
A C++ Framework for Active Objects in Embedded Real-Time
Systems – bridging the gap between modeling and implementation

Michael E. Caspersen
Centre for Object Technology

Department of Computer Science, University of Aarhus
Aabogade 34, DK-8200 Aarhus N, Denmark

mec@daimi.au.dk

Abstract
In research communities it is now well-accepted that the object paradigm provides a good
foundation for the challenges of concurrent and distributed computing. For practitioners,
however, it is not without problems to combine the concepts of processes and objects. A
major reason for this is that the predominant object-oriented programming language in
industry, C++, does not support concurrency. In this paper we present a simple and
powerful approach to extending C++ with constructs for concurrent programming. We
discuss the design, application, and implementation of a framework that supports standard
concurrency constructs and, contrary to what is suggested in several books on object-
oriented modeling techniques for real-time systems, we demonstrate that it is possible to
integrate the notions of object and process and maintain a smooth –virtually non-existing–
transition from modeling to implementation. The framework has been used at Bang &
Olufsen, a major Danish manufacturer of audio and video equipment, to develop software
for a CD player; we illustrate the strength of the approach with examples from this project.
As a pleasant side benefit, the framework approach results in a considerable reduction of
the code size of more than 50% compared to earlier versions of the system.

Keywords: Object technology, concurrency, active objects, embedded systems, real-time
methods, frameworks, C++.

1. Introduction
In the design of embedded real-time systems it is often appropriate to employ concurrent

processes, among other things to handle the system’s interaction with external devices, and
industrial companies have many years of experience in doing this. In some cases a dedicated
concurrent programming language is applied (e.g. Concurrent Pascal, Modula-2 or Ada), but
most often a traditional sequential programming language is used (e.g. C) where a function
library provides access to relevant primitives in an underlying real-time operating system.

The object-oriented paradigm is becoming more and more prevailing in industry, also
within the design and construction of embedded real-time systems. Companies at large have
come to realize that comprehensive solutions require combining the flexibility of concurren-
cy (and distribution) with the power of object-oriented technology. This calls for a
combination of object and process; this combination is captured in the notion of an active
object.

In research communities it is now well-accepted that the object-oriented paradigm
provides a good foundation for the challenges of concurrent and distributed computing [10,
16, 19, 20, 21, 23, 25, 29], and a number of widespread object-oriented programming

languages are supporting concurrency [4, 7, 28]. As such it is –at least in theory– fairly
straightforward to combine the two programming paradigms.

1.1. Transformational Approaches to Combining OO and Concurrency

For practitioners, however, it is not without problems to combine the concepts of
processes and objects. The literature provides constructive and helpful techniques on
modeling [5, 13, 17, 26], but after all –when it comes to the refinement of domain models to
a technical design and code for a specific target environment– there is not much to come for.
Often, the target environment (processor, programming language, and real-time operating
system) is given a priori due to organizational and business related constraints. This
preselection gives rise to the problem because it excludes the “easy” and obvious solution:
an object-oriented programming language that supports concurrency. The question is how to
transform an object-oriented design with implicit concurrency into an implementation with
explicit concurrency on a given target environment. Unfortunately, it is hard to find con-
structive, specific, and satisfactory answers to this question in the literature.

• [17] recognizes the problem but does not provide a solution: “it is essential to
consider how [the target environment] can be adapted to fit the object structure, so
that the structure is minimally distorted”.

• [5 and 26] prescribe a mapping from object model to task model, i.e. the concepts are
not integrated.

• [13] assumes class and object models to be fundamentally concurrent and notes very
briefly that active objects are normally implemented as “the root composite object of
a thread”; otherwise he does not address the problem.

The objective in [17] is attractive because it aims at preserving the object structure in the
implementation; the objective is to adapt the target environment to the object structure and
not vice versa. However, there is no indication at all of how to achieve this.

In [26] the authors present a modeling language, ROOM (Real-Time Object-Oriented
Modeling), but when it comes to implementation and integration of the ROOM model into
an existing run-time environment they resort to transforming the ROOM model specifica-
tion into an implementation based on concepts supported by more traditional real-time
environments (e.g. processes, semaphores, and event queues) – a mapping into low-level
concepts that introduce an undesirable distortion to the object structure.

OCTOPUS [5] is a method that provides a systematic approach for developing object-
oriented software for embedded real-time systems. The method is based on OMT [24] and
Fusion [12] but also embodies common practice found in real-time systems. OCTOPUS
makes a distinction between the notion of an implicit and an explicit concurrency model; the
main difference between the two is the timing of combining the objects and processes. The
OCTOPUS method uses the implicit concurrency model in the analysis phase. In the design
phase, the concurrency is gradually made more explicit, and a stepwise procedure for
transforming the implicit concurrency model into an explicit is presented.

The suggestions in [26] and [5] of transforming the object model into a task model are
rooted in necessity more than desire. In [5] the authors are very honest and explicit about the
reasons for their recommendations concerning the transformation from an implicit to an
explicit concurrency model and they acknowledge the missing link.

In the endeavour of being a practical approach, the OCTOPUS method presumes that a
standard object-oriented programming language and a conventional real-time operating

system are used, but this introduces the key challenge of combining object-orientation and
concurrency [5, pp. 115-116]:

Commonly used object-oriented languages, such as C++, are sequential by
nature. They do not support implicit concurrency of the objects [...]. Because of
this deficiency, the required feature is made available through the operating
system. [...] Unfortunately, this preselection requires a combination of two
distinct concepts, processes and objects, which in itself is not without problems.
[...]

It may be that the relationship between processes and objects is only a difficulty
for practitioners, because the existing literature does not give a clear answer to
this question. Some authors, such as [Jacobson 92], recognize the problem and
give a few guidelines, but these are not sufficient for practical use. For example,
the statement “it is essential to consider how the target environment can be
adapted to fit the object structure, so that the object structure is minimally
distorted” indicates a difficulty without giving any solution.

As already noted, the solution of the OCTOPUS method is a transformational approach
where concurrency aspects is introduced rather late.

1.2. Hand-in-hand modeling of objects and processes

In our opinion, the transformational approaches suggested in [5, 26] are unfortunate. We
believe that it is undesirable and problematic to transform the object model and this should
be avoided as far as possible.

The problem with the transformational approach is that it violates one of the corner
stones of object-orientation: maintaining the same fundamental structure at all levels of
description – from the most abstract architectural descriptions and down to the code that
actually implements the artifact being constructed. Not only is it nice to stick to a
fundamental structure, it is vital. Without a common fundamental structure, it becomes
virtually impossible to switch forth and back between modeling and implementation and to
keep the models and documentation up-to-date.

Furthermore, we firmly believe that the modeling of domain level concurrency (as
opposed to design level concurrency introduced for efficiency or due to hardware
constraints) is as important as traditional class modeling. In our opinion, any analysis model
that claims to cover all essential aspects of a domain must encompass a model of the
concurrency inherent to the domain. We therefore dislike that the OCTOPUS method
postpones concurrency modeling to a late stage of the design phase. In short, we prefer early
modeling of concurrency because we believe it to be essential and because we want to avoid
later transformations that might distort the object model.

Regarding the practical aspects of combining an object structure with the target environ-
ment, we suggest a switching of the mind-set:

It is not the object structure that must be transformed to match the target environ-
ment; it is the target environment that must be adapted to match the object struc-
ture.

There are two reasons for this objective. First of all, we want to eliminate the need to
transform an object model into a task model as described above. Secondly, we want to lay
the ground for design level re-use by encapsulating the target environment in general
abstractions that facilitates a smooth integration with an object (and concurrency) model.

To bridge the gap between modeling and implementation we have constructed a C++
framework for active objects in embedded real-time systems; the paper reports on the
design, application and implementation of this framework.

1.3. Structure of the paper

In section 2 we recall fundamental concepts and notations for concurrent programming
that plays a role in our approach to integrating object-orientation and concurrency. In
section 3 we present our solution to the question of how to integrate object-orientation and
concurrency: a C++ framework for active objects. In section 4 we illustrate the applicability
of our approach with an example from an industrial project with Bang & Olufsen, a major
Danish manufacturer of audio and video equipment: software for a CD player. In section 5
we discuss a couple of nice aspects of the implementation of the framework, and section 6 is
a wrap-up with conclusions, references to related work, and indications of possible future
work.

The ideas and the approach presented is independent of any particular programming
language; all that is required is an object-oriented programming language and a real-time
operating system. However, for practical reasons and to avoid unnecessary generality, the
presentation will be in terms of C++, the programming language that was used in the project
with Bang & Olufsen.

2. Classical Language Constructs for Concurrency
Fundamental concepts and notations for concurrent programming were invented a quarter

of a century ago, and these are well-documented in the literature [2, 3, 15]. In particular, the
concepts of process (a sequential program that may be executed concurrently with other
processes) and monitor (a means of synchronizing access of processes to shared variables)
were invented. Both concepts were supported in the programming language Concurrent
Pascal [8], and this language has had a major impact on the design of our C++ framework
for active objects.

2.1. Producer/Consumer in Concurrent Pascal

A classical example of a concurrent program is the producer/consumer example. One
(type of) process, the producer, produces items to be consumed by another (type of)
process, the consumer. To decouple the two processes, a buffer is placed between them; this
arrangement allows the producer to produce new items even if the consumer temporarily is
incapable of keeping pace with the producer. To synchronize access to the buffer, we make
it a monitor; this ensures exclusive access to the data structure defining the internal
representation of the buffer. A class model of the system is described in figure 1; we use the
stereotypes Active object and Monitor to decorate the class diagram.

Figure 1: Class diagram for producer/consumer

Producer
<<Active object>>

Consumer
<<Active object>>Buffer

put()
get()

<<Monitor>>

An implementation in Concurrent Pascal is straightforward and is shown in figure 2.

Buffer = monitor
var t: item;

count: integer;

procedure entry put(x: item);
begin

await not full;
t:= x; count:= count+1

end;

function entry get(): item;
begin

await not empty;
count:= count-1; get:= t

end;

function empty: boolean;
begin empty:= count=0 end;

function full: boolean;
begin full:= count=1 end;

begin count:= 0 end;

Producer = process (b: Buffer);
var t: item;

begin
while true do begin

produce(t);
b.put(t)

end end;

Consumer = process (b: Buffer);
var t: item;

begin
while true do

consume(b.get)

end;

Figure 2: Concurrent Pascal version of producer/consumer

The await-statement used in the monitor operations put and get is not an ordinary
Concurrent Pascal construct. It is used here to synchronize the timing of the producer and
the consumer (the producer must wait if the buffer is full, and the consumer must wait if the
buffer is empty). In Concurrent Pascal, Brinch Hansen decided to use queues instead, but
this was merely a matter of taste [9]; we apply the await-statement for simplicity and
because this is the approach we have adopted in the C++ framework.

3. A Framework for C++
There are numerous ways to combine object-oriented programming languages with con-

currency constructs: [10] identifies a coarse classification in three approaches: the library

approach, the integrative approach, and the reflective approach; and [14] discusses specific
issues related to making concurrent extensions of C++.

Our approach to extending C++ with concurrency constructs is to integrate object and
process in the notion of an active object; another approach that refrains from introducing the
notion of active object is reported in [22, 23]. Our approach is a combination of the library
approach (extend the library rather than the language) and the integrative approach (extend
the language) [10]. Our approach resembles the integrative approach by defining new
keywords (entry and await), and it resembles the library approach in the way these
keywords (and the classes that realizes them) are implemented: as a class library that
constitutes a framework where calls of the library methods are implicit in the application
code.

Other C++ extensions exists. The widespread use of C++ has resulted in a proliferation of
parallel programming systems for this language [28]. However, most of these systems are
experimental or implemented only at general platforms (e.g. Unix) and therefore not
immediately applicable in a specific target environment for real-time systems.

The C++ framework we have constructed is heavily influenced by Concurrent Pascal.
Simplicity was one of the overall design goals, and as we shall see the framework is simple
and easy to use; it does not require a special compiler or pre-processor, and it is
straightforward to apply for practitioners.

The framework consists of a few essential abstractions: two new “keywords”: entry and
await; five abstract classes: Monitor, ConditionMonitor, Process, TimerProcess, and
Timer; and four concrete classes: Semaphore, Entry, RelativeTimer and AbsoluteTimer.
Figure 3 presents the framework as a class diagram.

Figure 3: The framework (user perspective)

A specific application with active objects is constructed through extensions of Process
(or TimerProcess, if the active object must own a timer). Subclasses to Process (and
TimerProcess) can redefine the virtual method run and thereby define the specific
behaviour of active objects. Along the same lines classes that are shared between several
processes, must be made subclasses of Monitor (or ConditionMonitor if a synchronization
through an await-statement is needed in the monitor).

An active object, in contrast with a normal “passive” object which simply provides
services, has its own control agenda; this immediately raises the question of synchronizing

Process

run()

RelativeTimer AbsoluteTimer

ConditionMonitor

Semaphore

wait()
s ignal()

Entry

Monitor Timer

start()
stop()

TimerProcess

an active object when one of its clients calls one of its services. Many researchers have
addressed this problem [1, 11]. Since our notions of monitor and process are totally
independent, our approach is simply to make an active object a monitor too, if necessary.

The separation of Monitor and ConditionMonitor, and Process and TimerProcess is
not crucial but more a matter of taste. Monitor and ConditionMonitor support two distinct
forms of synchronization: mutual exclusion and conditional wait. A TimerProcess is
simply a Process that reacts to time-outs.

Application of the framework represents a smooth transition from domain level modeling
to technical design; the transition can be expressed as a refinement of the class model. In
figure 4 we illustrate this with the producer/consumer example from the previous section.

Figure 4: Refinement from design level modeling to technical design

Producer and Consumer are both realized as subclasses of Process, and the virtual
method Process::run is redefined to reflect the specific behaviour of producers and
consumers respectively. Buffer is realized as a subclass of ConditionMonitor because
conditional waits (await) are needed, and the methods put and get are both decorated with
the “keyword” entry to make them monitor operations and thereby ensure mutual exclusion
(see section 5 for details about the implementation of the framework). The “keyword”
forever is simply shorthand for for (;;). The ultimate C++ version of producer/consumer
is presented in figure 5.

class Producer : public Process {
public:
Producer(Buffer& bb) : b(bb) {}

Refinement

Producer

run()

Consumer

run()

Buffer

put()
get()

ConditionMonitor

Process

Producer

run()

<<Active object>>
Consumer

run()

<<Active object>>Buffer

put()
get()

<<Monitor>>

Application

Framework

virtual void run() {
forever {

item t;
// produce t ...
b.put(t);

} }
private:

Buffer& b;
};

class Consumer : public Process {
public:
Consumer(Buffer& bb) : b(bb) {}
virtual void run() {

forever {
item t;
t = b.get();
// consume t ...

} }
private:

Buffer& b;
};

class Buffer : public ConditionMonitor {
public:
void put(item x) { entry

await(!full());
t = x;
count++;

}
item get() { entry

await(!empty());
count--;
return t;

}
private:

bool empty() { return count == 0; }
bool full() { return count == 1; }
item t;
int count = 0;

};

Figure 5: C++ version of producer/consumer

Of course, the simplicity of the C++ code and the structural 1-1 correspondence between
the abstract model and the implementation is the key issue.

4. Application for a CD Player
In this section we will demonstrate that the framework presented in the previous section

has fulfilled its goal: to make possible a smooth transition from modeling to implementation
and to obtain a structural 1-1 correspondence between the model and the ultimate C++ code
running in the target environment.

In figure 6 we present a class model of central parts of a CD player. In the model, four
classes are decorated as active objects, and four other classes are decorated as monitors. The
choice of active classes was guided by one of our design heuristics: choose as active objects
those classes that handles the asynchronous events that occurs in the system; the choice of

monitor classes is straightforward: if a class has more than one active object as client, make
that class a monitor.

Figure 6: Class diagram for central parts of a CD player

As an example, the ultimate C++ code for the class PowerSupplyInterface is shown in
figure 7. Notice that there is no explicit run method; the entire task loop is programmed
once and for all in TimerProcess::run in the framework.

class PowerSupplyInterface : public TimerProcess {
public:
PowerSupplyInterface(PlaybackCD* aPlayBackCD);
void on();
void off();

private:
void freeOfNoise();
void powerIsOn();
Timer *freeOfNoiseTimer, *powerIsOnTimer;
PlaybackCD* thePlaybackCD;
PowerState state;

};

PowerSupplyInterface(PlaybackCD* aPlayBackCD)
: thePlaybackCD(aPlaybackCD) {
freeOfNoiseTimer = new RelativeTimer(200, ONE_SHOT,

(PTimeoutF)&PowerSupplyInterface::freeOfNoise);
powerIsOnTimer = new RelativeTimer(500, ONE_SHOT,

(PTimeoutF) &PowerSupplyInterface::powerIsOn);
}

CDModuleInterface

isSpinning()
spinUp()
readTOC()
gotoTrack()
pollTimeout()
stop()
check()

<<Active object>>

TOC TrackInfo

AudioCD

getCurrentTime()
getCurrentTrack()
setCurrentTrack()
setCurrentToMinTrack()

<<Monitor>>

MasterInterface

receiveTelegram()
connected()
playing()
mediumEnded()
requestStby()
inStby()
noMedium()

<<Active object>>

StandbyControl

setInStby()
CDIsStopped()
loaderIsClosed()
interruptStby()

<<Monitor>>

CDSourceControl

connect()
connected()
stbyTimeout()
disconnect()

<<Monitor>>

CDLoaderInterface

isOpen()
isClosed()
close()
open()

<<Active object>>

PlaybackCD

play()
newTrack()
CDHasEnded()
loaderIsClosed()
CDIsSpinning()
CDIsPresent()
powerIsOn()
TOCIsAvailable()
CDIsUnknownFormat()
loaderIsOpen()
CDIsStopped()

<<Monitor>>

PowerSupplyInterface

on()
off()

<<Active object>>

PowerSupplyInterface::on() {
turn_on_main_supply();
freeOfNoiseTimer->start(); // 200 ms

}

PowerSupplyInterface::freeOfNoise() {
turn_on_serial_port();
powerIsOnTimer->start(); // 500 ms

}

PowerSupplyInterface::powerIsOn()
{ state = SOn; thePlaybackCD->powerIsOn(); }

PowerSupplyInterface::off() { ... }

Figure 7: C++ code for PowerSupplyInterface

From the original specification we know that after the main supply has been turned on,
one has to wait for 200 ms to avoid noise on the serial port; after that, the serial port can be
turned on. Then one has to wait another 500 ms to be sure that the power is on. This
specification (and a similar one for turning off the power supply) is exactly what constitutes
the class PowerSupplyInterface. In the constructor a 200 ms relative timer, freeOfNoise-
Timer, is created. This timer is started in PowerSupplyInterface::on(), and when the
freeOfNoiseTimer times out, the private method freeOfNoise will be executed (the details
that make this happen are encapsulated in the framework). Similar things happen with the
powerIsOnTimer. Eventually the active object thePowerSupplyInterface calls back to
PlaybackCD.powerIsOn, and the music can start playing. Figure 8 gives an overview of this
object interaction.

Figure 8: Interaction diagram for PowerSupplyInterface::on

The function calls turn_on_main_supply and turn_on_serial_port are calls to C
functions in the surrounding legacy code. This is typical; at the same time the interface
classes are active objects and wrapper classes to existing legacy code.

Admittedly, PowerSupplyInterface is a very simple class, but the rest of the classes are
implemented in exactly the same fashion, smoothly and simple, resulting again in a struc-
tural 1-1 correspondence between the object model and the C++ code. The implementation
is straightforward and no distortion at all is added to the object structure.

5. Aspects of the Implementation
In this section we will discuss a couple of aspects of the implementation of the frame-

work; in particular we will present the implementation of the Monitor abstraction and the
new keyword entry as well as the ConditionMonitor abstraction and the keyword await.
The discussion will uncover some of the crucial design decisions and stress our efforts to
make the framework as simple as possible to use for application programmers.

The monitor abstraction is implemented as an abstract class that in a standard way uses a
binary semaphore to implement two protected methods, enter and exit. Calls to these
methods must surround the code in application-specific monitor methods (in subclasses to
the abstract Monitor class) to ensure mutual exclusion. As an example, the method
Buffer::put should look like this:

void Buffer::put(item x) {
enter();

await(!full());
t = x; count++;

exit();
}

However, to avoid explicit calls of enter and exit, we define a macro, entry, which is a
declaration of an instance of the class Entry. An Entry object encapsulates a reference to
the monitor in which it is declared, and the constructor of the Entry object calls enter on its
monitor, and the destructor calls exit (and notifyAll, which has no effect at this level).
Consequently, all the application programmer has to do is –like in Concurrent Pascal– to
write entry at the beginning of a monitor method, and then the runtime system will take
care of calling enter and exit at the right time regardless of how the control leaves the
monitor method (e.g. multiple exits, exceptions, etc.). Hence, the method Buffer::put ends
up being coded like this:

void Buffer::put(item x) { entry
await(!full());
t = x;
count++;

}

The implementation of the monitor abstraction does not at all depend on the underlying
real-time operating system; it is implemented solely in terms of the class Semaphore which
is part of the framework. A skeleton of the C++ code for Monitor and Entry is presented in
figure 9.

class Monitor {
friend class Entry;

protected:
Monitor();
void enter() { ... s.wait(); ... }
void exit() { ... s.signal(); ... }
virtual void notifyAll() {}

private:
Semaphore s;
Process* p;
// used for nested calls

protected:
int entryCount;
// used for nested calls

};

class Entry {
public:
Entry(Monitor& mm) : m(mm) { m.enter(); }
~Entry() { m.notifyAll(); m.exit(); }

private:
Monitor& m;

};

#define entry Entry e(*this);

Figure 9: The classes Monitor and Entry

Along the same lines, the ConditionMonitor is implemented as an abstract class that
uses a semaphore to implement the conditional wait (see figure 10). The implementation of
await is to call wait which again calls exit (inherited from Monitor). The call to exit
releases the monitor for other processes to enter and establish the desired condition.
Whenever a process exits the monitor, the refined notifyAll will be called (via the
destructor of the Entry object) and in turn let all waiting processes test their condition. This
notification policy is quite coarse-grained; all waiting processes are being notified whenever
a process leaves the monitor. However, the current implementation was chosen for
simplicity, not for efficiency. If performance turns out to be a problem, we know where to
tune the code.

class ConditionMonitor : public Monitor {
protected:

ConditionMonitor();
void wait() { ... exit(); ... c.wait(); ... enter();)
virtual void notifyAll() { ... c.signal(); ... }

private:
Semaphore c;
int conditionCount;

};

#define await(cond) while (!(cond)) wait()

Figure 10: The class ConditionMonitor

We will not get into details about the implementation of the Process, TimerProcess, and
Timer abstractions, but only mention one nice thing about the interaction between timers
and timer processes supported by our design. When a Timer is being created, its constructor
takes as argument a pointer to a member function in the TimerProcess that creates the
Timer – the member function that must be executed on time-out. Because of this (and a few
similar things), the traditional task loop vanishes completely from the application code and
resides only in the framework. This results in a considerable reduction of the application
code for active objects, typically more than 50%. For the active object PowerSupplyInter-
face from the previous section, the reduction was more than 80%.

6. Concluding remarks
We have developed a C++ framework for active objects in embedded real-time systems,

and the framework has been used to develop object-oriented software for a CD player. The
framework integrates the notions of object and process and adapts a target environment to
match any object model expressed in terms of the stereotypes Active object and Monitor.

Due to extensive re-use of code implemented once and for all in the framework –in
particular the traditional task loop shared by all active objects in the CD player project–
application of the framework gives a surprisingly large reduction of the application code for
active objects. However, it is more important that the remaining code is essential code (i.e.
problem-specific code); it is the technical, low-level details that are swept under the rug.

The version of the framework that was used in the CD player project employs non-
preemptive, priority-based scheduling; this means that all processes at regular intervals must
call Process::pause – a class method that implements the scheduler. However, the design
of the framework is independent of the scheduling policy, and it works as well with
preemptive scheduling.

The current version of the framework supports nested monitor calls on the same monitor
but not on different monitors although this could easily be implemented.

The framework is implemented directly on top of APOS, the real-time operating system
used at Bang & Olufsen [6]; however, in order to generalize the framework and facilitate an
easy adaption to other target environments, a re-design in terms of an abstract real-time
operating system is planned.

[18] describes the Active Object pattern which decouples method execution from method
invocation in order to simplify synchronized access to a shared resource by methods
invoked in different threads of control. It would be interesting to investigate the applicability
of the Active Object pattern with respect to our framework.

7. Acknowledgements
It is a pleasure to acknowledge Kresten Krab Thorup and Carsten Bjerring for stimulating

discussions and collaboration during design and implementation of the framework and
Carsten Juel Andersen, Mogens Lauridsen, Kristian Lippert, and Elmer Sandvad for provi-
ding valuable comments on a draft version of the paper.

This work was supported by the Danish National Centre for IT Research, research grant
COT 74.1.

8. References
[1] America, P. H. M. “POOL-T: A Parallel Object-Oriented Language”, in [29].
[2] Andrews, G. R. and Schneider, F. B. “Concepts and Notations for Concurrent Programming”, ACM

Computing Surveys, Vol. 15, No. 1, January 1983, pp. 3-43. Reprinted in [Gehani 88].
[3] Andrews, G. R. Concurrent Programming – Principles and Practice, The Benjamin/Cummings Publishing

Company, 1991.
[4] Arnold, K. and Gosling, J. The Java Programming Language – Second Edition, Addison-Wesley, 1998.
[5] Awad, M., Kuusela, J. and Ziegler, J. Object-Oriented Technology for Real-Time Systems – A Practical

Approach Using OMT and Fusion, Prentice-Hall, 1996.
[6] Bang & Olufsen, The APOS Project Group (NIB) APOS+ (APOS_OS.SPC), January 6, 1993.
[7] Barnes, J. Ada 95 Rationale: The Language, The Standard Libraries, Springer-Verlag, 1997.
[8] Brinch Hansen, P. The Architecture of Concurrent Programs, Prentice-Hall, 1977.
[9] Brinch Hansen, P. The Search for Simplicity – Essays in Parallel Computing, IEEE Computer Society

Press, 1996.
[10] Briot J.-P., Guerraoui, R. and Löhr, K.-P. “Concurrency and Distribution in Object-Oriented

Programming”, ACM Computing Surveys, Vol. 30, No. 3, September 1998, pp. 291-329.
[11] Caromel, D. “Toward a Method of Object-Oriented Concurrent Programming”, Communications of the

ACM, Special Issue on Concurrent Object-Oriented Programming, Vol. 36, No. 9 (September 1993), pp.
90-102.

[12] Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F. and Jeremes, P. Object-Oriented
Development – The Fusion Method, Prentice-Hall, 1994.

[13] Douglas, B. P. Real Time UML: Developing Efficient Objects for Embedded Systems, Addison-Wesley
Longman, 1998.

[14] Eliëns, A. Principles of Object-Oriented Software Development, Addison-Wesley, 1995.
[15] Gehani, N. H. and McGettrick, A. D. (Eds.) Concurrent Programming, Addison-Wesley, 1988.
[16] Hutchinson, N., Raj, R. K., Black, A. P., Levy, H. M. and Jul, E. The Emerald Programming Language

Report, Technical Report 87-10-07, University of Washington, Seattle, October 1987.
[17] Jacobson, I. Object-Oriented Software Engineering – A Use Case Driven Approach, Addison-Wesley,

1992.
[18] Lavender, R. G. and Schmidt, D. C. Active Object: An Object Behavioral Pattern for Concurrent

programming, chapter 30 in [27].
[19] Lea, D. Concurrent Programming in Java: Design Principles and Patterns, Addison-Wesley Longman,

1997.
[20] Löhr, K.-P. “Concurrency Annotations for Reusable Software”, Communications of the ACM, Special Issue

on Concurrent Object-Oriented Programming, Vol. 36, No. 9, September 1993, pp. 81-89.
[21] Madsen, O. L., Petersen, B. M. and Nygaard, K. The BETA Programming Language, Addison-Wesley,

1993.
[22] Meyer, B. “Systematic Concurrent Object-Oriented Programming”, Communications of the ACM, Special

Issue on Concurrent Object-Oriented Programming, Vol. 36, No. 9 (September 1993), pp. 56-80.
[23] Meyer, B. Object-Oriented Software Construction, Prentice-Hall, 1997 (2nd edition).
[24] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. Object-Oriented Modeling and

Design, Prentice-Hall, 1991.
[25] Schmidt, D. C. and Fayad, M. E. “Lessons Learned Building Reusable OO Frameworks for Distributed

Software”, Communications of the ACM, Special Issue on Object-Oriented Application Frameworks, Vol.
40, No. 10, October 1997, pp. 85-87.

[26] Selic, B., Gullekson, G. and Ward, P.T. Real-Time Object-Oriented Modeling, John Wiley & Sons, 1994.
[27] Vlissides, J. M., Coplien, J. O. and Kerth, N. L. (Eds.) Pattern Languages of Program Design 2, Addison-

Wesley, 1997.
[28] Wilson, G. V. and Lu, P. (Eds.) Parallel Programming Using C++, MIT Press, 1996.
[29] Yonezawa, A. and Tokoro, M. (Eds.) Object-Oriented Concurrent Programming, MIT Press, 1987.

