
An Intermediate Language
for

Relational Algebra

Kim S. Larsen1

Michael I. Schwartzbach2

Erik M. Schmidt3

Computer Science Department

Aarhus University

Ny Munkegade

DK-8000 Århus C, Denmark

Abstract

We present an intermediate language for relational algebra. This factor

language is based on a term-algebra as opposed to standard relational

algebra which is, primarily, a combinator-algebra. We demonstrate how

queries that use standard operators can be translated into factor queries.

The translation is very simple and intuitive. In fact, code in the intermedi-

ate language is usually shorter than the source code and can be evaluated

more efficiently. The factor queries never get longer or less efficient. In

addition, more query optimization analysis than usual can be performed

on this intermediate language. Finally, the factor language could often be

used directly as a query language, as it is very expressive and easy to use.

1 Introduction

We present an intermediate language for relational algebra; the factor language.
This language is very simple, but strong enough to implement all the standard
relational operators that are described in e.g. [?]. The language can without
problems be extended in many directions in order to support special constructs
in the source language under consideration. Here, we will mainly consider a
source language containing only the standard operators. However, even with this
simple language, the intermediate code is usually shorter and can sometimes be

1Internet address: kslarsen@daimi.dk
2Internet address: mis@daimi.dk
3Internet address: emschmidt@daimi.dk

1



evaluated more efficiently than the source code. The intermediate code is never
longer or less efficient.

The intermediate language can be viewed as a new relational operator, factor,
which is why it can be used directly in a query language instead of (or together
with) the usual operators. When used like this, many computations on relations
seem to be expressible in a more direct and intuitive fashion.

The factor language is inspired by the group by operator [?], but it is far more
general and fundamental in its nature.

A factor expression takes any number of relations as arguments together with
some additional information. It is based on a unique factorization of relations.

We propose to evaluate factor queries in three steps.

The first step is to decompose the relational arguments. The second step is to
perform simple computations on these smaller components. The third and final
step is to combine the individual results from step two.

The decomposition in step one belongs to a family of factorizations, as described
in section 2. The computation in step two is specified by a small core language
for manipulating tuples and atomic values, as described in section 3. The com-
bination in step three is always the union of the results from step two.

In section 4, we describe the full syntax and semantics of the factor language. In
sections 5, 6, and 7, we demonstrate how all standard relational operators, and
many more, can be translated into the factor language.

In section 8, we observe that factor queries can be evaluated efficiently. In fact,
the implementation of all the usual operators in terms of factor will preserve
their original complexities. One can even obtain a speed-up in certain situa-
tions. The factor language has been implemented[?] and tests show a very good
performance. Also, factor expressions are well-suited for parallel evaluation.

2 Factorizations

A tuple is a finite partial function from attribute names to atoms. A relation is a
pair R = (σ(R), τ(R)) where σ(R), the schema, is a finite set of attribute names,
and τ(R) is a finite set of tuples with common domain σ(R).

The factorization is performed on a collection of relations, relative to a subset
of their common attribute names. Operationally, the decomposition components
can be found as follows. All tuples of all relations are projected onto the selected
attribute names and duplicates are removed. This yields a set of component
tuples. For each tuple in this set and for each relation argument, we determine
a component relation, which contains exactly those complementary tuples that

2



combined with the component tuple are contained in this relation argument.

Definition 2.1 Let R1, . . . , Rn be relations and {a1, . . . , ak} ⊆
⋂

σ(Rj) a set of
attribute names. The factorization of the Rj’s on the ai’s consists of

• a sequence of component tuples φ1, . . . , φm with common domain {a1, . . . , ak}

• for each (i, j) ∈ {1, . . . , m} × {1, . . . , n}, a component relation Θij with
schema σ(Rj) − {a1, . . . , ak}

such that

1) the following n equations hold

∀j : Rj =
m
∑

i=1

{φi} × Θij

where {φi} denotes the singleton relation whose only tuple is φi, + is inter-
preted as union, and × as Cartesian product of relations. These n equations
can be concisely expressed as the following matrix equation

({φ1}, {φ2}, . . . , {φm})













Θ11 Θ12 · · · Θ1n

Θ21 Θ22 · · · Θ2n

...
...

...
Θm1 Θm2 · · · Θmn













= (R1, R2, . . . , Rn)

2) all the φi’s are pairwise different, i.e. ∀ i, j : i 6= j ⇒ φi 6= φj

3) no row of the (Θij) matrix has all “zeroes”, i.e. ∀i ∃j : τ(Θij) 6= ∅

Proposition 2.2 The factorization always exists and is unique up to reordering
of the φi sequence.

Proof We can find {φ1, . . . , φm} as
⋃

Rj ↓a1, . . . , ak, where↓ is projection. Now,
Θij is found by selecting from Rj where a1, . . . , ak equals φi and projecting this
over σ(Rj) − {a1, . . . , ak} (this is the same as dividing Rj by {φi}). Clearly, this
satisfies the matrix equation. Also, since each φi belongs to

⋃

Rj ↓ a1, . . . , ak

then it must belong to some Rj ↓a1, . . . , ak and, hence, this particular Θij must
be non-zero. This demonstrates existence. For uniqueness, we observe that for
any factorization the matrix equation implies

⋃

Rj ↓ a1, . . . , ak ⊆ {φ1, . . . , φm}.
Since every row has a non-zero element we get the other inclusion, too. As the

3



Θij’s are determined uniquely from the φi’s, the factorization is unique up to a
reordering of the φi’s. 2

Example: Let R1 and R2 be the two relations

A B

a1 b1

a2 b2

a3 b3

a4 b4

and

B C D

b2 c1 d1

b2 c2 d2

b4 c3 d3

b5 c4 d4

The factorization of R1, R2 on B is

(

B

b1

,
B

b2

,
B

b3

,
B

b4

,
B

b5

)































































A

a1

C D

A

a2

C D

c1 d1

c2 d2

A

a3

C D

A

a4

C D

c3 d3

A C D

c4 d4































































= (R1, R2)

3 The Implementation Language

The set of expressions contains a minimal core language for manipulating atoms
and tuples

e ::= α atom expressions
| [a:e] | [] tuple formations
| e1 e2 tuple perturbations
| e.a tuple inspections
| e \ a tuple restrictions
| 0 | 1 relation constants
| {e1, . . . ,ek} relation formations
| b?e gates
| f(e) homomorphisms

4



We also provide two operations on relations

| e1 × e2 Cartesian products
| factor . . . on . . . do . . . factorization operations

The atom expressions are left unspecified but are intended to be entirely standard;
certainly, they will include the booleans.

A tuple formation denotes a partial function by its (singleton or empty) graph
associating attribute names with values. Tuple perturbation is a binary operator
on partial functions, where the left-hand function is updated with the definitions
of the right-hand function. A tuple inspection merely applies a partial function
to an argument. A tuple restriction removes an argument from the domain of a
partial function.

The relation constants denote the 0- and 1-element for Cartesian product, i.e.
0 = (∅, ∅) and 1 = (∅, {[]}). A relation formation constructs a relation from a
non-empty set of tuples with common domain.

In the gate expression b:e the expression b denotes a boolean and e denotes a
relation. If b is true, then the result is e; otherwise, the result is (σ(e), ∅).

Finally, a homomorphism f is a function from relations to atoms such that f(R1∪
R2) equals f(R1)⊕f f(R2), where ⊕f is an associative and commutative operator
on the image of f . The set of homomorphisms is left unspecified but can include
such functions as is-empty, and, or, min, and max.

4 The Factor Operation

The syntax of the factor operator is

factor R1, R2, . . . , Rn

on a1, a2, . . . , ak

do e

where n ≥ 1, the Rj’s are relations, k ≥ 0, {a1, a2, . . . , ak} ⊆
⋂

σ(Rj) is a set of
attribute names, and e is an extended expression denoting a relation. An extended
expression allows the following extra constructs

e ::= tup | rel(j) factorization components

We allow the following variation: If one merely writes

factor R1, R2, . . . , Rn do e

5



then the factorization is performed on
⋂

σ(Rj), i.e. all the common attributes.

The semantics of factor is the function taking R1, R2, . . . , Rn to the result
of the following computation. Step one: A factorization of R1, R2, . . . , Rn on
a1, a2, . . . , ak is determined. Assume that this results in m component tuples.
Step two: For each φi and (Θi1, Θi2, . . . , Θin) the expression e is evaluated in an
environment where tup = φi and for each 1 ≤ j ≤ n, rel(j) = Θij. Step three:
The result is the union of these m values. If m=0 then the result is, of course,
the empty relation with the appropriate schema, determined from e.

Notice that both the decomposition and the combination can be expressed in
terms of the two simplest relational operators, union and Cartesian product. In
between, one can modify the components.

As a trivial example, where no modification takes place, observe that Rj equals

factor R1, R2, . . . , Rn on a1, a2, . . . , ak do {tup} × rel(j)

for any legal choice of ai’s.

Proposition 4.1 The factor operation is well-defined, i.e.

1) the schema of the value of e is the same for each environment and can be
statically determined (which is necessary to define the schema of an empty
result).

2) the result is independent of the ordering of the φi’s.

Proof

1) the schemas of φi and Θij are independent of i. Hence, the schema of e
is the same in all environments. By a simple induction one can show that
the domain of any tuple expression can be statically determined, as can the
schema of any relation expression.

2) the result is independent of the ordering of the φi’s since the factorization
is unique up to such reorderings (Prop. 2.2) and union is associative and
commutative.

2

A small amount of syntactic sugar will prove convenient. If an attribute name a
appears in an extended expression in place of an atomic value, then it denotes
tup.a. Also, we shall write rel rather than rel(1) when factor takes only a single

6



argument.

Example: If R1 and R2 are the two relations from section 2, then the result of

factor R1, R2 on B do rel(1) × rel(2)

can be computed as

A

a1

× C D +
A

a2

×
C D

c1 d1

c2 d2

+
A

a3

× C D +
A

a4

×
C D

c3 d3

+ A ×
C D

c4 d4

which equals
A C D

a2 c1 d1

a2 c2 d2

a4 c3 d3

5 Unary Operators

To begin with, we investigate the simpler case of the unary factor operation

factor R on a1, . . . , ak do e

where all the ai’s are attribute names of R. The standard unary relational oper-
ators can be translated as follows.

project R on a1, . . . , ak ≡
factor R on a1, . . . , ak do {tup}

select R where b ≡
factor R do b?{tup}

rename R by a1 → a2 ≡
factor R do {tup\a1[a2:a1]}

We can also define the translation of the following two non-standard operators
[?, ?]

extend R by a:= e ≡
factor R do {tup[a:e]}

group R by a1, . . . , ak creating a:= f() ≡
factor R on a1, . . . , ak do {tup[a:f(rel)]}

7



Many variations of these basic operators are readily available. One example is a
reduce operator which removes the specified attributes

reduce R by a1, . . . , ak ≡
factor R on a1, . . . , ak do rel

Another example is an update operator which works like extend, except that
it assigns to an existing attribute

update R by a:= e ≡
factor R do {tup[a:e]}

Notice that the translation is the same as that of extend. It is often the case
that factor expressions turn out to be more general than one originally intended.

Many combinations of ordinary operators can conveniently be expressed by a
single factor expression. Consider as an example the following expression where
R is a relation with schema {a, b, c, d, x, y}

project

extend

select R where x>y
by z:= x+y

over a, b, c, d, x, z

Using factor we can write

factor R do x>y? {tup[z: x+y]\y}

Two points are noteworthy in connection with this example. Firstly, the factor

expression does not need to know the incidental attributes {a, b, c, d}. Secondly,
the computation is clearly one that should be performed on each tuple individ-
ually. This is evident in the factor expression, which in this situation basically
says “for all tuples in R do ...”. In the former expression one has to split this
simple computation scheme out into operations on three different relations. In
conclusion, this factor translation is not only shorter (and more efficient) but
also considerably easier to program. This would be an argument for including
factor in the query language as an operator.

6 Binary Operators

The usual binary operators, as well, appear as simple binary factor expressions.

We might be pleased with the standard union operator, but we could also get

8



union R1 and R2 ≡
factor R1, R2 do {tup}

which is an extension. If the two relations have different schemas, then it produces
the union of the projections over the common attributes names.

Intersection is straightforward. Notice that if R1 and R2 have the same schema
and rel(1) equals rel(2) then they both equal 1

intersect R1 and R2 ≡
factor R1, R2 do rel(1) = rel(2)? {tup}

Another way to obtain the intersection is as a special case of the join operator

join R1 and R2 ≡
factor R1, R2 do rel(1) × {tup} × rel(2)

This is a very intuitive presentation of join: The different parts of R1 and R2 are
stuck together using the available “glue” – the common tup’s.

The difference of two relations is

difference R1 and R2 ≡
factor R1, R2 do rel(2) = 0? {tup}

As before, this expression is very easy to understand: We take the tup’s that do
not belong to R2.

We can play the game of variations for binary operators, too. A very commonly
emulated operator is combine, which joins two relations together while removing
the “glue”. This is useful when a relation has been split in two by the introduction
of an extra key attribute in each, and we want to recover the original relation

combine R1 and R2 ≡
factor R1, R2 do rel(1) × rel(2)

Again, this expression follows directly from the definition of join and is easily
understood.

The symmetric difference of two relations can be found as follows

symdiff R1 and R2 ≡
factor R1, R2 do rel(1) 6= rel(2)? {tup}

9



A variation on this example shows a binary operator that factorizes on something
beside all common attributes. Consider a relation in which the attributes a, b, c
constitute a key. We have two different versions of what is intended to be the
same relation, and we want to get the key values for which the information in the
two relations disagree, i.e. we want to check for inconsistencies in our database

check R1 and R2 ≡
factor R1, R2 on a, b, c do rel(1) 6= rel(2)? {tup}

This is almost a literal translation of: If the information is inconsistent, then
include the key value. In comparison, using ordinary operators we would end up
with the far less transparent expression

project

difference

union R1 and R2

and

intersect R1 and R2

over a, b, c

Finally, we present an example of a two-level factor. The divide operator is
defined as

R1/R2 = max{D |D × R2 ⊆ R1}

where σ(R2) ⊆ σ(R1). It is usually quite complicated to derive. We can write it
as

divide R1 and R2 ≡
factor R1, R2 do

factor rel(1) do

{tup} × R2⊆R1? {tup}

which closely follows the definition. Together the two factors provide the σ(R1)−
σ(R2) tuples of R1. We then select those that combined with all of R2 is contained
in R1. In comparison, a more standard derivation of divide is

10



difference

project R1 over d1, d2, . . . , dk

and

project

difference

join

project R1 over d1, d2, . . . , dk

and

R2

and

R1

over d1, d2, . . . , dk

This is not very intuitive; furthermore, one needs explicit knowledge of σ(R1) −
σ(R2) = {d1, d2, . . . , dk}. In [?] divide is derived from two group by’s, but it
involves renamings and projections, and it gets increasingly complex with the
size of k.

7 General Operators

The binary operators union, intersect, and others immediately scale up to n-ary
operators, e.g.

union R1 and R2 and . . . and Rn ≡
factor R1, R2, . . . , Rn do {tup}

Apart from these handy generalizations one can write new operators that are
inherently more than binary. Consider as an example a novel safejoin operator
which takes as arguments R1, R2, R3, where σ(R1) ∩ σ(R2) = σ(R3). The result
is the subset of the join of R1 and R2 for which the projection onto the common
attributes is contained in R3, i.e. only the glue mentioned in R3 is “safe”. Using
factor this looks like

safejoin R1 and R2 using R3 ≡
factor R1, R2, R3 do {tup} × rel(1) × rel(2) × rel(3)

Such operators can, of course, generally be written as more cumbersome combi-
nations of binary operators.

11



8 Efficiency

The factor language can be implemented efficiently. By sorting and merging,
one can compute the factorization of n relations each with T tuples in time
O(nT log(T )). The time for an expression containing exactly one factor must
furthermore include the time for computing the union of the extended expressions.
For example, the binary join can be computed in time O(T log(T ) + J), where
J is the size of the result, and the unary project can be computed in time
O(T log(T )).

One can make an obvious improvement by observing that if the extended ex-
pression e in a unary factorization on all attributes (factor R do e) is injective,
then no sorting is needed, and the expression can be evaluated in linear time.
By injective we mean that the non-empty results of the extended expression are
pairwise disjoint. Ignoring the properties of atom expressions, one can, using
symbolic evaluation, statically determine when such a factor expression is injec-
tive; furthermore, the class of injective expressions can be extended by including
knowledge about the different atom expressions, or about key attributes in the
relations. All of this is treated in great detail in [?], where an optimal, linear-time
decision algorithm is developed.

We observe that the expressions in select and in (legal) extend and rename are
injective and that, consequently, these operators will run in time O(T ). Hence,
the factor version of every standard relational operator will have the same com-
plexity as the original one.

We can, in fact, quite often do better. As demonstrated earlier, many combina-
tions of standard operators can conveniently be expressed as a single factor ex-
pression. In general, we can gain a constant factor in these situations, since some
temporary results are eliminated, and fewer sortings and copyings are needed.
We can avoid sorting altogether if the combined query disguised an injectivity
that is apparent in the single factor expression.

With this knowledge the factor technology can serve as the foundation for an
interesting database implementation, where one needs only implement few oper-
ators on relations. This means, of course, that the implementation efforts can be
concentrated on making these operators very efficient.

Furthermore, factor can be implemented efficiently on various multi-processor
architectures. The very formulation of the factorization as a vector/matrix prod-
uct indicates the possibility for use of massive parallelism in the implementation.
The basic operators on any architecture will be parallel sorting and merging com-
bined with simultaneous computation on individual parts (the φi’s and Θij’s). It
seems that both vector processors, hypercubes, and a properly designed network
of transputers should be able to support this sort of computation efficiently. Of

12



course, the inherent parallelism in the definition of factorizations can also be
exploited in a network of sequential machines supporting a distributed database.

9 Conclusion and Future Work

The factor language can conveniently express all standard relational operators,
and many more, without any loss of efficiency. Hence, factor could be an in-
teresting alternative implementation of relational database languages. This is
especially attractive as very few operations on relations have to be implemented,
and because more and new techniques for query optimization analysis can be
applied. Furthermore, if a factor implementation is used, factor could also be
introduced as an operator in the language, so that users could benefit from its
expressiveness and often more intuitive query style.

In a concrete language proposal [?], we have combined factor with fully recur-
sive polymorphic higher-order functions, which yields a very powerful tool. The
language is not yet fully implemented, but the evaluation machine for factor

expressions is, and early tests show a very good performance.

The factor language makes more and new techniques for query optimization anal-
ysis possible. This is demonstrated in [?] where injectivity analysis are performed.
We have by an example demonstrated how unary queries can be “collapsed” to
one factor expression. This will be treated formally in a later report. We are also
interested in developing a full calculus of factor expressions to support further
query optimizations.

We are working on a logical characterization of factor to determine its computa-
tional strength. We conjecture that factor is stronger than the collection of usual
relational operators, but not strong enough to calculate e.g. transitive closure.

References

13


