
Model-Based Thinking and Practice
A	 Top-‐down	 Approach	 to	 Computational	 Thinking	

Palle Nowack and Michael E. Caspersen
Centre for Science Education
Aarhus University, Denmark

{nowack, mec}@cse.au.dk

ABSTRACT
In this paper, we discuss using models and modeling in a new way
to teach basic computing to pupils within the K-12 segment. We
argue why we believe understanding and creating models are
fundamental skills for all pupils as it can be characterized as the
skill that enable us to analyze and understand phenomena as well
as design and construct artifacts. We also try to characterize the
essence of model-based thinking and practice. We propose that a
strong focus on the relation between mental models (of real or
imaginary systems) and computerized models (embedded in
computer-based systems) could provide a new approach to
teaching computing. This approach should clarify and make
explicit the role of models in computing in connection with other
subject areas. We believe that such an approach would strongly
broaden the participation in computing, as it will allow more
pupils to become active creators with computing.1

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computers and Information
Science Education—Computer Science Education

General Terms
Experimentation, Human Factors, Languages, Theory.

Keywords
Models, modeling, teaching, thinking, practice.

1. INTRODUCTION
During the last 50 years many attempts have been made to
broaden the participation in computer science. One of the latest
and most promising approaches is computational thinking:
“Computational Thinking is the thought processes involved in
formulating problems and their solutions so that the solutions are
represented in a form that can be effectively carried out by an

An early version of this paper was submitted and accepted as a white
paper for the "Future directions in Computing Education Research
Summit" in Orlando, January 2014. The accepted white papers were not
published but are available from the summit website.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

Koli Calling '14, November 20 - 23 2014, Koli, Finland Copyright 2014
ACM 978-1-4503-3065-7/14/11…$15.00
 http://dx.doi.org/10.1145/2674683.2674686

information-processing agent” [9]. Computational thinking
involves thinking in terms of recursion, parallel processing,
interpretation, generalization, naming schemes, correctness,
efficiency, aesthetics, abstraction, decomposition, separation of
concerns, representations, models, invariants, modularization,
caching, planning, learning, scheduling, and much more [27].

This is a very broad selection of fundamental concepts, and it
can be conceptualized and implemented in the classroom in many
different ways. In Figure 1, we provide an attempt to characterize
IT in education. “Basic ICT skills” and “ICT and learning” are in
our opinion not relevant in relation to computational thinking, so
in the remainder of the paper we focus on IT as a subject versus
IT in subjects (“What to learn” in the illustration). Computational
thinking lends itself very much to the use of IT in other subjects,
whether in subjects as we know them today (journalism,
economics, chemistry, etc.) or as a defining technology for
transforming and innovating subjects (e. g. digital journalism or
bioinformatics). But it appears that both these (in-subject)
applications of computational thinking require a reformulated
(more general) IT-subject (in the sense IT-as-a-subject) and not
computer science as such. Hence in order to broaden the
participation in computing, we advocate broadening the
computing subject itself.

Figure 1. IT and Education.

In this paper we describe one direction in which to search for a
new and broader computing subject based on computational
thinking. We propose to focus on the use of models and modeling,
both in order to benefit from a strong tradition in computing, but
also to build bridges to a wide range of other subjects. We focus
on the teaching of computing for pupils within the K-12 segment.
That is, we focus on knowledge and skills, which we find
generally useful at the same level as basic reading, writing and
mathematics.

The paper is structured as follows: Section 2 briefly touches
upon related work, Section 3 defines our take on modeling,
Section 4 argue why this is an important area, and finally Section
5 summarizes the paper.

2. RELATED WORK
Computational thinking has been the topic for many contributions
over the last few years.

There has been focus on the elaboration of the concept itself
[10, 11, 15], surveys on how to integrate it in curriculum [8, 21],
frameworks describing how to implement this integration [20],
inter- and multidisciplinary perspectives [1, 12-14, 23], the
extremely important and often overlooked aspect of teacher
training [2, 28], didactical design principles such as applying a
“use-modify-create” framework [17] and constructive alignment
for teaching concurrency [6].

The computing community has extensive and sophisticated
experience with the use of models and modeling. It is this strength
we propose to capitalize from by defining a new approach called
model-based thinking and practice. Examples include software
development methodologies, modeling languages, domain-
specific languages, model-driven architectures, object-oriented
programming, process calculus, data descriptions, algorithm
descriptions, program visualizations, and many others.

The modeling aspect has also been the focus of the computing
education community: within the field of teaching object-oriented
programming, there has been work from a design-by-contract
perspective [5], from a learning-theoretical perspective [7], from a
constructive alignment and assessment perspective [4] and a
conceptual modeling perspective [3]. Furthermore agent-based
modeling [22, 26] has elaborated substantially on Seymour
Papert’s original vision of computational thinking [19].

Common to these approaches is that they all deal with models
and modeling, but they do it in different ways, at different
abstraction levels, with different terminology, different conceptual
frameworks, different methodologies, and different tools. The
approaches have been tailored and fine-tuned to do their very
specific jobs.

We believe that there would be value in developing a more
general and more abstract approach to working with models and
modeling. Especially for pupils and students without specialists
needs and skills in computing. We believe that this could make
learning many different aspects of computing more efficient as
well as making the pupils use of computing in other subject areas
more informed, creative and efficient.

3. WHAT IS MODEL-BASED THINKING &
PRACTICE?
Building on the work of Kristen Nygaard and others [16], we
define modeling as a relation between a referent system and a
model system (Figure 2). The referent system is a part of the (real
or imaginary) world that we choose to consider as a system from a
certain perspective. The referent system contains phenomena and
concepts. The model system represents phenomena and concepts
from the referent systems as “realized phenomena” and “realized
concept” representations. In summary, modeling is the activity of
building a model system based on a referent system.

Figure 2. Modeling (Adapted from [16])

The conceptual framework is based on human concept
formation processes and abstraction, and it can be used to describe
all the approaches mentioned in the previous section. E.g.
considering object-oriented programming, the model system
consists of objects and classes, and a description of the referent
system is called a domain model. Deploying model-based
thinking and practice would train pupils in identifying phenomena
and concepts, relate them via concept formation processes
(exemplification, classification, aggregation, decomposition,
generalization and specialization), finding proper representations
of these, attributing meaning to models, and having discussions
about the referent system in terms of the model system. Hence
they would benefit from learning both about computing as well as
about the particular referent system in question (typically from a
different subject area).

As an example, consider the wolf-sheep simulation [24] in
NetLogo [25], see Figure 3. Here, turtles and patches (in the
model system) represent the wolves, sheep, and grass (from the
referent system). Breeds models concept specialization, variables
model concept properties etc. By letting the pupils interact with
such a model system and modifying it, they learn about both the
model system itself (agent-based computing) and the referent
system (predator-prey eco systems).

Figure 3. Example model in NetLogo [24, 25]

Model-based thinking and practice has the characteristic property
that we work from the outside in. We discuss systems and models
before we discuss the elements they are comprised of. As opposed
to first defining bits, bytes, data, procedures, programs, etc. in a
bottom-up fashion before getting to applications that are useful
and meaningful to the pupils.

4. WHY MODEL-BASED THINKING &
PRACTICE?
We distinguish between two reasons for developing and applying
model-based thinking and practice. Firstly, it is broadly
applicable. Secondly it invites for integration with other subject
areas. In the following we expand on both reasons.

Mental models are part of almost all human endeavors. We
form, share, change, evolve and use such models in our private
lives, in our lives as citizens in communities, and in our working
lives. We use them to understand ourselves as well as the world
around us.

Basically we use models in order to be able to:

• Analyze and understand phenomena.

• Design and construct artifacts.

Working with models accomplish this in two different, but
complementing, ways (inspired by [18]):

• By enabling us to abstract away from (in this particular
situation) unimportant details, and to emphasize
essential properties of the phenomena and the
corresponding concepts we are considering (thus
reducing complexity).

• By enabling us to experiment with multiple (sometimes
contradicting) conceptualizations of the same
phenomenon, which is the basis for an iterative and
incremental way of working: stepwise improvement
(thus reducing uncertainty)

With the proliferation of computers and the Internet, many of
these models have become explicit. They are represented (more or
less explicitly) in the systems we use, and the systems (because of
these models) govern how we perceive the world, how we think
about it, and how we act in it. In addition to the above-mentioned
basic benefits of models in general (which are important in their
own rights), we use computerized models, in order to make the
models:

• Dynamic (e.g. simulations).

• Visual (often in combination with the above, e.g.
animations).

• Interactive.

• Explicit (as opposed to mental, which are hard to
share).

• Distributable and shareable (e.g. using cloud-based
services).

• Persistent (as opposed to whiteboards and lectures).

• Scalable (i.e. we use the computer to change the level
of detail of our models).

• Rule-based (i.e. the computer enforces certain
invariants, e.g. physical laws are maintained, when
manipulating the model).

As computer professionals, we find it very natural to think in
terms of models, when dealing with new and unfamiliar domains.
We have experienced how it leads to more informed discussions
and actions regarding the field of interest. Instead of hand waving
about abstract ideas and thoughts, we discuss explicit
representations of these ideas and thoughts:

• Is this a “good” and/or “correct” model of the situation?
(Often leading to a clarification about qualities of the
situation in the domain as opposed to qualities of the
model itself)

• How can we improve the situation/model?

• How about different models explaining different aspects
of the complex situation (dynamics, statics, structure,
values, etc.)? (Often leading to a realization, that
typically multiple perspectives (and corresponding
models) are often called for to reduce complexity)

• What happens if we do this and that to the model (and
thus the situation)?

A particular fascinating and promising aspect of a model-focused
approach to computing is the many ways it can be integrated with
other subject areas. The heavy use of models (and computerized
models) is evident in Science subjects (physics, chemistry,
biology, etc.) and the Social Sciences, but also in the Liberal Arts,
models are abundance, e.g. in relation to music, text analysis, etc.

The computer is an excellent and unique tool when it comes to
using, changing and creating models of phenomena and concepts
from the real or the imaginary world (e.g. games). On the other
hand, the computer is almost useless when it comes to
understanding and formulating the problems to be dealt with, and
to attribute sense to the results of the computations. For this we
need people with insight into domains and problems. But in order
for this to become a truly efficient combination, we need to
leverage the basic understanding of computerized models, i.e. we
need to teach model-based thinking and practice in general.

5. SUMMARY
Model-based thinking is part of many human endeavors -
especially in relation to education. Computerized models are
powerful tools for creating new organizations, processes, and
products, because computers and software directly support model-
based thinking by making models explicit, tangible and
interactive. However, the current level of maturity of computing
clutters the understanding of this with extra/incidental (not
inherent domain-related) complexity. The current fix is to hide the
complexity under layers of functionality and user-interfaces,
which creates a huge gap between the people who create with
computing, and the people who consume with computing.

We believe that all pupils should be better at:

• Understanding computer-based models.

• Formulating problems, which can be transformed into a
model, which can be represented in and manipulated by
a computer.

• Manipulate (change, evolve, interact with) computer-
based models.

• Create computer-based models.
We propose that a strong focus on the relation between mental
models (of real or imaginary systems) and computerized models
(embedded in computer-based systems) could provide a new
approach to teaching computing. This approach should clarify and

make explicit the role of models in computing in connection with
other subject areas. We believe that such an approach would
strongly broaden the participation in computing, as it will allow
more pupils to become active creators with computing.

6. ACKNOWLEDGMENTS
We would like to thank Bent Bruun Kristensen for interesting
discussions and insightful contributions to many of the elements
of this paper, as well as Lasse Højgaard and the anonymous
reviewers for their helpful comments.

7. REFERENCES
[1] Amoussou, G.-A. et al. 2010. Interdisciplinary computing

education for the challenges of the future. In Proceedings of
the 41st ACM technical symposium on Computer science
education (SIGCSE '10). ACM, New York, NY, USA, 556-
557. DOI=http://doi.acm.org/10.1145/1734263.1734449.

[2] Barr, V. and Stephenson, C. 2011. Bringing computational
thinking to K-12: what is Involved and what is the role of the
computer science education community?. ACM Inroads 2, 1
(February 2011), 48-54.
DOI=http://doi.acm.org/10.1145/1929887.1929905

[3] Bennedsen, J. and Caspersen, M. 2008. Model-Driven
Programming. Reflections on the Teaching of Programming,
LNCS 4821, Springer-Verlag, 2008, pp. 116-129.

[4] Bennedsen, J. and Caspersen, M.E. 2007. Assessing Process
and Product: A Practical Lab Exam for an Introductory
Programming Course. ITALICS, Innovation in Teaching and
Learning in Information and Computer Sciences, Vol. 6 (4),
Special Issue on Innovative Methods of Teaching
Programming, 2007, pp. 183-202.

[5] Bennedsen, J. and Caspersen, M.E. 2004. Teaching object-
oriented programming-Towards teaching a systematic
programming process. Proceedings of the Eighth Workshop
on Pedagogies and Tools for the Teaching and Learning of
Object-Oriented Concepts, 18th European Conference on
Object-Oriented Programming (ECOOP 2004), 14-18 June,
2004, Oslo, Norway.

[6] Brabrand, C. 2008. Constructive Alignment for Teaching
Model-Based Design for Concurrency. In Transactions on
Petri Nets and Other Models of Concurrency I, Kurt Jensen,
Wil M. Aalst, and Jonathan Billington (Eds.). Lecture Notes
In Computer Science, Vol. 5100. Springer-Verlag, Berlin,
Heidelberg 1-18. DOI=http://dx.doi.org/10.1007/978-3-540-
89287-8_1

[7] Caspersen, M.E. and Bennedsen, J. 2007. Instructional
Design of a Programming Course: A Learning Theoretic
Approach. Proceedings of the 3rd International Computing
Education Research Workshop, ICER 2007, Atlanta,
Georgia, USA, September 2007, pp. 111-122.

[8] Caspersen, M.E. and Nowack, P. 2013. Computational
Thinking and Practice ⎯ A Generic Approach to Computing
in Danish High Schools. In Proceedings of the 15th
Australasian Computing Education Conference, ACE 2013,
Adelaide, South Australia, Australia, January 2013, pp. 137-
143.

[9] Wing, J. M. 2010. Computational Thinking: What and Why?
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWin
g.pdf. Accessed: 2014-10-03.

[10] Cutts, Q. et al. 2011. Computing As the 4th “R”: A General
Education Approach to Computing Education. In
Proceedings of the seventh international workshop on
Computing education research (ICER '11). ACM, New
York, NY, USA, 133-138.
DOI=http://doi.acm.org/10.1145/2016911.2016938

[11] Fletcher, G.H.L. and Lu, J.J. 2009. Education: Human
Computing Skills: Rethinking the K-12 Experience.
Commun. ACM 52, 2 (February 2009), 23-25.
DOI=http://doi.acm.org/10.1145/1461928.1461938

[12] Guzdial, M. 2008. Education: Paving the Way for
Computational Thinking. Commun. ACM. 51, 8 (Aug.
2008), 25–27.
DOI=http://doi.acm.org/10.1145/1378704.1378713

[13] Hambrusch, S. et al. 2009. A Multidisciplinary Approach
Towards Computational Thinking for Science Majors.
SIGCSE Bull. 41, 1 (March 2009), 183-187.
DOI=http://doi.acm.org/10.1145/1539024.1508931

[14] Heines, J.M. et al. 2008. Interdisciplinary Approaches to
Revitalizing Undergraduate Computing Education. J.
Comput. Sci. Coll. 23, 5 (May 2008), 68–72.

[15] Hu, C. 2011. Computational Thinking: What It Might Mean
and What We Might Do About It. In Proceedings of the 16th
annual joint conference on Innovation and technology in
computer science education (ITiCSE '11). ACM, New York,
NY, USA, 223-227.
DOI=http://doi.acm.org/10.1145/1999747.1999811

[16] Kristensen, B.B. et al. 2007. The When, Why and Why Not
of the BETA Programming Language. In Proceedings of the
third ACM SIGPLAN conference on History of programming
languages (HOPL III). ACM, New York, NY, USA, 10-1-
10-57. DOI=http://doi.acm.org/10.1145/1238844.1238854.

[17] Lee, I. et al. 2011. Computational Thinking for Youth in
Practice. ACM Inroads. 2, 1 (Feb. 2011), 32–37.
DOI=http://doi.acm.org/10.1145/1929887.1929902

[18] Mathiassen, L. and Stage, J. 1992. The principle of limited
reduction in software design. Information Technology &
People, Vol. 6 Iss 2/3 pp. 171 - 185.
DOI:http://dx.doi.org/10.1108/EUM0000000003550

[19] Papert, S. 1996. An exploration in the space of mathematics
educations. International Journal of Computers for
Mathematical Learning. 1, 1 (Jan. 1996), 95–123.

[20] Perkovic, L. et al. 2010. A Framework for Computational
Thinking Across the Curriculum. In Proceedings of the
fifteenth annual conference on Innovation and technology in
computer science education (ITiCSE '10). ACM, New York,
NY, USA, 123-127.
DOI=http://doi.acm.org/10.1145/1822090.1822126

[21] Qualls, J.A. and Sherrell, L.B. 2010. Why Computational
Thinking Should Be Integrated into the Curriculum. J.
Comput. Sci. Coll. 25, 5 (May 2010), 66–71.

[22] Repenning, A. 2012. Programming goes back to school.
Commun. ACM. 55, 5 (May 2012), 38–40.

[23] Soh, L.-K. et al. 2009. Renaissance Computing: An Initiative
for Promoting Student Participation in Computing. SIGCSE
Bull. 41, 1 (March 2009), 59-63.
DOI=http://doi.acm.org/10.1145/1539024.1508885

[24] Wilensky, U. 1997. NetLogo Wolf Sheep Predation model.
Center for Connected Learning and Computer-Based
Modeling, Northwestern University, Evanston, IL.

[25] Wilensky, U. NetLogo. 1999. Center for Connected Learning
and Computer-Based Modeling, Northwestern University,
Evanston, IL.

[26] Wilensky, U. et al. 2014. Fostering computational literacy in
science classrooms. Commun. ACM. 57, 8 (Aug. 2014), 24–
28.

[27] Wing, J.M. 2006. Computational Thinking. Commun. ACM.
49, 3 (Mar. 2006), 33–35.

[28] Yadav, A. et al. 2011. Introducing Computational Thinking
in Education Courses. In Proceedings of the 42nd ACM
technical symposium on Computer science education
(SIGCSE '11). ACM, New York, NY, USA, 465-470.
DOI=10.1145/1953163.1953297
http://doi.acm.org/10.1145/1953163.1953297

