
Revealing the Programming Process

Jens Bennedsen
IT University West

Fuglesangs Allé 20

DK-8210 Aarhus V

Denmark

jbb@it-vest.dk

Michael E. Caspersen
Department of Computer Science

University of Aarhus

Aabogade 34, DK-8200 Aarhus N

Denmark

mec@daimi.au.dk

ABSTRACT
One of the most important goals of an introductory programming
course is that the students learn a systematic approach to the de-
velopment of computer programs. Revealing the programming
process is an important part of this; however, textbooks do not
address the issue – probably because the textbook medium is
static and therefore ill-suited to expose the process of program-
ming. We have found that process recordings in the form of cap-
tured narrated programming sessions are a simple, cheap, and ef-
ficient way of providing the revelation.

We identify seven different elements of the programming process
for which process recordings are a valuable communication media
in order to enhance the learning process. Student feedback indi-
cates both high learning outcome and superior learning potential
compared to traditional classroom teaching.

Categories and Subject Descriptors
K3.1 [Computers & Education]: Computer Uses in Education –
computer-assisted instruction, distance learning.

K3.2 [Computers & Education]: Computer and Information Sci-
ence Education – computer science education, information sys-
tems education.

General Terms
Design, Documentation, Experimentation, Human Factors, Lan-
guages.

Keywords
CS1, Programming Process, Process Recording, Model-Based
Programming, Objects-First, Design, Incremental Development,
Testing, Refactoring, Programming Education, UML, Conceptual
Modelling, Systematic Programming, Pedagogy.

1. INTRODUCTION
We believe that one of the most important goals of an introducto-
ry programming course is that the students learn a systematic ap-
proach to the development of computer programs.. Revealing the
programming process is an important part of this, and we have
found that process recordings in the form of screen captured nar-
rated programming sessions is a simple, cheap, and efficient way
to provide the revelation. We hereby expand the applied appren-
ticeship approach as advocated in [2, 15].

Revealing the programming process to beginning students is im-
portant, but traditional static teaching materials such as textbooks,
lecture notes, blackboards, slide presentations, etc. are insufficient
for that purpose. They are useful for the presentation of a product
– a finished program– but not for the presentation of the dynamic
process used to create that product. Besides being insufficient for
the presentation of a development process, the use of traditional
materials has another drawback: typically they are used for the
presentation of an ideal solution which is the result of a non-linear
development process. Like others [20, 21, 22], we consider this to
be problematic; the presentation of the product independently of
the development process will inevitably leave the students with
the false impression that there is a linear and direct “royal road”
from problem to solution. This is very far from the truth, but the
problem for novices is when they see their teacher present clean
and simple solutions, they think they themselves should be able in
a straightforward fashion to develop solutions in a similar way.
When they realize they cannot, they blame themselves and feel
incompetent. Consequently they will lose self-confidence and in
the worst case their motivation for learning to program.

Besides teaching the students about tools and techniques for the
development of programs, i.e. a programming language, an inte-
grated development enviroment (IDE), programming techniques,
etc., we must also teach them about the development process, i.e.
the task of using these tools and techniques to develop, in a sys-
tematic, incremental and typically non-linear way, a “good” solu-
tion for the problem at hand. An important part of this is to ex-
pound and demonstrate that many small steps are better than few
large ones, that the result of every little step should be tested, that
prior decisions may need to be undone and code refactored, that
making errors is common also for experienced programmers, that
compiler errors can be misleading/erroneous, that online docu-
mentation for class libraries provide valuable information, and
that there is a systematic, however non-linear, way of developing
a solution for the problem at hand. We cannot rely on the students
to learn all of this by themselves, but using an apprenticeship ap-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
SIGCSE’05, February 23–27, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-997-7/05/0002...$5.00.

proach we can show them how to do it; for this purpose we use
process recordings.

The paper is structured as follows: Section 2 is a brief introduc-
tion to the notion of process recordings. In section 3 we discuss
the need for exposition of the programming process (e.g. through
process recordings) and why textbooks are ill-suited for this pur-
pose. Section 4 is a more detailed description of process re-
cordings and we identify seven different categories. In section 5
we discuss the use of process recordings in a course context. Sec-
tion 6 is a brief discussion of related work. The conclusions are
drawn in section 7, which also points to future work.

2. PROCESS RECORDINGS, A BRIEF
INTRODUCTION
Written material in general and textbooks in particular are not a
suitable medium through which to convey processes. We have
used process recordings, captured and narrated programming ses-
sions, to do that. The creation of a process recording is easy, fast,
and cheap, and does not require special equipment besides a stan-
dard computer.
The term process recording refers to a screen capture of an expert
programmer (e.g. the teacher) solving a concrete programming
problem, thinking aloud as he moves along. A process recording
can be produced using a standard computer; there is no need for a
special studio or other expensive equipment. The software for
capturing is free, and depending on how advanced post production
one needs, that software is either free or very cheap. We have
used Windows Media Encoder and Windows Media File Editor,
both freeware programs.
We have found that 15-20 minutes is an appropriate duration of a
process recording; for some problems the duration can be longer.
For convenience, we offer an index (a topic→time mapping) to
help retrieve sections of special interest. The index of each re-
cording is stored in a database allowing the students to search for
specific material at a later stage. Figure 1 shows a snapshot of a
playback of a process recording.

3. TEACHING THE PROCESS OF
PROGRAMMING
The concern for teaching process and problem solving is not new;
in [10] David Gries wrote:

Let me make an analogy to make my point clear. Sup-
pose you attend a course in cabinet making. The instruc-
tor briefly shows you a saw, a plane, a hammer, and a
few other tools, letting you use each one for a few min-
utes. He next shows you a beautifully-finished cabinet.
Finally, he tells you to design and build your own cabi-
net and bring him the finished product in a few weeks.
You would think he was crazy!

Clearly, cabinet making cannot be taught simply by teaching the
tools of the trade and demonstrating finished products; but neither
can programming. Nevertheless, this seems to be what was being
attempted thirty years ago when Gries wrote the above analogy,
and to a large extent it seems to be the case today.
du Boulay [6] identifies Pragmatics – the skills of planning, de-
veloping, testing, debugging and so on – as an important domain
to master. The latter is concerned with skills related to the pro-
gramming process; however, only few of these are addressed in
traditional textbooks on introductory programming.

3.1 Textbooks Neglect the Issue
At a recent workshop [14], a survey of 39 major selling textbooks
on introductory programming was presented. The overall conclu-
sion of the survey was that all books are structured according to
the language constructs of the programming language, not by the
programming techniques that we (should) teach our students. This
is consistent with the findings in [18]: Typical introductory pro-
gramming textbooks devote most of their content to presenting
knowledge about a particular language (p. 141). The prevailing
textbook approach will help the students to understand the pro-
gramming language and the structure of programs, but it does not
show the student how to program – it does not reveal the pro-
gramming process.
We know what is needed, so why has the topic not found its way
into textbooks on introductory programming? The best answer is
that the static textbook medium is unsuitable for this kind of dy-
namic descriptions.

3.2 New Technology Allows for Changes
Earlier it has been difficult to present actual programming to stu-
dents. When programs, in the form of finished solutions, were
presented to students it was in the form of writings on the black-
board or copies of finished programs (or program fragments) on
transparencies for projection.

Programming on a blackboard has the advantage that it is pos-
sible to create programs in dialog with the students at a pace the
students can follow; also, the teacher and the students can interact
during the development of the program. The obvious drawback is
that only small programs can be presented, and neither are we
able to run and modify the programs nor to demonstrate profes-
sional use of the development tool(s) and programming tech-
niques.

Finished programs on transparencies provide a way of present-
ing larger and more complex programs to the students, programs
that we would never consider writing on a blackboard. This ap-
proach has the drawback that teachers tend to progress too fast
and exclude the students from taking part in the development.

The emergence of new technology has made it possible in a sim-
ple and straightforward manner to present live programming to

Figure 1: Playback of a process recording

students. Live programming can be presented in two different
ways: live programming using computer and projector, and proc-
ess recordings showing how the expert at work.

Live programming in the lecture theatre using computer and pro-
jector is like a combination of using blackboard and slides, but
with the important additional ability to run and test the program
and to use the programming tools (IDE, online documentation,
diagramming tools). This is much closer to the actual program-
ming process than the first two approaches. However, there are
still drawbacks: time in the class room is limited and this restricts
the complexity of the examples that are presented; also, the pres-
entation vanishes as it takes place; nothing is saved afterwards.

Process recordings showing the programming process of an ex-
pert are similar to live programming but without its limitations. In
process recordings you can take the time needed to present as
complex an example as you wish, and the presentation can be re-
viewed over and over as many times as a student needs to.

The first three approaches have in common that they are synchro-
nous, one shot events. There is no possibility for the student to go
back and review (a step in) the development process if there were
something he did not understand. This opportunity is exactly what
is added by using process recordings.

4. A CATEGORIZATION OF PROCESS
ELEMENTS
In this section we present a more detailed description of the proc-
ess elements we expose through process recordings, and we iden-
tify seven different categories that we have found useful in CS1.

4.1 Elements of Structures and Pragmatics
A typical programming process encompasses the following proc-
ess elements: use of an IDE, incremental development, testing, re-
factoring, error handling, use of online documentation, and syste-
matic construction of code from a model/specification. All are un-
suitable for textual descriptions, but important for the student to
master. For each process element we will discuss how to address
it in an introductory programming course and how process re-
cordings can be used to reveal its core aspects.

Use of the IDE: We use a simple IDE [13]. However, a short re-
cording demonstrating the use of special facilities in the IDE
makes it still easier for the students to start using it.

Incremental development: Students often try to create a com-
plete solution to a problem before testing it. This is not the behav-
iour we want the students to exhibit; instead we want them to cre-
ate the solution in an incremental way taking very small steps al-
ternating between implementing and testing. Following this ad-
vice makes it much easier to find and correct errors and it simpli-
fies the whole activity. This is a topic that is very difficult to
communicate in a book. With a process recording it is simple and
straightforward to demonstrate how to behave.

Testing: We promote two simple techniques for testing: inter-
active testing through the IDE (BlueJ) or the creation of a special
class with test methods. The process aspect of the former tech-
nique is covered under “Use of the IDE” above (see also [12]). A
textbook is useful for describing principles and techniques for
testing but how to integrate testing in the development process is
best demonstrated showing a live programming/testing process.

Refactoring: When the students read a textbook they easily get
the impression that programmers never make mistakes, that pro-
grammers always create perfect, working solutions in take one,
and that programmers therefore never have to correct and improve
their programs. In [8] it is stated that an experienced programmer
should expect to use approximately 50% of his time refactoring
his code. If this is the case for an experienced programmer, a nov-
ice programmer should expect to use significantly more time
refactoring/correcting; clearly, students cannot expect to create
perfect solutions in take one. But the students get the impression
that they ought to be capable of this.

We have found it difficult to motivate the need for refactoring to
students. The goal of refactoring is to create better programs in
the sense of exhibiting lower coupling and higher cohesion. The
students do not know when it is advantageous to refactor a pro-
gram; they consider the job done when the program can compile
and run. But showing them the refactoring techniques “live” gives
them a much better understanding of the techniques and an appre-
ciation of the necessity for refactoring. In order to optimise moti-
vation we often start out with a student’s program, showing how
refactoring can make that program more readable, and how lower
coupling and higher cohesion can be obtained through successive
applications of simple standard techniques.

Error handling: In order to make the students feel more comfor-
table it is important to show them that every programmer makes
errors and that error handling is a part of the process. It is impor-
tant to show the students how errors are handled. In particular it is
important to demonstrate to the students that the output from the
compiler does not always indicate the real error and that there are
different types of errors. The process recordings help by being
explicit and by dealing systematically with each kind of error.

Online documentation: Modern programming languages are ac-
companied by large class libraries which the students need to use.
The documentation for Java is available online, and the students
have to be acquainted with the documentation and how to use it in
order to write programs. When the students write code, we force
them to write javadoc too. In order to teach how to write and gen-
erate the documentation, we show how to do this as an integrated
part of the development process using live programming/process
recordings.

Model-based programming: We teach a model-driven, objects-
first approach as described in [3]. In order to do so the students
need to use more than the traditional programming tools; they
need to use a tool for describing the class models. The students
also need to understand the interaction between the IDE and the
modeling tool as well as the relation between model and code. To
reinforce the importance of modeling as an integrated part of pro-
gram development it is vital to show the students the tools.

5. PROCESS RECORDINGS IN A COURSE
CONTEXT
In this section we will describe how the process recording materi-
als are used in an introductory object-oriented programming
course.

5.1 Categories of Process Recordings
We have created five different types of process recordings: intro-
duction to assignments, solutions to the assignments, documenta-

tion of synchronous activities (lectures and online meetings), al-
ternative teaching materials, and tool support.

Introduction to assignments: Many students struggle with get-
ting started with an assignment: what is the problem, how shall I
start, what exactly is it that I have to do? Many such questions
can efficiently be addressed in a process recording where also
fragments/structure of a solution can be presented.

Solutions to assignments: Presentation of a solution to a pro-
gramming assignment; besides presenting the solution, we also
present aspects of the development process.

Documentation of synchronous activities: By capturing live
programming as it takes place, the students get the opportunity to
review (parts of) the process at a later stage.

Alternative teaching materials: For the core topics in the text,
we create small programming problems to illustrate the use and
applicability of the topic. This provides diversity in the course
material supporting different styles of learning.

Tool support: We have created different kinds of process re-
cordings for tool support. Like [1] we have found that, instead of
creating written descriptions and manuals for these tasks, it is
much easier for us as well as the students if we create a process
recording showing how to do things: just tell what you are doing
on the screen while capturing it.

5.2 Production Details
Most process recordings can be captured without too much prepa-
ration. It is our experience that a detailed manuscript is superflu-
ous; too detailed a manuscript tend to make the process recording
less authentic and in the worst case plain boring. We have created
approximately 60 process recordings; it is our experience that we
use one hour to prepare a 30-minute recording and another 20
minutes for post-production.
To increase usability we make it possible for students to navigate
in the process recording. The addition of the topic→time index
has added a new usage of the material: the students can search the
material afterwards and use it as yet another part of their learning
material repository. In this way the value of the lectures has ex-
panded from something that is only useful if you are present, to a
material that can be used repeatedly over time.

5.3 Student Feedback
Recently we taught two introductory programming courses based
on distance education with respectively 35 and 20 students (a de-
tailed description of the design of this course can be found in [4]).
For these courses we made extensive use of process recordings.
All of these materials are stored on a web-server and the students
can access them whenever they want and from where they want.

We have evaluated the use of process recordings in our introduc-
tory programming course. The evaluation was done quantitatively
using a questionnaire as well as qualitatively by interviewing a
number of students about their attitude towards the material. From
the questionnaire we can see that more than 2/3 of the students
have seen more than 50% of the process recordings.

The distribution of hits for the different types of process re-
cordings is as follows: introduction to assignments 28%, solutions
to assignments 19%, documentation of synchronous activities 9%

alternative teaching materials 21%, and tool support 23%. The in-
teresting thing is that the possibility of reviewing the synchronous
activities has by far the smallest hitrate; this indicates that web
casting of lectures, which is a widespread use of process re-
cordings [5, 17], is the least useful of the five categories.

The students have self-evaluated the learning outcome of the
process recordings; the result of the evaluation is;: None 21%,
Small 0%, Ordinary: 21%, High: 14%, Very high: 44%. 58% has
indicated a high or very high learning outcome which is very en-
couraging. In post-course interviews, the students generally con-
firmed this. One student characterized the use of process re-
cordings as follows: I claim that the learning potential is better
with this teaching form than for traditional class room teaching;
in the virtual class room I can eliminate all kind of noise and in-
terruptions. Combined with the opportunity to review (parts of)
the session, the return on investment becomes optimal.

6. RELATED WORK
Streaming video has become more and more popular and common
[16, 19]. Compression techniques have been standardized and im-
proved; bandwidth is increasing (also in private homes) making it
realistic to use videos in an educational setting.
Web casts of lectures is used by many universities including pro-
minent ones like Berkeley and MIT [5, 17]. While such videos
may be valuable to students who are not able to attend the lecture
or would like to have (parts of) it repeated, they do not signifi-
cantly add new value to the teaching material.

The use of process recordings in teaching is not new [19]. Process
recordings are used extensively in [11], but the use is somewhat
different from ours: all process recordings are very short and fo-
cused on explaining a single aspect of the programming language
or programming; the process recordings are “perfect”, they do not
show that it is common to make errors (and how to correct them);
and the process recordings do not show the integrated use of the
different tools like IDE, online documentation, etc. The process
recordings in [11] can be characterized as alternative teaching ma-
terials according to our categorization in section 5.1.

Others use a much richer form of multimedia than plain video.
One example is the learning objects discussed in [7]. The same
differences as described above apply, and on top of that the pro-
duction cost for creating these learning objects is extremely high.

7. CONCLUSIONS
The idea of revealing the programming process is not new:

Anyone with a reasonable intelligence and some grasp
of basic logical and mathematical concepts can learn to
program; what is required is a way to demystify the pro-
gramming process and help students to understand it,
analyse their work, and most importantly gain the confi-
dence in themselves that will allow them to learn the
skills they need to become proficient.

This quotation is fifteen years old [9]; nevertheless, the issue still
has not found its way into programming textbooks.
Revealing the programming process is an important part of an in-
troductory programming course which is not covered by tradi-
tional teaching materials such as textbooks, lecture notes, black-

boards, slide presentations, etc. This is just as good since these
materials are insufficient and ill-suited for the purpose.

We suggest that process recordings in the form of screen captured
narrated programming sessions is a simple, cheap, and efficient
way of providing a revelation of the programming process. Fur-
thermore we have identified seven elements included in the pro-
gramming process. For each of these we have discussed how to
address it in an introductory programming course and how proc-
ess recordings can be used to reveal its core aspects.

From our evaluation of the approach we know that the students
use and appreciate the process recordings; some students even
find the material superior to traditional face-to-face teaching. The
creation of video-mediated materials has proven to be easy and
cheap as opposed to other approaches to create learning objects.

The advance of new technology in the form of digital media has
made it possible to easily create learning material to reveal proc-
ess elements that in the past only has been addressed implicitly.
The students welcome the new material which has great impact on
the students’ understanding of the programming process and their
performance in practical programming. With new technology, in
this case computers and video capturing tools, it becomes possible
to store information that represent dynamic behaviour, something
which is virtually impossible to describe and represent using tra-
ditional tools and materials such as blackboards and books. We
are looking forward to further pursue this new opportunity.

8. ACKNOWLEDGEMENT
It is a pleasure to thank Carl Alphonce, David Barnes and Mi-
chael Kölling for valuable comments and suggestions.

The production of process recordings was initiated in the Flexnet
project under IT University West; we will like to thank IT Uni-
versity West for financial support for the project.

9. REFERENCES
[1] Alford, K., “Video FAQs – Instruction-On-Demand”, Pro-

ceedings of Frontiers in Education, Boulder Colorado, 2003.

[2] Astrachan, O. & Reed, D., “AAA and CS1: The Applied
Apprenticeship Approach to CS1”, Proceedings of the
twenty-sixth SIGCSE Technical Symposium on Computer
Science Education, Nashville, Tennessee, 1995, pp. 1-5.

[3] Bennedsen, J. & Caspersen, M. E., ”Programming in Context
– A Model-First Approach to CS1”, Proceedings of the
thirty-fifth SIGCSE Technical Symposium on Computer Sci-
ence Education, Norfolk, Virginia, 2004, pp. .

[4] Bennedsen, J. & Caspersen, M. E., ”Rationale for the Design
of a Web-based Programming Course for Adults”, Procee-
dings of ICOOL 2003, International Conference on Open
and Online Learning, Mauritius, 2003.

[5] Berkeley, http://webcast.berkeley.edu/courses/

[6] du Boulay, J.B.H., “Some difficulties of learning to pro-
gram”, in Spohrer, J.C. and Soloway, E. (Eds.), Studying the
Novice Programmer, Hilldale, NJ, Lawrence Erlbaum Asso-
ciates, Hillsdale, 1989., pp. 283-299.

[7] Boyle, T., “Design principles for authoring dynamic, reus-
able learning objects”, Australian Journal of Educational
Technology, 19 (1), 2003, pp. 46-58.

[8] Fowler, M., Refactoring – Improving the Design of Existing
Code, Addison-Wesley, 1999. ISBN 0-201-48567-2

[9] Gantenbein, R. E., “Programming as Process: A ‘Novell’
Approach to Teaching Programming”, Proceedings of the
twentieth SIGCSE Technical Symposium on Computer Sci-
ence Education, Louisville, Kentucky, 1989, pp. 22-26.

[10] Gries, D., “What Should We Teach in an Introductory Pro-
gramming Course”, Proceedings of the fourth SIGCSE Tech-
nical Symposium on Computer Science Education, 1974, pp.
81-89.

[11] Gries, D. & Gries, P., ProgramLive, John Wiley & Sons,
2001.

[12] Kölling, M. & Rosenberg, J., “Testing Object-Oriented Pro-
grams: Making it Simple”, Proceedings of the twenty-eighth
SIGCSE Technical Symposium on Computer Science Educa-
tion, San José, California, 1997, pp. 77-81.

[13] Kölling, M., “Teaching Object Orientation with the Blue En-
vironment”, Journal of Object-Oriented Programming, Vol.
12 (2), 1999, pp. 14-23.

[14] Kölling. M, “The Curse of Hello World”, Invited lecture at
Workshop on Learning and Teaching Object-orientation –
Scandinavian Perspectives, Oslo, October 2003.

[15] Linn, M. C. & Clancy, M. J., “The Case for Case Studies of
Programming Problems”, Communications of the ACM, 35
(3), 1992, pp. 121-132.

[16] Ma, W., Lee, Y., Du, D.H.C. & McCahill, M. P., “Video-
based Hypermedia for Education-On-Demand”, Proceedings
of the fourth ACM International Conference on Multimedia,
1996, pp. 449-450.

[17] MIT, www.swiss.ai.mit.edu/classes/6.001/abelson-sussman-
lectures/

[18] Ronins, A., Rountree, J. & Rountree, N., “Learning and
Teaching Programming: A Review and Discussion” Journal
of Computer Science Education, Vol. 13 (2), 2003, pp. 137-
172.

[19] Smidth, T, Ruocco, A & Jansen, B., “Digital Video in Edu-
cation”, Proceedings of the thirtieth SIGCSE Technical Sym-
posium on Computer Science Education, New Orleans, Lou-
isiana, 1999, pp. 122-126.

[20] Soloway, E., ”Learning to Program = Learning to Construct
Mechanisms and Explanations”, Communications of the
ACM, 29 (9), 1986, pp. 850-858.

[21] Spohrer, J. & Soloway, E., “Novice Mistakes: Are the Folk
Wisdoms Correct?”, Communications of the ACM, 29 (7),
1986, pp. 624-632.

[22] Spohrer, J. & Soloway, E., “Analyzing the High-Frequenzy
Bugs in Novice Programs”, In Iyengar, S. & Soloway, E.
(Eds.), Empirical Studies of Programmers, Ablex, New
York, 1986.

