$ must be non-zero. This demonstrates existence. For uniqueness, we observe that for any factorization the matrix equation implies $\cup R_{j} \downarrow a_{1}, \ldots, a_{k} \subseteq\left\{\phi_{1}, \ldots, \phi_{m}\right\}$. Since every row has a non-zero element we get the other inclusion, too. As the
$\Theta_{i j}$'s are determined uniquely from the ϕ_{i} 's, the factorization is unique up to a reordering of the ϕ_{i} 's.

Example: Let R_{1} and R_{2} be the two relations

A	B				
a_{1}	b_{1}				
a_{2}	b_{2}				
a_{3}	b_{3}				
a_{4}	b_{4}	\quad and \quad	B	C	D
:---	:---	:---			
b_{2}	c_{1}	d_{1}			
b_{2}	c_{2}	d_{2}			
b_{4}	c_{3}	d_{3}			
b_{5}	c_{4}	d_{4}			

The factorization of R_{1}, R_{2} on B is

3 The Implementation Language

The set of expressions contains a minimal core language for manipulating atoms and tuples

$e::=|$| α |
| :--- |
| $[a: e] \mid[]$ |
| $e_{1} e_{2}$ |
| $e . a$ |
| $e \backslash a$ |
| $\mathbf{0} \mid \mathbf{1}$ |
| $\left\{e_{1}, \ldots, e_{k}\right\}$ |
| $b ? e$ |
| $f(e)$ |

atom expressions tuple formations tuple perturbations tuple inspections tuple restrictions relation constants relation formations gates homomorphisms

We also provide two operations on relations

```
\(e_{1} \times e_{2} \quad\) Cartesian products
factor ... on ... do ... factorization operations
```

The atom expressions are left unspecified but are intended to be entirely standard; certainly, they will include the booleans.

A tuple formation denotes a partial function by its (singleton or empty) graph associating attribute names with values. Tuple perturbation is a binary operator on partial functions, where the left-hand function is updated with the definitions of the right-hand function. A tuple inspection merely applies a partial function to an argument. A tuple restriction removes an argument from the domain of a partial function.
The relation constants denote the 0 - and 1 -element for Cartesian product, i.e. $\mathbf{0}=(\emptyset, \emptyset)$ and $\mathbf{1}=(\emptyset,\{[]\})$. A relation formation constructs a relation from a non-empty set of tuples with common domain.

In the gate expression $b: e$ the expression b denotes a boolean and e denotes a relation. If b is true, then the result is e; otherwise, the result is $(\sigma(e), \emptyset)$.
Finally, a homomorphism f is a function from relations to atoms such that $f\left(R_{1} \cup\right.$ R_{2}) equals $f\left(R_{1}\right) \oplus_{f} f\left(R_{2}\right)$, where \oplus_{f} is an associative and commutative operator on the image of f. The set of homomorphisms is left unspecified but can include such functions as is-empty, and, or, min, and max.

4 The Factor Operation

The syntax of the factor operator is

```
factor R1, R2,\ldots, R,
on }\mp@subsup{a}{1}{},\mp@subsup{a}{2}{},\ldots,\mp@subsup{a}{k}{
do e
```

where $n \geq 1$, the R_{j} 's are relations, $k \geq 0,\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \subseteq \cap \sigma\left(R_{j}\right)$ is a set of attribute names, and e is an extended expression denoting a relation. An extended expression allows the following extra constructs

$$
e::=\quad \operatorname{tup} \mid \operatorname{rel}(j) \quad \text { factorization components }
$$

We allow the following variation: If one merely writes
factor $R_{1}, R_{2}, \ldots, R_{n}$ do e
then the factorization is performed on $\cap \sigma\left(R_{j}\right)$, i.e. all the common attributes.
The semantics of factor is the function taking $R_{1}, R_{2}, \ldots, R_{n}$ to the result of the following computation. Step one: A factorization of $R_{1}, R_{2}, \ldots, R_{n}$ on $a_{1}, a_{2}, \ldots, a_{k}$ is determined. Assume that this results in m component tuples. Step two: For each ϕ_{i} and $\left(\Theta_{i 1}, \Theta_{i 2}, \ldots, \Theta_{i n}\right)$ the expression e is evaluated in an environment where $\boldsymbol{\operatorname { t u p }}=\phi_{i}$ and for each $1 \leq j \leq n, \operatorname{rel}(j)=\Theta_{i j}$. Step three: The result is the union of these m values. If $m=0$ then the result is, of course, the empty relation with the appropriate schema, determined from e.

Notice that both the decomposition and the combination can be expressed in terms of the two simplest relational operators, union and Cartesian product. In between, one can modify the components.

As a trivial example, where no modification takes place, observe that R_{j} equals

$$
\text { factor } R_{1}, R_{2}, \ldots, R_{n} \text { on } a_{1}, a_{2}, \ldots, a_{k} \text { do }\{\operatorname{tup}\} \times \operatorname{rel}(j)
$$

for any legal choice of $a_{i}{ }^{\prime}$ s.

Proposition 4.1 The factor operation is well-defined, i.e.

1) the schema of the value of e is the same for each environment and can be statically determined (which is necessary to define the schema of an empty result).
2) the result is independent of the ordering of the ϕ_{i} 's.

Proof

1) the schemas of ϕ_{i} and $\Theta_{i j}$ are independent of i. Hence, the schema of e is the same in all environments. By a simple induction one can show that the domain of any tuple expression can be statically determined, as can the schema of any relation expression.
2) the result is independent of the ordering of the ϕ_{i} 's since the factorization is unique up to such reorderings (Prop. 2.2) and union is associative and commutative.

A small amount of syntactic sugar will prove convenient. If an attribute name a appears in an extended expression in place of an atomic value, then it denotes tup. a. Also, we shall write rel rather than $\operatorname{rel}(1)$ when factor takes only a single
argument.

Example: If R_{1} and R_{2} are the two relations from section 2, then the result of factor R_{1}, R_{2} on B do $\operatorname{rel}(1) \times \operatorname{rel}(2)$
can be computed as

which equals

A	C	D
a_{2}	c_{1}	d_{1}
a_{2}	c_{2}	d_{2}
a_{4}	c_{3}	d_{3}

5 Unary Operators

To begin with, we investigate the simpler case of the unary factor operation

$$
\text { factor } R \text { on } a_{1}, \ldots, a_{k} \text { do } e
$$

where all the a_{i} 's are attribute names of R. The standard unary relational operators can be translated as follows.

$$
\begin{aligned}
& \text { project } R \text { on } a_{1}, \ldots, a_{k} \equiv \\
& \quad \text { factor } R \text { on } a_{1}, \ldots, a_{k} \text { do }\{\operatorname{tup}\} \\
& \text { select } R \text { where } b \equiv \\
& \quad \text { factor } R \text { do } b ?\{\operatorname{tup}\} \\
& \text { rename } R \text { by } a_{1} \rightarrow a_{2} \equiv \\
& \text { factor } R \text { do }\left\{\boldsymbol{\operatorname { t u p } \backslash a _ { 1 } [a _ { 2 } : a _ { 1 }] \}}\right.
\end{aligned}
$$

We can also define the translation of the following two non-standard operators [?, ?]

```
extend R by a:=e \equiv
    factor R do {tup[a:e]}
group R by }\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{k}{}\mathrm{ creating }a:=f()
    factor R on }\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{k}{}\mathrm{ do {tup [a:f(rel)]}
```

Many variations of these basic operators are readily available. One example is a reduce operator which removes the specified attributes

$$
\begin{aligned}
& \text { reduce } R \text { by } a_{1}, \ldots, a_{k} \equiv \\
& \quad \text { factor } R \text { on } a_{1}, \ldots, a_{k} \text { do rel }
\end{aligned}
$$

Another example is an update operator which works like extend, except that it assigns to an existing attribute

$$
\begin{aligned}
& \text { update } R \text { by } a:=e \equiv \\
& \quad \text { factor } R \text { do }\{\operatorname{tup}[a: e]\}
\end{aligned}
$$

Notice that the translation is the same as that of extend. It is often the case that factor expressions turn out to be more general than one originally intended.

Many combinations of ordinary operators can conveniently be expressed by a single factor expression. Consider as an example the following expression where R is a relation with schema $\{a, b, c, d, x, y\}$

```
project
    extend
        select }R\mathrm{ where }x>
    by z:=x+y
over a,b,c,d,x,z
```

Using factor we can write

$$
\text { factor } R \text { do } x>y ?\{\operatorname{tup}[z: x+y] \backslash y\}
$$

Two points are noteworthy in connection with this example. Firstly, the factor expression does not need to know the incidental attributes $\{a, b, c, d\}$. Secondly, the computation is clearly one that should be performed on each tuple individually. This is evident in the factor expression, which in this situation basically says "for all tuples in R do ...". In the former expression one has to split this simple computation scheme out into operations on three different relations. In conclusion, this factor translation is not only shorter (and more efficient) but also considerably easier to program. This would be an argument for including factor in the query language as an operator.

6 Binary Operators

The usual binary operators, as well, appear as simple binary factor expressions. We might be pleased with the standard union operator, but we could also get

$$
\begin{aligned}
& \text { union } R_{1} \text { and } R_{2} \equiv \\
& \quad \text { factor } R_{1}, R_{2} \text { do }\{\mathbf{t u p}\}
\end{aligned}
$$

which is an extension. If the two relations have different schemas, then it produces the union of the projections over the common attributes names.

Intersection is straightforward. Notice that if R_{1} and R_{2} have the same schema and $\operatorname{rel}(1)$ equals $\operatorname{rel}(2)$ then they both equal 1

```
intersect }\mp@subsup{R}{1}{}\mathrm{ and }\mp@subsup{R}{2}{}
    factor }\mp@subsup{R}{1}{},\mp@subsup{R}{2}{}\mathrm{ do rel(1)=rel(2)?{tup}
```

Another way to obtain the intersection is as a special case of the join operator

```
join }\mp@subsup{R}{1}{}\mathrm{ and }\mp@subsup{R}{2}{}
    factor }\mp@subsup{R}{1}{},\mp@subsup{R}{2}{}\mathrm{ do rel(1) }\times{\operatorname{tup}}\times\operatorname{rel}(2
```

This is a very intuitive presentation of join: The different parts of R_{1} and R_{2} are stuck together using the available "glue" - the common tup's.

The difference of two relations is
difference R_{1} and $R_{2} \equiv$
factor R_{1}, R_{2} do $\operatorname{rel}(2)=\mathbf{0}$? $\{\mathbf{t u p}\}$
As before, this expression is very easy to understand: We take the tup's that do not belong to R_{2}.
We can play the game of variations for binary operators, too. A very commonly emulated operator is combine, which joins two relations together while removing the "glue". This is useful when a relation has been split in two by the introduction of an extra key attribute in each, and we want to recover the original relation

```
combine }\mp@subsup{R}{1}{}\mathrm{ and }\mp@subsup{R}{2}{}
    factor }\mp@subsup{R}{1}{},\mp@subsup{R}{2}{}\mathrm{ do rel(1) }\times\operatorname{rel}(2
```

Again, this expression follows directly from the definition of join and is easily understood.

The symmetric difference of two relations can be found as follows
symdiff R_{1} and $R_{2} \equiv$
factor R_{1}, R_{2} do $\operatorname{rel}(1) \neq \operatorname{rel}(2) ?\{\operatorname{tup}\}$

A variation on this example shows a binary operator that factorizes on something beside all common attributes. Consider a relation in which the attributes a, b, c constitute a key. We have two different versions of what is intended to be the same relation, and we want to get the key values for which the information in the two relations disagree, i.e. we want to check for inconsistencies in our database

```
check }\mp@subsup{R}{1}{}\mathrm{ and }\mp@subsup{R}{2}{}
    factor }\mp@subsup{R}{1}{},\mp@subsup{R}{2}{}\mathrm{ on }a,b,c\mathrm{ do rel(1)}\not=\operatorname{rel}(2)?{\boldsymbol{tup}
```

This is almost a literal translation of: If the information is inconsistent, then include the key value. In comparison, using ordinary operators we would end up with the far less transparent expression

```
project
    difference
        union }\mp@subsup{R}{1}{}\mathrm{ and }\mp@subsup{R}{2}{
    and
        intersect R1 and R2
over a,b,c
```

Finally, we present an example of a two-level factor. The divide operator is defined as

$$
R_{1} / R_{2}=\max \left\{D \mid D \times R_{2} \subseteq R_{1}\right\}
$$

where $\sigma\left(R_{2}\right) \subseteq \sigma\left(R_{1}\right)$. It is usually quite complicated to derive. We can write it as

```
divide }\mp@subsup{R}{1}{}\mathrm{ and }\mp@subsup{R}{2}{}
    factor }\mp@subsup{R}{1}{},\mp@subsup{R}{2}{}\mathrm{ do
            factor rel(1) do
                {tup} }\times\mp@subsup{R}{2}{}\subseteq\mp@subsup{R}{1}{}?{\boldsymbol{tup}
```

which closely follows the definition. Together the two factors provide the $\sigma\left(R_{1}\right)-$ $\sigma\left(R_{2}\right)$ tuples of R_{1}. We then select those that combined with all of R_{2} is contained in R_{1}. In comparison, a more standard derivation of divide is

```
difference
    project }\mp@subsup{R}{1}{}\mathrm{ over }\mp@subsup{d}{1}{},\mp@subsup{d}{2}{},\ldots,\mp@subsup{d}{k}{
and
    project
        difference
                join
                project }\mp@subsup{R}{1}{}\mathrm{ over }\mp@subsup{d}{1}{},\mp@subsup{d}{2}{},\ldots,\mp@subsup{d}{k}{
                and
                    R2
        and
            R
    over }\mp@subsup{d}{1}{},\mp@subsup{d}{2}{},\ldots,\mp@subsup{d}{k}{
```

This is not very intuitive; furthermore, one needs explicit knowledge of $\sigma\left(R_{1}\right)-$ $\sigma\left(R_{2}\right)=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$. In [?] divide is derived from two group_by's, but it involves renamings and projections, and it gets increasingly complex with the size of k.

7 General Operators

The binary operators union, intersect, and others immediately scale up to n-ary operators, e.g.

> union R_{1} and R_{2} and \ldots and $R_{n} \equiv$
> \quad factor $R_{1}, R_{2}, \ldots, R_{n}$ do $\{\operatorname{tup}\}$

Apart from these handy generalizations one can write new operators that are inherently more than binary. Consider as an example a novel safejoin operator which takes as arguments R_{1}, R_{2}, R_{3}, where $\sigma\left(R_{1}\right) \cap \sigma\left(R_{2}\right)=\sigma\left(R_{3}\right)$. The result is the subset of the join of R_{1} and R_{2} for which the projection onto the common attributes is contained in R_{3}, i.e. only the glue mentioned in R_{3} is "safe". Using factor this looks like

```
safejoin R}\mp@subsup{R}{1}{}\mathrm{ and }\mp@subsup{R}{2}{}\mathrm{ using }\mp@subsup{R}{3}{}
    factor }\mp@subsup{R}{1}{},\mp@subsup{R}{2}{},\mp@subsup{R}{3}{}\mathrm{ do {tup} }\times\operatorname{rel}(1)\times\operatorname{rel}(2)\times\operatorname{rel}(3
```

Such operators can, of course, generally be written as more cumbersome combinations of binary operators.

8 Efficiency

The factor language can be implemented efficiently. By sorting and merging, one can compute the factorization of n relations each with T tuples in time $O(n T \log (T))$. The time for an expression containing exactly one factor must furthermore include the time for computing the union of the extended expressions. For example, the binary join can be computed in time $O(T \log (T)+J)$, where J is the size of the result, and the unary project can be computed in time $O(T \log (T))$.

One can make an obvious improvement by observing that if the extended expression e in a unary factorization on all attributes (factor R do e) is injective, then no sorting is needed, and the expression can be evaluated in linear time. By injective we mean that the non-empty results of the extended expression are pairwise disjoint. Ignoring the properties of atom expressions, one can, using symbolic evaluation, statically determine when such a factor expression is injective; furthermore, the class of injective expressions can be extended by including knowledge about the different atom expressions, or about key attributes in the relations. All of this is treated in great detail in [?], where an optimal, linear-time decision algorithm is developed.

We observe that the expressions in select and in (legal) extend and rename are injective and that, consequently, these operators will run in time $O(T)$. Hence, the factor version of every standard relational operator will have the same complexity as the original one.
We can, in fact, quite often do better. As demonstrated earlier, many combinations of standard operators can conveniently be expressed as a single factor expression. In general, we can gain a constant factor in these situations, since some temporary results are eliminated, and fewer sortings and copyings are needed. We can avoid sorting altogether if the combined query disguised an injectivity that is apparent in the single factor expression.
With this knowledge the factor technology can serve as the foundation for an interesting database implementation, where one needs only implement few operators on relations. This means, of course, that the implementation efforts can be concentrated on making these operators very efficient.

Furthermore, factor can be implemented efficiently on various multi-processor architectures. The very formulation of the factorization as a vector/matrix product indicates the possibility for use of massive parallelism in the implementation. The basic operators on any architecture will be parallel sorting and merging combined with simultaneous computation on individual parts (the ϕ_{i} 's and $\Theta_{i j}$'s). It seems that both vector processors, hypercubes, and a properly designed network of transputers should be able to support this sort of computation efficiently. Of
course, the inherent parallelism in the definition of factorizations can also be exploited in a network of sequential machines supporting a distributed database.

9 Conclusion and Future Work

The factor language can conveniently express all standard relational operators, and many more, without any loss of efficiency. Hence, factor could be an interesting alternative implementation of relational database languages. This is especially attractive as very few operations on relations have to be implemented, and because more and new techniques for query optimization analysis can be applied. Furthermore, if a factor implementation is used, factor could also be introduced as an operator in the language, so that users could benefit from its expressiveness and often more intuitive query style.
In a concrete language proposal [?], we have combined factor with fully recursive polymorphic higher-order functions, which yields a very powerful tool. The language is not yet fully implemented, but the evaluation machine for factor expressions is, and early tests show a very good performance.

The factor language makes more and new techniques for query optimization analysis possible. This is demonstrated in [?] where injectivity analysis are performed. We have by an example demonstrated how unary queries can be "collapsed" to one factor expression. This will be treated formally in a later report. We are also interested in developing a full calculus of factor expressions to support further query optimizations.
We are working on a logical characterization of factor to determine its computational strength. We conjecture that factor is stronger than the collection of usual relational operators, but not strong enough to calculate e.g. transitive closure.

References

[^0]: ${ }^{1}$ Internet address: kslarsen@daimi.dk
 ${ }^{2}$ Internet address: mis@daimi.dk
 ${ }^{3}$ Internet address: emschmidt@daimi.dk

