
Abstraction Ability as an Indicator of Success for
Learning Object-Oriented Programming?

Jens Bennedsen
IT University West
Fuglesangs Allé 20
DK-8210 Aarhus V

Denmark
jbb@it-vest.dk

Michael E. Caspersen
Department of Computer Science

University of Aarhus
Aabogade 34, DK-8200 Aarhus N

Denmark
mec@daimi.au.dk

Abstract

Computer science educators generally agree that abstract thinking is a crucial component for learning
computer science in general and programming in particular. We report on a study to confirm the hypothesis
that general abstraction ability has a positive impact on programming ability. Abstraction ability is
operationalized as stages of cognitive development (for which validated tests exist). Programming ability is
operationalized as grade in the final assessment of a model-based objects-first CS1. The validity of the
operationalizations is discussed. Surprisingly, our study shows that there is no correlation between stage of
cognitive development (abstraction ability) and final grade in CS1 (programming ability). Possible explana-
tions are identified.

Keywords: CS1, success factors, abstraction, model-based programming, objects-first.

1. Introduction
A substantial amount of research has been conducted in
order to identify variables that are predictors of success of
students aiming for a university degree. Investigated
variables encompass among other things gender [4, 17,
24], the educational level of parents [20] and ACT/SAT
scores [4, 14]. The variables represent scientific factors
(e.g. math score) or unbiased factors (e.g. gender). How-
ever, these variables only account for a fraction of the
variation of student performance.
Research on success factors has been conducted both in
the general context of education, within computer science,
and in the more specific area of introductory program-
ming [4, 6, 9, 14]. Also in the area of introductory object-
oriented programming there has been research trying to
establish general factors to predict success or failure of
particular students. Especially the work of Ventura [21]
focus on a systematic evaluation of hypothesis related to
success factors of an introductory programming course
using an objects-first and graphics early approach [22,
p.241]. The results are also documented in [23].
We are specifically interested in abstraction ability as an
indicator of success for learning programming. Most com-
puter science teachers find abstract thinking to be a core
competence in programming, but to our knowledge no
research has been conducted to verify whether abstraction

ability is actually a predictor of success of an introductory
programming course using an objects-first strategy [3].

2. Abstraction Ability and Programming
Many computer science educators argue that abstraction
is a core competence [2, 13, 15, 16, 19].
Nguyen & Wong [15] claim that it is difficult for many
students to learn abstract thinking; at the same time they
claim abstract thinking to be a crucial component for
learning computer science in general and programming in
particular. The authors describe an objects-first-with-
design-patterns approach to CS1 with a strong focus on
abstract thinking and development of the students’ ab-
stractive skills.
In [16] the authors argue that abstraction is a fundamental
concept in programming in general and in object-oriented
programming in particular. The authors describe a three-
level ordering of abstraction cognitive activities that the
students employ in their solution to a given problem: 1)
defining a concrete class, 2) defining an abstract class
with attributes only, 3) defining an abstract class also
including methods, and 4) defining an abstract class also
including abstract methods). An analysis of the students’
responses to a test reveals that only 13% apply the highest
level of abstraction cognitive activities (level 4) while
65% solve the problem at the lowest level of abstraction
cognitive processes. The authors conclude that the major
cited advantages of object-orientation are precisely the

same issues that make object-orientation difficult for
students.
2.1 Hypothesis
Clearly, abstraction and abstract thinking are fundamental
concepts in computer science and key components of
learning programming. For programming education (and
CS education in general) it is therefore mandatory to
explicitly aim at the development of the students’ abstrac-
tive skills. But furthermore we anticipate general abstrac-
tive skills —abstraction ability— to be an indicator of
success for learning programming. Our hypothesis is
therefore:

General abstraction ability has a positive impact
on programming ability.

2.2 Abstraction Ability as Stages of Cognitive
Development
To operationalize the first part of our hypothesis we need
to define what we mean by abstraction ability and how it
can be measured.
Or-Bach & Lavy [16] define abstraction ability in terms
of object-oriented programming. However, abstraction
ability is a much more general skill often defined as part
of the cognitive development stage of a person [11].
Our approximation of abstraction ability is based on Adey
& Shayer’s theory of cognitive development [1, 18]; this
theory is a refinement of Inhelder & Piaget’s stage theory
[11].
Adey & Shayer define eight stages of cognitive develop-
ment of pupils [1, p. 30] (table 1).

1 Pre-operational

2A Early concrete

2A/2B Mid concrete

2B Late concrete

2B* Concrete generalization

3A Early formal

3A/3B Mature formal

3B Formal generalization

Table 1: Cognitive development stages
Adey & Shayer based their stages of cognitive develop-
ment on a very large research project, CASE, aimed at
finding the cognitive development stages of pupils in
secondary school [1, p.78 ff]. The research showed a dif-
ferent result than the direct connection between age and
development stage originally proposed by Piaget. One of
the most important results was that only ~30% of the
pupils follow the development expected by Piaget.
Based on [11], Adey and Shayer describe what they call
“reasoning patterns of formal operations” and group the
eight patterns in three groups: Handling of variables,
relationships between variables and formal methods. See

[1, pp.17-25] for a more exhaustive description. A person
can of course be at a higher development stage in one of
these reasoning patterns, but “one would not find an
individual competently fluent with one or two of the rea-
soning patterns who would not, with very little experi-
ence, become fluent with them all” [1, p.17].
Shayer and Adey have used the eight stages for pupils in
the age range of 5 to 16; we intend to use it on students in
the age range of 18 to 22. Shayer and Adey found that at
the age of 16, 30% of the pupils were at stage 3A and
only approximately 10% at stage 3B. Furthermore they
found that the curve describing the progression of stages
was very flat at that age [1, p.40].
We use Adey & Shayer’s stage model of cognitive deve-
lopment to characterize the students’ abstraction ability.
To measure abstraction ability defined in this way, we use
a reasoning ability test developed by Piaget and refined
by Adey & Shayer for testing at the higher end of the
stage model.
2.3 Programming Ability as Final Grade in CS1
To operationalize the second part of our hypothesis we
need to define what we mean by programming ability and
how it can be measured.
In this research we use the results from the final exam of
the introductory programming course as an indicator of
the students’ programming ability. For a more thorough
description of the course, see [3].
2.4 A Word on the Operationalization
The hypothesis that general abstraction ability has positi-
ve impact on programming ability is operationalized in
two steps; abstraction ability is operationalized as cogniti-
ve development and programming ability is operationa-
lized as final grade in CS1 as illustrated in figure 1.

Research question Hypothesis

Does
cognitive

development
 correlate with
grade in CS1

Abstraction
ability

correlates with
programming

ability

Figure 1: Operationalization of hypothesis
Both of these operationalizations are questionable. We
discuss this aspect in the section on future work.

3. Research
This section describes the research questions, the data and
the statistical analysis used in this work.

3.1 The research questions
Our hypothesis is that there is a positive correlation
between the stage of a student’s cognitive development
(measured as reasoning ability) and the students program-
ming ability (measured as final grade in CS1).
Many reports that math is an indicator of success in pro-
gramming [4, 9, 14]. Our interpretation of this fact is that
it is not specific mathematical competencies (e.g. calculus
and algebra) that the students need, but rather the more
general notion of abstraction ability required to do math
that is needed.
To verify our interpretation, we propose a supplementary
research question on the correlation between abstraction
ability and mathematical competence. Our two research
questions are therefore:
1. Is there a positive correlation between the stage of

cognitive development and the students’ results in
model-based introductory programming?

2. Is math an indicator of the cognitive development
stage?

3.2 The Test
Shayer & Adey have developed several tests to determine
the students’ cognitive stages. These test focus on several
of the reasoning patterns, but because “the students with
very little experience, become fluent with them all” we
find it sufficient to use only one test. We use the so called
“pendulum test”; a test that has been used for a long time
to test young persons’ understanding of the laws of the
physical world [7]. Shayer and Adey argues that the pen-
dulum test is particular focused on testing the cognitive
development stages from 2B to 3B [1, p.30], the span of
cognitive stages we find relevant for our target group.
The students volunteered to participate in the test. It was
given to them in a lecture hall, and they were all informed
that the outcome of the test would not be exposed to the
lecturer before the exam.

3.3 The Students
The students in this research all study at the Faculty of
Science at University of Aarhus in Denmark. They all
follow an introductory programming course as a mandato-
ry part of their study programme. The course constitutes
the first half of a traditional CS1 course. The course runs
for seven weeks. Every week there are four lecture hours,
two lab hours and two class hours with a teaching
assistant (TA). Besides scheduled hours, the students are
supposed to work approximately seven hours per week in
study groups or on their own. A week after the course
there is a practical exam with a binary pass/fail grading.
For a more detailed description of the final exam see [5].

In the fall of 2005 there were 263 students from a variety
of study programmes, e.g. computer science, mathema-
tics, mathematical economy, multimedia, geology, nano
science, etc. Approximately 40 % of the students are en-
rolled for a major in computer science and they are the
only group to continue with the second half of CS1. The
rest of the students proceed to other programming courses
related to their fields (e.g. multimedia programming,
scientific computing) if they proceed with programming
at all.
The goal is that the student learns the foundation for
systematic construction of simple programs and through
this obtains knowledge about the role of conceptual mo-
deling in object-oriented programming. Furthermore, it is
the goal that the student becomes familiar with a modern
programming language, fundamental programming lan-
guage concepts, and selected class libraries. For further
details on the structure and contents of the course see [3].

3.4 Data
Information about the score of final exam comes from the
administrative system of the university.
Programming score. The final exam is a practical pro-
gramming test. The official result of the exam is a binary
grading (pass or fail). To allow for a more fine-grained
analysis of the results, the students’ solutions were post-
marked on an A-F scale. To validate the result of the post-
marking, the post-marking was compared to the official
result of the exam in the sense that all the students who
passed the exam got a grade of E or more. Also, the result
of the post-marking was checked by a control marking of
twenty randomly selected answers. The marking and the
control marking agreed.
Math score. The students’ math score from high school
was used as an indicator of the students’ mathematical
abilities. The students themselves gave their math score in
a questionnaire. A few students did not answer the
questionnaire; these students were excluded from the
analysis.

3.5 Statistical analysis
We have used a Pearson correlation coefficient test to find
if there is a significant correlation between the result of
the exam and the cognitive development stage and math
score.
Of the 263 students who took the final exam, 145 partici-
pated in the pendulum test. They are representative of the
overall student group with respect to mathematical skills,
gender and intended major.

4. Results
In this section we describe the analysis providing the
answers to the two research questions.

4.1 No Correlation Between Cognitive Development
and Programming Ability
As described above we have calculated Pearson correla-
tion between cognitive development and programming
ability (Table 2). The coefficient, R, is 0.276 which indi-
cates a very weak correlation (a value of at least 0.3 indi-
cates correlation). The significance, P, is less than 0.001.

Pearson correlation test

R 0.276409
R2 0.076402
P 0.000764

Observations 145

Table 2: Correlation between cognitive development and
programming ability

This is a rather unexpected result, since most computer
science educators seem to agree that abstraction ability –
and thereby cognitive development – is a core competen-
ce in programming. Our research cannot demonstrate a
correlation between the stage of cognitive development
and the students’ results in a model-based introductory
programming course.
Cafolla [10] reports that the stage of cognitive develop-
ment accounts for 34 % of variation of the exam score.
Cafolla’s study is based upon students learning program-
ming in BASIC. It seems unlikely that BASIC program-
ming should require a higher degree of cognitive develop-
ment than object-oriented programming; we need to
investigate this more thoroughly.

4.2 No Correlation between Math and Cognitive
Development
We have also calculated Pearson correlation between the
score of the programming exam and the math score from
high school. The exam in high school is a nation vide test
in two parts: a written and an oral test. The written test is
administered by the Ministry of Education. We have used
the average of the two exam scores as the math score. Of
the 143 students participating in the pendulum test, 128
provided their math score.
As can bee seen from table 3, there is hardly any correla-
tion between the students’ mathematical ability and their
cognitive stage. Again this comes as a surprise as the ex-
pected result was a strong correlation between math and

formal cognitive development. The result contradicts
earlier findings, summarized in [12, p.260].

Pearson correlation test

R 0.186781261
R2 0.034887239
P 0.034766

Observations 128

Table 3: Correlation between stage of cognitive
development and mathematical ability

The correlation that others have found between math and
success in programming is not contradicted by our data
(R= 0.302191, p=0.000555).
From our experiment we must conclude that math is not
just another way of expressing the cognitive development
stage and that the correlation between math and success in
programming must be related to other aspects of math.

5. Conclusion and Future Work
The result of this study is most surprising. From the outset
we were certain that students at a higher stage of
cognitive development would get higher scores in the
final exam of the introductory programming course. It is
not so!
There can be several explanations to this. In this pro-
gramming course coding is prioritized over design. The
cognitive requirements are therefore relatively low, and
apparently there are other factors that influence the stu-
dents’ success. We will look into this in future work.
Another potential explanation is the concrete instrument
used to assess the cognitive stage: the pendulum test. The
pendulum test measures the student’s ability to control
independent variables in a reasoning task. It could be that
this particular competence is not prominent in the course.
Finally, of course, it is questionable to which extend the
result of the final exam is a reasonable measure of a stu-
dent’s ability to learn programming.

6. Acknowledgement
It is a pleasure to acknowledge Jens Holbech for his help
regarding measurement of cognitive stage (abstraction
ability). Also, we would like to thank all the students who
volunteered for this study.

7. References
[1] Adey, P and Shayer, M. Really raising standards: cognitive intervention and academic achievement, Routledge, London, England,

1994.
[2] Alphonce, C. and Ventura, P. Object Orientation in CS1-CS2 by Design, Proceedings of the 7th Annual Conference on innovation

and Technology in Computer Science Education, Aarhus, Denmark, 2002, 70-74.
[3] Bennedsen, J. & Caspersen, M.E. Programming in Context – A Model-First Approach to CS1, Proceedings of the thirty-fifth SIGCSE

Technical Symposium on Computer Science Education, Norfolk, USA, 2004, 477-481.

[4] Bennedsen, J & Caspersen, M. E. An Investigation of Potential Success Factors for an Introductory Model-Driven Programming
Course, Proceedings of ICER 2005 The First International Computing Education Research Workshop, 2005, Seattle, USA, 155-163.

[5] Bennedsen, J. & Caspersen, M.E. Assessing Process and Product – A Practical Lab Exam for an Introductory Programming Course,
Submitted for 36th Annual Frontiers in Education Conference, San Diego, USA, 2006.

[6] Bergin, S & Reilly, R. Programming: Factors that Influence Success, Proceedings of the 36th SIGCSE Technical Symposium on
Computer Science Education, St. Louis, USA, 2005, 411-415.

[7] Bond, T. B. Piaget and the Pendulum, Science and Education, 13, 2004, 389-399.
[8] Boyer, S. P., & Sedlacek, W. E. Non-Cognitive Predictors of Academic Success for International Students: A Longitudinal Study,

Journal of College Student Development, 29, 1988, 218-223.
[9] Byrne, P., & Lyons, G. The Effect of Student Attributes on Success in Programming, Proceedings of the 6th Annual Conference on

Innovation and Technology in Computer Science Education, 2001, 49-52.
[10] Cafolla, R. Piagetian Formal Operations and other Cognitive Correlates of Achivement in Computer Programming, Journal of

Educational Technology Systems, 16(1), 1987-88, 45-55.
[11] Inhelder, B. & Piaget, J. (1955) De la logique de l'enfant à la logique de l'adolescent: Essai sur la construction des structures

opératoires formelles. Paris: Presses Universitaires de France. Translated by Anne Parsons and Stanley Milgram as The growth of
logical thinking from childhood to adolescence: An essay on the construction of formal operational structures, New York: Basic
Books, 1958.

[12] Iqbal, H.M. and Shayer, M. Accelerating the Development of Formal Thinking in Pakistan Secondary School Students: Achievement
Effects and Professional Development Issues, Journal of Research in Science Teaching, 37 (3), 2000, 259-274.

[13] Kurtz, B. L. Investigating the Relationship Between the Development of Abstract Reasoning and Performance in an Introductory
Programming Class, Proceedings of the 11th SIGCSE Technical Symposium on Computer Science Education, Kansas City, USA,
1980, 110-117.

[14] Leeper, R. R., & Silver, J. L. Predicting Success in a First Programming Course, Proceedings of the 13th SIGCSE Technical
Symposium on Computer Science Education, Indianapolis, USA, 1982, 147 – 150.

[15] Nguyen, D. & Wong, S. OOP in Introductory CS: Better Students Through Abstraction, Proceedings of the fifth Workshop on
Pedagogies and Tools for Assimilating Object-Oriented Concepts, OOPSLA 2001.

[16] Or-Bach, R. and Lavy, I. Cognitive Activities of Abstraction in Object Orientation: An Empirical Study. SIGCSE Bulletin, 36 (2),
2004, 82-86.

[17] Rountree, N. Rountree, J. and Robins, A. Predictors of Success and Failure in a CS1 Course. SIGCSE Bulletin, vol. 34 (4), 2002, 121-
124.

[18] Shayer, M. and Adey, P. Towards a Science of Science Teaching, Heinemann Educational Publishers, Oxford, England, 1981.
[19] Sprague, P., & Schahczenski, C. Abstraction the Key to CS1. J.Comput.Small Coll., 17 (3), 2002, 211-218.
[20] Ting, S. R., & Robinson, T. L. First-Year Academic Success: A Prediction Combining Cognitive and Psychosocial Variables for

Caucasian and African American Students, Journal of College Student Development, 39, 1998, 599-610.
[21] Ventura, P. R. On the Origins of Programmers: Identifying Predictors of Success for an Objects First CS1, PhD. Dissertation, The

State University of New York at Buffalo, 2003.
[22] Ventura, P. R. & Ramamurthy, B. Wanted: CS1 Students. No Experience Required, Proceedings of the 35th SIGCSE Technical

Symposium on Computer Science Education, Norfolk, USA, 2004, 240-244.
[23] Ventura, P.R. Identifying Predictors of Success for an Objects-First CS1, Journal of Computer Science Education, 15 (3), 2005, 223-

243.
[24] Wilson, B.C. A Study of Factors Promoting Success in Computer Science Including Gender Differences, Journal of Computer

Science Education, 12 (1-2), 2002, 141-164.

	2.1 Hypothesis
	2.2 Abstraction Ability as Stages of Cognitive Development
	2.3 Programming Ability as Final Grade in CS1
	2.4 A Word on the Operationalization
	3. Research
	3.1 The research questions
	3.2 The Test
	3.3 The Students
	3.4 Data
	3.5 Statistical analysis

	4. Results
	4.1 No Correlation Between Cognitive Develop ment and Programming Ability
	4.2 No Correlation between Math and Cognitive Development

	5. Conclusion and Future Work

