
Fast Exact k-Means, k-Medians and Bregman Divergence
Clustering in 1D

Allan Grønlund∗ Kasper Green Larsen† Alexander Mathiasen‡

Jesper Sindahl Nielsen § Stefan Schneider ¶ Mingzhou Song ‖

Abstract

The k-Means clustering problem on n points is NP-Hard for any dimension d ≥ 2, however, for the 1D case
there exists exact polynomial time algorithms. Previous literature reported an O(kn2) time dynamic programming
algorithm that uses O(kn) space. It turns out that the problem has been considered under a different name more
than twenty years ago. We present all the existing work that had been overlooked and compare the various solutions
theoretically. Moreover, we show how to reduce the space usage for some of them, as well as generalize them to
data structures that can quickly report an optimal k-Means clustering for any k. Finally we also generalize all the
algorithms to work for the absolute distance and to work for any Bregman Divergence. We complement our theoretical
contributions by experiments that compare the practical performance of the various algorithms.

1 Introduction
Clustering is the problem of grouping elements into clusters such that each element is similar to the elements in the
cluster assigned to it and not similar to elements in any other cluster. It is one of, if not the, primary problem in the area
of machine learning known as Unsupervised Learning and no clustering problem is as famous and widely considered as
the k-Means problem: Given a multiset X = {x1, ..., xn} ⊂ Rd find k centroidsM = {µ1, ..., µk} ⊂ Rd minimizing∑
x∈X minµ∈M ||x − µ||2. Several NP-Hardness results exist for finding the optimal k-Means clustering in general,

forcing one to turn towards heuristics. k-Means is NP-hard even for k = 2 and general dimension [4] and it is also
NP-hard for d = 2 and general k [17]. Even hardness of approximation results exist [16, 8]. In [8] the authors show
there exists an ε > 0 such that it is NP-hard to approximate k-Means to within a factor 1 + ε of optimal, and in [16]
they prove that ε ≥ 0.0013. On the upper bound side the best known polynomial time approximation algorithm for
k-Means has an approximation factor of 6.357 [3]. In practice, Lloyd’s algorithm is a popular iterative local search
heuristic that starts from some random or arbitrary clustering. The running time of Lloyd’s algorithm is O(tknd)
where t is the number of rounds of the local search procedure. In theory, if Lloyd’s algorithm is run to convergence to
a local minimum, t could be exponential and there is no guarantee on how well the solution found approximates the
optimal solution [6, 21]. Lloyd’s algorithm is often combined with the effective seeding technique for selecting initial
centroids due to [7] that gives an expected O(lg k) approximation ratio for the initial clustering, which can then be
further improved by Lloyd’s algorithm.

For the one-dimensional case, the k-Means problem is not NP-hard. In particular, there is an O(kn2) time and
O(kn) space dynamic programming solution for the 1D case, due to work by [23] giving focus to this simpler special

∗Aarhus University. Email: jallan@cs.au.dk. Supported by MADALGO - Center for Massive Data Algorithmics, a Center of the Danish
National Research Foundation.
†Aarhus University. Email: larsen@cs.au.dk. Supported by MADALGO, a Villum Young Investigator Grant and an AUFF Starting Grant.
‡Aarhus University. Email: alexander.mathiasen@gmail.com. Supported by MADALGO and an AUFF Starting Grant.
§Aarhus University. Email: jasn@cs.au.dk. Supported by MADALGO.
¶University of California, San Diego. Email: stschnei@cs.ucsd.edu. Supported by NSF grant CCF-1213151 from the Division of

Computing and Communication Foundations. Any opinions, findings and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National Science Foundation.
‖New Mexico State University. Email: joemsong@cs.nmsu.edu

1

case of k-Means. The 1D k-Means problem is encountered surprisingly often in practice, some examples being in data
analysis in social networks, bioinformatics and retail market [5, 14, 19]. Note that an optimal clustering in 1D simply
covers the input points with non-overlapping intervals.

It is natural to try other reasonable distance measures for the data considered and define different clustering prob-
lems instead of using the sum of squares of the Euclidian distance that defines k-Means. For instance, one could
use any Lp norm instead. The special case of p = 1 is known as k-Medians clustering and has also received con-
siderable attention. The k-Medians problems is also NP-hard in dimensions 2 and up, and the best polynomial time
approximation algorithm has an approximation factor of 2.633 [8].

In [9] the authors consider and define clustering with Bregman Divergences. Bregman Divergence generalizes
squared Euclidian distance and thus Bregman Clusterings include the k-Means problem, as well as a wide range of
other clustering problems that can be defined from Bregman Divergences like e.g. clustering with Kullback-Leibler
divergence as the cost. Interestingly, the heuristic local search algorithm for Bregman Clustering [9] is basically the
same approach as Lloyd’s algorithm for k-Means. Clustering with Bregman Divergences is clearly NP-Hard as well
since it includes k-Means clustering. We refer the reader to [9] for more about the general problem. For the 1D
version of the problem, [18] generalized the algorithm from [23] to the k-Median problem and Bregman Divergences
achieving the same O(kn2) time and O(kn) space bounds.

1.1 Even Earlier Work
Unknown to both [23, 18], it turns out that the k-Means problem has been studied before under a different name. The
paper [25] from 1980 considers a 1D data discrete quantization problem, where the problem is to quantize n (sorted)
weighted input points to k representatives, and the goal is to compute the k representatives that minimizes the quantiza-
tion error. The error measure for this quantization is weighted least squares, which is a simple generalization of the 1D
k-Means cost. Formally, given n points x1, . . . , xn with weights w1, . . . , wn, find centroidsM = {µ1, ..., µk} ⊂ R
minimizing the cost

n∑
i=1

wi min
µ∈M

(xi − µ)2 (1)

The algorithm given in [25] use O(kn) time (and space). This was later improved to O(k
√
n lg n) time and space

in [1] that also introduces a simple O(n lgU) time and linear space algorithm where U is a universe size that depends
on the input. Finally, the running time was reduced to n2O(

√
lg lgn lg k) by an algorithm of Schieber [20] in 1998 for

the case k = Ω(lg n). This algorithm uses linear space. This is, to the best of our knowledge, currently the best bound
known for 1D k-Means.

1.2 Our Contribution
In this paper we present an overview of different 1D k-Means algorithms. We show how to reduce the space for the
presented dynamic programming algorithm and how this leads to a simple data structure that uses O(n) space and
can report an optimal k-Means clustering for any k in O(n) time. We generalize the fast algorithms for k-Means
to all Bregman Divergences and the Absolute Distance cost function. Finally, we give a practical comparison of the
algorithms and discuss the outcome. The main purpose of this paper is clarifying the current state of algorithms
for 1D k-Means both in theory and practice, introducing a regularized version of 1D k-Means, and generalizing the
results to more distance measures. All algorithms and proofs for k-Means generalize to handle the weighted version
of the k-Means cost (Equation 1) considered in [25]. For simplicity, we present the algorithms only for the standard
unweighted definition of the k-Means cost.

We start by giving the dynamic programming formulation [23, 25] that yields an O(kn2) time algorithm. We then
describe how [25] improves this to an algorithm that runs in O(n lg n + kn), or O(kn) time if the input is already
sorted. Both algorithms compute the cost of the optimal clustering using k′ clusters for all k′ ≤ k. This is relevant for
instance for model selection of the right k. Second, we present the reduction from 1D k-Means to the shortest path
graph problem considered in [20], that yields a 1D k-Means clustering algorithm that uses n2O(

√
lg lgn lg k) time for

k = Ω(lg n) and O(n) space. In contrast to the O(kn) time algorithm, this algorithm does not compute the optimal

2

costs for using k′ clusters for all k′ ≤ k. Finally, we present an algorithm using O(n lgU) time and linear space,
where lgU is the number bits used to represent each input point.

For comparison, in 1D, Lloyd’s algorithm takes O(tk lg n) time if the input is sorted, where t is the number of
rounds before convergence. For reasonable values of k the time is usually sublinear and extremely fast. However
Lloyd’s algorithm does not necessarily compute the optimal clustering, it is only a heuristic. The algorithms con-
sidered in this paper compute the optimal clustering quickly, so even for large n and k we do not need to settle for
approximation or uncertainty about the quality of the clustering.

The n2O(
√
lg lgn lg k) and theO(n lgU) time algorithms for 1D k-Means are based on a natural regularized version

of k-Means clustering where instead of specifying the number of clusters beforehand, we instead specify a per cluster
cost and then minimize the cost of the clustering plus the cost of the number of clusters used. Formally, the problem
is as follows: Given X = {x1, ..., xn} ⊂ R and a non-negative real number λ ∈ R+, compute the optimal regularized
clustering:

arg min
k,M={µ1,...,µk}

∑
x∈X

min
µ∈M

(x− µ)2 + λk

Somewhat surprisingly, it takes only O(n) time to find the solution to the regularized k-Means if the input is sorted.
The k-Medians problem is to compute a clustering that minimizes the sum of absolute distances to the centroid,

i.e. computeM = {µ1, ..., µk} ⊂ R that minimizes∑
x∈X

min
µ∈M
|x− µ|

We show that the k-Means algorithms generalize naturally to solve this problem in the same time bounds as for the
k-means problem.

Let f be a differentiable real-valued strictly convex function. The Bregman Divergence Df induced by f is

Df (x, y) = f(x)− f(y)−∇f (y)(x− y)

Notice that the Bregman Divergence induced from f(x) = x2, gives squared Euclidian Distance (k-Means). Bregman
divergences are not metrics since they are not symmetric in general and the triangle inequality is not necessarily
satisfied. They do have other redeeming qualities, for instance Bregman Divergences are convex in the first argument,
albeit not the second, see [9, 10] for a more comprenhensive treatment.

The Bregman Clustering problem as defined in [9] is to find k centroidsM = {µ1, ..., µk} that minimize∑
x∈X

min
µ∈M

Df (x, µ)

where Df is a Bregman Divergence. For our case, where the inputs x, y ∈ R, we assume that computing a Bregman
Divergence, i.e. evaluating f and its derivative, takes constant time. We show that the k-Means algorithms naturally
generalize to 1D clustering using any Bregman Divergence to define the cluster cost while still maintaing the same
running time as for k-Means.

Implementation. An independent implementation of theO(n lg n+kn) time algorithm is available in the R package
Ckmeans.1d.dp [22]. This is the algorithm first presented in [25]. The implementation is for k-Means clustering, and
uses O(kn) space.

2 Algorithms for 1D k-Means - A Review
In the following we assume sorted input x1 ≤ ... ≤ xn ∈ R. Notice that there could be many ways of partitioning
the input and computing centroids that achieve the same cost. This is for instance the case if the input is n identical
points. The task at hand is to find any optimal solution for 1D k-Means.

Let CC(i, j) =
∑j
`=i(x` − µi,j)2 be the cost of grouping xi, ..., xj into one cluster with the optimal choice of

centroid, µi,j = 1
j−i+1

∑j
`=i x`, the mean of the points.

3

Lemma 1. It takes O(n) time and space to construct a data structure that computes CC(i, j) in constant time

Proof. This is a standard application of prefix sums. By definition,

CC(i, j) =

j∑
`=i

(x` − µi,j)2 =

j∑
`=i

x2` + µ2
i,j − 2x`µi,j = (j − i+ 1)µ2

i,j + µi,j

j∑
`=i

x` +

j∑
`=i

x2` .

Using prefix sum arrays of x1, . . . , xn and x21, . . . , x
2
n computing the centroid µi,j and the sums takes O(1) time.

2.1 The O(kn2) Dynamic Programming Algorithm
The algorithm finds the optimal clustering using i clusters for all prefixes of the points x1, . . . , xm, for m = 1, . . . , n,
and i = 1, . . . , k with Dynamic Programming as follows. Let D[i][m] be the cost of optimally clustering x1, ..., xm
into i clusters. If i = 1 the cost of optimally clustering x1, ..., xm is the cluster cost CC(1,m). That is, D[1][m] =
CC(1,m) for all m. By Lemma 1, this takes O(n) time.

For i > 1

D[i][m] =
m

min
j=1

D[i− 1][j − 1] + CC(j,m) (2)

Notice that D[i− 1][j − 1] is the cost of optimally clustering x1, ..., xj−1 into i− 1 clusters and CC(j,m) is the cost
of clustering xj , ..., xm into one cluster. This makes xj the first point in the last and rightmost cluster. Let T [i][m] be
the argument that minimizes (2)

T [i][m] := arg
m

min
j=1

D[i− 1][j − 1] + CC(j,m) (3)

It is possible there exists multiple j obtaining same minimal value for (2). To make the optimal clustering unique, such
ties are broken in favour of smaller j.

Notice xT [i][m] is the first point in the rightmost cluster of the optimal clustering. Thus, given T one can find the
optimal solution by standard backtracking. One can naively compute each entry of D and T using (2) and (3). This
takesO(n) time for each cell, thusD and T can be computed inO(kn2) time usingO(kn) space. This is exactly what
is described in [23]. This dynamic programming recursion is also presented in [25].

2.2 An O(kn) time algorithm
The Dynamic Programming algorithm can be sped up significantly to O(kn) time by reducing the time to compute
each row of D and T to O(n) time instead of O(n2) time. This is exactly what [25] does, in particular it is shown how
to reduce the problem of computing a row of D and T to searching an implicitly defined n × n matrix of a special
form, which then allows computing each row of D and T in linear time.

Define Ci[m][j] as the cost of the optimal clustering of x1, . . . , xm using i clusters, restricted to having the right-
most cluster (largest cluster center) contain the elements xj , . . . , xm. For convenience, we define Ci[m][j] for j > m
as the cost of clustering x1, . . . , xm into i− 1 clusters, i.e. the last cluster is empty. This means that Ci satisfies:

Ci[m][j] = D[i− 1][min{j − 1,m}] + CC(j,m)

where by definition CC(j,m) = 0 when j > m (which is consistent with the definition in Section 2). This menas that
D[i][m] relates to Ci as follows:

D[i][m] = min
j

Ci[m][j]

where ties are broken in favor of smaller j (as defined in Section 2.1).
This means that to compute a row of D and T , we are computing minj Ci[m][j] for all m = 1, . . . , n. Think of

Ci as an n×n matrix with rows indexed by m and columns indexed by j. With this interpretation, computing the i’th
row of D and T corresponds to computing for each row r in Ci, the column index c that corresponds to the smallest
value in row r. In particular, the entries D[i][m] and T [i][m] correpond to the value and the index of the minimum
entry in the m’th row of Ci respectively. The problem of finding the minimum value in every row of a matrix has been
studied before [2]. First we need the definition of a monotone matrix.

4

Definition 1. [2] Let A be a matrix with real entries and let arg min(i) be the index of the leftmost column containing
the minimum value in row i ofA. A is said to be monotone if a < b implies that arg min(a) ≤ arg min(b). A is totally
monotone if all of its submatrices are monotone.

In [2], the authors showed:

Theorem 1. [2] Finding arg min(i) for each row i of an arbitrary n×m monotone matrix requires Θ(m lg n) time,
whereas if the matrix is totally monotone, the time is O(m) when m > n and is O(m(1 + lg(n/m))) when m < n.

The fast algorithm for totally monotone matrices is known as the SMAWK algorithm.
Let us relate this monotonicity to the 1D k-Means clustering problem. That Ci is monotone means that if we

consider the optimal clustering of the points x1, . . . , xa with i clusters, and we add more points xa+1 ≤ · · · ≤ xb
after xa, then the first (smallest) point in the last (rightmost) of the i clusters can only increase (move right) in the new
optimal clustering of x1, . . . , xb. This sounds like it should be true for 1D k-Means and in fact it is. Thus, applying
the algorithm for monotone matrices, one can fill a row of D and T in O(n lg n) time leading to an O(kn lg n) time
algorithm for 1D k-Means, which is already a great improvement.

However, as shown in [25] the matrix Ci defined above is in fact totally monotone. This follows from the following
fact about the 1D k-Means clustering cost

Theorem 2 (Monge Concave for 1D k-Means cost [25]). For any a < b and u < v, it holds that:

CC(v, b) + CC(u, a) ≤ CC(u, b) + CC(v, a).

This is the property known as the concave monge (concave for short) property [26, 13, 24]. We prove this for the
general case of Bregman Divergences in Section 4. For completeness we include a proof that Total Monotonicity is
implied by concave cost funtion below.

Lemma 2. The matrix Ci is totally monotone if the cluster cost CC(i, j) is monge concave

Proof. As [2] remarks, a matrix A is totally monotone if all its 2 × 2 submatrices are monotone. To prove that Ci is
totally monotone, we need to prove that for any two row indices a, b with a < b and two column indices u, v with
u < v, it holds that if Ci[a][v] < Ci[a][u] then Ci[b][v] < Ci[b][u].

Notice that these values correspond to the costs of clustering elements x1, . . . , xa and x1, . . . , xb, starting the
rightmost cluster with element xv and xu respectively. Since Ci[m][j] = D[i− 1][min{j − 1,m}] + CC(j,m), this
is the same as proving that

D[i− 1][min{v − 1,m}] + CC(v, a) < D[i− 1][min{u− 1,m}] + CC(u, a)⇒
D[i− 1][min{v − 1,m}] + CC(v, b) < D[i− 1][min{u− 1,m}] + CC(u, b)

which is true if we can prove that CC(v, b) − CC(v, a) ≤ CC(u, b) − CC(u, a). Rearranging terms, what we need
to prove is that for any a < b and u < v, it holds that:

CC(v, b) + CC(u, a) ≤ CC(u, b) + CC(v, a).

which is the monge concave property.

As explained in [25] the total monotonicity property of the cost matrices and the SMAWK algorithm directly yields
an O(kn) time (and space) algorithm for 1D k-means.

Theorem 3. [25] Computing an optimal k-Means clustering of a sorted input of size n for takes O(kn) time.

By construction the cost of the optimal clustering is computed for all k′ ≤ k. By storing the T table with cluster
centers then for any k′ ≤ k the cluster indices of an optimal clustering can be extracted in O(k′) time.

The concave propery has been used to significantly speed up algorithms, in particular (Dynamic Programming)
algorithms, for several other 1D problems. For the interested reader we refer to [26, 13, 24].

5

2.3 A n2O(
√
lg lgn lg k) time algorithm for k = Ω(lg n)

The concave property of the k-Means cost yields and algorithm for computing the optimal k-Means clustering for a
given k = Ω(lg n) in n2O(

√
lg lgn lg k) time. The result follows almost directly from Schieber [20] who gives an algo-

rithm with the aforementioned running time for finding the shortest path of fixed length k in a directed acyclic graph
with n nodes and weights, w(i, j), that satisfy the concave property. It is assumed that the weights are represented by
a function (oracle) that returns the weight of a requested edge in constant time.

Theorem 4 ([20]). Computing a minimum weight path of length k between any two nodes in a directed acyclic graph
of size n where the weights satisfy the concave property takes n2O(

√
lg lgn lg k) time using O(n) space.

The 1D k-Means problem is reducible to this directed graph problem as follows. Sort the input in O(n lg n) time
and let x1 ≤ x2 ≤ . . . xn denote the sorted input sequence. For each input xi associate a node vi and add an extra
node vn+1. Define the weight of the edge from vi to vj as the cost of clustering xi, . . . , xj−1 in one cluster, which is
CC(i, j − 1). Each edge weight is computed in constant time (by Lemma 1) and the edge weights satisfy the monge
concave property by construction. Finally, to compute the optimal clustering use Schieber’s algorithm to compute the
lowest weight path with k edges from v1 to vn+1.

Theorem 5. Computing an optimal k-Means clustering of an input of size n for given k = Ω(lg n) takes n2O(
√
lg lgn lg k)

time using O(n) space.

It is relevant to briefly consider parts of Schieber’s algorithm and how it relates to k-Means clustering, in particular
a regularized version of the problem. Schieber’s algorithm relies crucially on algorithms that given a directed acyclic
graph where the weights satisfy the concave property computes a minimum weight path in O(n) time [24, 15]. Note
the only difference in this problem compared to above, is that the search is not restricted to paths of k edges only.
As noted in [1], if the weights are integers then the algorithm solves the Monge Concave Directed Graph Problem in
n lgU time where U is the largest absolute value of a weight. In the reduction from 1D k-Means the weights are not
integers and we must take care.

2.4 Regularized 1D k-Means and an O(n lgU) time algorithm for k-Means
Consider a regularized version of the k-Means clustering problem where instead of providing the number of clusters
k we additionally specify a penalty per cluster and ask to minimize the cost of the clustering plus the penalty λ for
each cluster used. Formally, the problem is as follows: Given X = {x1, ..., xn} ⊂ R and λ, compute the optimal
regularized clustering:

arg min
k,M={µ1,...,µk}

∑
x∈X

min
µ∈M

(x− µ)2 + λk

If we set λ = 0 the optimal clustering has cost zero and use a cluster for each input point. If we let λ increase
towards infinity, the optimal number of clusters used in the optimal solution monotonically decreases towards one
(zero clusters is not well defined). Let dmin be the smallest distance between input points and for simplicity assume
all the input points are distinct. The optimal cost of using n − 1 clusters is then d2min/2. When λ > λn−1 = d2min/2
it is less costly to use only n − 1 clusters compared to using n clusters since the benefit of using one more cluster is
smaller than the cost of a cluster. Letting λ increase again inevitably leads to a miminum value λn−2 > λn−1 such
that for λ > λn−2 using only n− 2 clusters gives a better optimal cost than using n− 1 clusters. Following the same
pattern λn−2 is the difference between the optimal cost using n− 2 clusters and n− 1 clusters.

Continuing this way yields the very interesting sequence 0 < λn−1 ≤ . . . λ2 ≤ λ1 that encodes the only relevant
choices for the regularization parameter λ, where λi =def OPTi − OPTi+1 and OPTi is the cost of an optimal
k-Means clustering with i clusters. Note that the O(nk) algorithm actually yields λ1, . . . , λk−1 since it computes the
optimal cost for all k′ ≤ k. It is an interesting open problem if one can compute this sequence in n lgO(1) n time, since
this encodes all the relevant information about the input instance using linear space, and from that the 1D k-Means
clustering can be reported in O(n) time for any k.

In the reduction to the directed graph problem, adding a cost of λ for each cluster used corresponds to adding λ to
the weight of each edge. Note that the edge weights still satisfy the concave property. Thus, solving the regularized

6

version of k-Means clustering correponds to finding the shortest path (of any length) in a directed acyclic graph where
the weights satisfy the concave property. By the algorithms in [24, 15] this takes O(n) time.

Theorem 6. Computing an optimal regularized 1D k-Means clustering of a sorted input of size n takes O(n) time.

Now if we actually use λk as the cost per cluster in regularized 1D k-Means, or any λ ∈ [λk, λk+1] there is an
optimal regularized cost solution that uses k clusters which is also an optimal k-Means clustering.

This leads to an algorithm for 1D k-Means based on a (parametric) binary search for such a parameter λ starting
with an initial interval of [λ1, λn−1] (both easily computed). However, there are a few things that need to be considered
to ensure that such a binary search can return an optimal clustering. Most importantly, it may be the case that λk =
λk+1 This occurs when the decrease in the clustering cost for going from k to k+1 clusters is the same as the decrease
when going from k − 1 to k clusters. In this case the regularized cost with λ = λk = λk+1 using k + 1 and k clusters
are the same. This generalizes to ranges λj+1 < λj = λj−1 = · · · = λi < λi−1 for some j > i + 1. In this case
the optimal regularized cost of using any k ∈ {i + 1, . . . , j} is found at λj and even if we can find this value we
still need a way to extract an optimal regularized clustering with exactly k clusters. Fortunately, it is straight forward
to compute both an optimal cost regularized clustering with the fewest clusters and an optimal regularized clustering
with the most clusters and an optimal regularized clustering with any number of clusters in between these two [1, 20].

In conclusion a binary search on λ ends when the algorithm probes a value where the the number of clusters
possible in the optimal regularized clustering contains k. In the worst case this interval is a point, so with lgU bits
integer coordinate input points, this takes in O(lgU) steps in the worst case.

Theorem 7. Computing an optimal k-Means clustering of an input of size n takes O(n lgU) time and O(n) space.

3 Space Reduction for Dyamic Programming and 1D k-Means Reporting
Data Structure

The space consumption of the O(kn) time dynamic programming algorithm is O(kn) for storing the tables D and T
(Equation 2, 3). This can easily be reduced toO(n) by not storing T at all and only storing the last two considered rows
D during the algorithm (computation of each row of D depends only on the values of the previous row). However,
doing this has the downside that we can no longer report an optimal k-Means clustering, only the cost of one. This
problem can be handled by a space reduction technique of Hirschberg [12] that reduce the space usage of the O(kn)
dynamic programming algorithm to just O(n) while maintaining O(kn) running time. For completeness we have
given this constuction in the appendix. This is the standard way of saving space for dynamic programming algorithms
and is also applied for a monge concave problem in [11]. The problem is that it does cost a constant factor in the
running time.

However, for the 1D k-Means problems (and other monge concave problems), we actually do not need to bog
down the dynamic programming algorithm at all. So instead simply do as follows: First run the dynamic programming
algorithm for k + 1 clusters, storing only the last two rows as well as the last column of the dynamic programming
tableD. Remeber that the i’th entry in the last column stores the cost of the optimal k-Means clustering with i clusters
i.e. OPTi. This takes O(kn) time uses linear space and returns OPT1, . . . ,OPTk,OPTk+1. Given these optimal
costs, to extract an optimal clustering compute λk = OPTk −OPTk+1 and apply the regularized k-Means clustering
algorithm with λk. By our analysis in Section 2.4, this λk yields an optimal regularized clustering of size k, and
the algorithm directly returns an actual optimal clustering. Of course this works for any k′ ≤ k, storing only the
optimal k-Means costs OPT1, . . . ,OPTk,OPTk+1 we can report an optimal clustering for any k′ ≤ k in O(n) time,
completely forgoing the need to store dynamic programming tables. We directly get

Theorem 8. Computing an optimal k-Means clustering of a sorted input of size n takes O(kn) time and O(n) space.

To compute the cost of the optimal clustering for all k′ ≤ k we keep the last column of the cost matrix D which
requires an additional O(k) = O(n) space.

Theorem 9. There is a data structure that uses O(n) space that can report the optimal 1D k-Means clustering for
any k in O(n) time.

7

Note that the best preprocessing time we know for this data structure is O(n2) by simply running the dynamic
programming algorithm with k = n, but of course it can be constructed using a smaller k at the cost of only being able
to report optimal clusterings up to size k. Furthermore, this construction does not depend on actual using the k-Means
cost function, just the Monge Concave property and the directed graph shortest path problem and thus generalize to
all problems considered by Schieber [20].

4 Extending to More Distance Measures
In the following we show how all the above algorithms generalize to all Bregman Divergences and the sum of absolute
distances while retaining the same running time and space consumption.

4.1 Bregman Divergence Clusterings
First, let us remind ourselves what a Bregman Divergence and a Bregman Clustering is. Let f be a differentiable
real-valued strictly convex function. The Bregman Divergence Df defined by f is defined as

Df (x, y) = f(x)− f(y)−∇f (y)(x− y)

Bregman Clustering. The Bregman Clustering problem as defined in [9], is to find a set of centers,M = {µ1, ..., µk},
that minimizes ∑

x∈X
min
µ∈M

Df (x, µ)

Notice that the cluster center is the second argument of the Bregman Divergence. This is important since Bregman
Divergences are not in general symmetric.

For the purpose of 1D clustering, we mention two important properties of Bregman Divergences. For any Bregman
Divergence, the unique element that minimizes the summed distance to a multiset of elements is the mean of the
elements, exactly as it was for squared Euclidian distance. This is in a sense the defining property of Bregman
Divergences [9]. The second property is the linear separator property, which is crucial for clustering with Bregman
Divergences but also for Bregman Voronoi Diagrams [9, 10].

Linear Separators For Bregman Divergences. For all Bregman divergences, the locus of points that are equidistant
to two fixed points µ1, µ2 in terms of a Bregman divergence is given by {x ∈ X | Df (x, p) = Df (x, q)}. Plugging in
the definition of a Bregman Divergence this is

{x ∈ X | Df (x, p) = Df (x, q)} = {x ∈ X | x(∇f (µ1)−∇f (µ2)) = f(µ1)− µ1∇f (µ1)− f(µ2) + µ2∇f (µ2)}

which is a hyperplane. The points µ1, µ2 sit on either side of the hyperplane and the Voronoi cells defined by Bregman
divergences are connected.

This means, in particular, that between any two points in 1D, µ1 < µ2, there is a hyperplane (point) h with
µ1 < h < µ2 and all points smaller than h are closer to µ1 and all points larger than h are closer to µ2. For 1D
Bregman Divergence Clustering it means the optimal clusters correponds to intervals (as was the case in 1D k-Means).
We capture what we need from this observation in a simple “distance” lemma:

Lemma 3. Given two fixed real numbers µ1 < µ2, then for any point xr ≥ µ2, we have Df (xr, µ1) > Df (xr, µ2),
and for any point xl ≤ µ1 we have Df (xl, µ1) < Df (xl, µ2)

Computing Optimal Cluster Costs for Bregman Divergences. Since the mean minizes Bregman Divergences, the
centroids used in optimal clusterings are unchanged compared to the k-Means case. The prefix sums idea used to
implement the data structure used for Lemma 1 generalizes to Bregman Divergences as observed in [18] (under the

8

name Summed Area Tables). The formula for computing the cost of grouping the points xi, . . . , xj in one cluster is as
follows. Let µi,j = 1

j−i+1

∑j
`=i x` be the arithmetic mean of the points xi, . . . , xj , then

CC(i, j) =

j∑
`=i

Df (x`, µi,j)

=

j∑
`=i

f(x`)− f(µi,j)−∇f (µi,j)(x` − µi,j)

=

(
j∑
`=i

f(x`)

)
− (j − i+ 1)f(µi,j)−∇f (µi,j)

((
j∑
`=i

x`

)
− (j − i+ 1)µi,j

)
Rearranging terms this is(

j∑
`=i

f(x`)

)
− (j − i+ 1)f(µi,j)−∇f (µi,j)

((
j∑
`=i

x`

)
− (j − i+ 1)µi,j

)
.

Thus the Bregman Divergence cost of a consecutive subset of input points can be computed in in constant time with
stored prefix sums for x1, . . . , xn and f(x1), . . . , f(xn).

4.1.1 Totally Monotone Matrix and Monge Concave property for Bregman Divergences

Lemma 4. For any Bregman Divergence Df the induced cluster cost CC(i, j) function is concave. Formally, for any
a < b and u < v, it holds that:

CC(v, b) + CC(u, a) ≤ CC(u, b) + CC(v, a).

Proof. We start by handling the special case where v > a. In this case, we have by definition that CC(v, a) = 0,
thus we need to show that CC(v, b) + CC(u, a) ≤ CC(u, b). This is the case since any point amongst xu, . . . , xb is
included in at most one of xv, . . . , xb and xu, . . . , xa (since a < v). Thus CC(v, b) + CC(u, a) is the cost of taking
two disjoint and consecutive subsets of the points xu, . . . , xb and clustering the two sets using the optimal choice of
centroid in each. Clearly this cost is at most the cost of clustering all the points using one centroid (both groups could
use the same cluster center as the cluster center for all the points).

We now turn to the general case where u < v ≤ a < b. Let µv,a be the mean of xv, . . . , xa and µu,b be the mean
of xu, . . . , xb and assume that µv,a ≤ µu,b (the other case is symmetric). Finally, let CC(w, z)µ =

∑z
`=wDf (x`, µ)

denote the cost of grouping the elements xw, . . . , xz into a cluster with centroid µ.
Split the cost CC(u, b) into the cost of the elements xu, . . . , xv−1 and the cost of the elements xv, . . . , xb i.e.

CC(u, b) =

v−1∑
`=u

Df (x`, µu,b) +

b∑
`=v

Df (x`, µu,b) = CC(u, v − 1)µu,b
+ CC(v, b)µu,b

.

We trivially get CC(v, b)µu,b
≥ CC(v, b) since CC(v, b) is the cost using the optimal centroid.

Since µv,a ≤ µu,b and all elements xu, . . . , xv−1 are less than or equal to µv,a (since µv,a is the mean of points
xv, . . . , xa that all are greater than xu, . . . , xv−1), then by Lemma 3,

CC(u, v − 1)µu,b
≥ CC(u, v − 1)µv,a

Adding the cluster cost CC(v, a) to both sides of this inequality we get that

CC(u, v − 1)µu,b
+ CC(v, a) ≥ CC(u, v − 1)µv,a + CC(v, a) = CC(u, a)µv,a ≥ CC(u, a)

Combining the results,

CC(v, b) + CC(u, a) ≤ CC(v, b)µu,b
+ CC(u, v − 1)µu,b

+ CC(v, a) = CC(u, b) + CC(v, a).

It follows that all the results achieved for 1D k-Means presented earlier generalize to any Bregman Divergence.

9

4.2 k-Median Clustering
For the k-Medians problem we replace the the sum of squared Euclidian distances with the sum of absolute distances.
Formally, the k-Medians problem is to compute a clustering,M = {µ1, ..., µk}, minimizing∑

x∈X
min
µ∈M
|x− µ|

Note that in 1D, all Lp norms are the same and reduce to this case. Also note that the minimizing centroid for a cluster
is no longer the mean of the points in that cluster, but the median. To solve this problem, we change the centroid to
be the median, and if the number of points is even, we fix the median to be the exact middle point between the two
middle elements, making the choice of centroid unique.

As for Bregman Divergences, we need to show that we can compute the cluster cost CC(i, j) with any Bregman
Divergence in constant time. Also, we need to compute the centroid in constant time and argue that the cost is monge
moncave which implies the implicit matrix Ci is totally monotone. The arguments are essentially the same, but for
completeness we briefly cover them below.

Computing Cluster Costs for Absolute Distances. Not surprisingly, prefix sums still allow constant time compu-
tation of CC(i, j). Let mi,j = j+i

2 , and compute the centroid as µi,j =
xbmi,jc+xdmi,je

2 then

CC(i, j) =

j∑
`=i

|x` − µi,j | =
bmi,jc∑
`=i

µi,j − x` +

j∑
`=1+bmi,jc

x` − µi,j

which can be computed in constant time with access to a prefix sum table of x1, . . . , xn. This was also observed in
[18].

Monge Concave - Totally Monotone Matrix. The monge concave and totally monotone matrix argument above for
Bregman Divergences (and for squared Euclidian distance) remain valid since first of all, we still have xu, . . . , xv−1 ≤
µv,a as µv,a is the median of points all greater than xu, . . . , xv−1. Furthermore, it still holds that when µv,a ≤ µu,b
and all elements xu, . . . , xv−1 are less than or equal to µv,a, then CC(u, v−1)µu,b

+CC(v, a) ≥ CC(u, v−1)µv,a +
CC(v, a) = CC(u, a)µv,a

. It follows that the algorithms we specified for 1D k-Means generalize to the 1D k-Median
problem.

5 Experiments
To asses the practicality of 1D k-Means algorithms we have implemented and compared different versions of the
O(kn) time algorithm and the O(n lgU) time binary search algorithm. We believe Schiebers n2O(

√
lg lgn lg k) time

algorithm [20] is mainly of theoretical interest, at least the constants involved in the algorithm seem rather large.
Similarly for the O(k

√
n lg n) time algorithm of [1]. Both are slightly similar to the O(n lgU) time algorithm in the

sense they work by trying to find the right λ value for the regularized k-Means problem so that it uses k clusters.
However, to get data independent bounds (independent of U) the algorithms become much more complicated. For
reasonable values of k we expect the simple O(kn) time algorithm to be competitive with these more theoretical
efficient algorithms. Our main interest is seeing how the binary search algorithm compares.

5.1 Data Sets
For the experiments we consider two data sets.

Uniform: The Uniform data set is, as the name suggest, created by sampling the required number of points uni-
formly at random between zero and one.

10

Gaussian Mixture: The Gaussian Mixture data set is created by defining 16 Gaussian Distributions, each with
variance 100, and means placed one million apart. Each data point required is created by uniformly at random
sampling one of the 16 gaussians and then sample a point from that.

5.2 Algorithm Setup
Dynamic Programming. For the dynamic programming algorithm we have implemented the O(kn lg n) and the
O(kn) time algorithm. The difference lies only in how the monotone matrix search is performed (Section 2.2). The
latter using the SMAWK algorithm and the former a simple divide and conquer approach. This is done because the
SMAWK algorithm may in fact be slower in practice. Both versions have been implemented using only O(n) space
in two different ways, the first version only storing the last row of the dynamic programming matrix and the second
version reducing space using the Hirschberg space saving technique (Section 3).

Binary Search. For the binary search algorithm we have considered two algorithms for regularized k-Means, namely
the algorithms in [24] and [15]. The invariants and pseudo-code in [15] are not entirely correct and does not directly
turn into working code. We were able to fix these issues and made the algorithm run, however, our implementation
of [15] is clearly slower than our implementation of [24]. Therefore, for the experiments we only consider the linear
time algorithm from [24].

Remember that λi is the minimum value for λ ≥ 0 where the optimal regularized cost of using i clusters is less
than the optimal regularized cost of using i + 1 clusters. The standard implementation is a binary search on the
regularization coefficient (λ), that ends when a λ that gives an optimal k-Means clustering is found. The starting range
for λ is [0,M] where M is the cost of clustering all points in one cluster (OPT1). For λ = 0, the optimal clustering
uses n clusters and has a cost of zero. For λ = M , the optimal clustering uses one cluster, as its regularized cost is
2M , and using at least 2 clusters costs strictly more than 2M (assuming any cluster costs more than 0). The algorithm
simply maintains the current range for λ, λlow and λhigh. We denote by klow, and khigh the number of clusters used in the
optimal regularized cost solution at λlow and λhigh respectively. Note that khigh < klow, and let Ik = {khigh, . . . , klow}
be the current interval for the number clusters that includes k. Finally, let clow and chigh denote the unregularized cost
of using klow and khigh clusters respectively.

Many different values for λ give the same regularized clustering (same number of clusters), which means if we
attempt two or more such values for λ, we make almost no progress. Also, the middle of the current range for λ
does not in any way translate to the middle of the range khigh, klow. Early experiments showed that the standard binary
search actually had this issue.

To overcome this issue, we modified the search to work in a more data dependent way to guarantee progress by
picking the next λ as the value where the regularized costs of using khigh clusters and klow clusters are the same. At
this position we are guaranteed that there is an optimal cost regularized clustering using k′ clusters where k′ is strictly
contained in khigh and klow which we prove below.

To be able to do this we update the algorithm to also maintain khigh, klow, and chigh, clow. Given these computing λ′

is straight forward, namely.
λ′ = (chigh − clow)/(klow − khigh)

which is the average increase in the optimal cost per cluster added.

Lemma 5. Let λ′ = (chigh − clow)/(klow − khigh), at λ′ there is an optimal cost regularized clustering with k′ clusters
where k′ is contained in {khigh + 1, . . . , klow − 1}

Proof. Consider the regularized k-Means cost as a function of λ. This is a piecewise linear function since it corre-
sponds to the the minimum of n lines, the k’th line representing the regularized cost of an optimal clustering using k
clusters, having slope k and intercept (value at λ = 0) the optimal (non-regularized) cost of using k clusters. For each
line the subset of the real line where this line is the minimun of the n lines is a line segment, and the line segment’s
end points correspond to when the number of clusters in the optimal cost regularized clustering change.

This means that the value λ′ we try in the binary search is the intersection of the two line segments corresponding
to λlow and λhigh. At this λ′ the regularized cost of using klow clusters and khigh clusters is the same. For all k′ betwen

11

0 20000 40000 60000 80000 100000 120000 140000

input size (k)

0

5

10

15

20

25

30

35
ti

m
e

(s
ec

on
ds

)
N = 1000000

wilber-binary
wilber-interpolation

(a) Running times on Gaussian Data Set

0 20000 40000 60000 80000 100000 120000 140000

input size (k)

0

5

10

15

20

25

30

35

ti
m

e
(s

ec
on

ds
)

N = 1000000

wilber-binary
wilber-interpolation

(b) Running times on Uniform Data Set

Figure 1: Running time comparison binary search algorithms as a function of k

khigh and klow the regularized cost of the optimal regularized clustering at λ′ is at most that of using klow or khigh clusters
(that are the same).

Consider a number of clusters k′ strictly between klow and khigh and the associated line for using k′ clusters. This
line must intersect the line for klow at some value x ≤ λ′, otherwise the line can never be the minimum line since for
x < λ′ it would be above the line for klow because of its lower slope, and for x > λ′ it would be above the line for
khigh due to higher slope. Finally, since the line for k′ clusters has lower slope than the line for klow and intersects it at
x ≤ λ′ the regularized cost at λ′ of using k′ clusters is at most the cost of using klow.

Notice, that if khigh clusters achieve the smallest regularized cost at λ′, then the regularized cost of all k′ ∈ Ik at
λ′ are the same and the optimal k-Means clustering is found.

The unfortunate side effect of using this strategy is the running time of O(n lgU) may no longer hold. That is
easily remedied by for instance every t = O(1) steps query the midpoint of the remaining range, however no such
trick is used in our implementation.

We refer to the standard binary search algorithm as wilber-binary and the intersection binary search as wilber-
interpolation. For a comparison of these two algorithms, see Figure 1. In these plots the search based on the intersec-
tion/interpolation is clearly superior on both data sets and and we consider only this version of the binary search in the
following runtime comparison with the dynamic programming algorithms.

5.3 Algorithm Comparison
We refer to the O(kn lg n) algorithm with space saving mentioned in Section 2.2 as DP-monotone and the variant
using the Hirschberg technique as DP-monotone-hirsch. Similarly we call the O(kn) algorithm (also with
space saving) DP-linear, and DP-linear-hirsch when using the Hirschberg technique. Finally we denote
the O(n lgU) algorithm Wilber since the regularized k-Means is an implementaion of Wilber’s algorithm [24]. It
should be noted that the space saving technique really is necessary as n and k grow, since otherwise the space grows
with the product, which is quite undesirable.

The experiments do not include the time for actually reporting a clustering which gives the DP-linear an
advantage over the other algorithm since it would require an invocation of the Wilber algorithm to report a clustering,

12

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

input size (n) ×107

0

50

100

150

200

250

300

350

ti
m

e
(s

ec
on

ds
)

K = 20

dp-linear
dp-monotone
dp-linear-hirsch
dp-monotone-hirsch
wilber

(a) Running times as a function of n on
the Uniform data set

10 20 30 40 50

input size (k)

0

50

100

150

200

250

300

ti
m

e
(s

ec
on

ds
)

N = 10 000 000

dp-linear
dp-monotone
dp-linear-hirsch
dp-monotone-hirsch
wilber

(b) Running times as a function of k on
the Uniform data set

0 500 1000 1500 2000 2500 3000 3500 4000 4500

input size (k)

0

100

200

300

400

500

600

700

800

ti
m

e
(s

ec
on

ds
)

N = 1000000

dp-linear
dp-monotone
wilber

(c) Running times as a function of k on
the Gaussian data set

Figure 2: Running time comparison of different 1D k-Means algorithms. dp-* are different versions of dynamic
programming and wilber is the binary search based on interpolation

while DP-linear-hirsch and Wilber extracts an optimal clustering to report during the algorithm and would
have no extra cost.

Figures 2a, 2b, and 2c show the running time as a function of n or k on the Uniform data set. The performance
of the dynamic programming algorithms are as expected. These algorithm always fill out a table of size kn and are
thus never better than the worst case running time. The plots also reveal that for the values of n tested, the O(kn lg n)
is in fact superior to the O(kn) time algorithm albeit the difference is not large. As the plots show, when k grows, the
Wilber algorithm is much faster than the other algorithms (even when k = 20 for the smallest n we tried). This is
both true for Uniform and the Gaussian data set. It is also worth noting that even for moderate values of n and
k the space quickly goes in the order of gigabytes for the dynamic programming solutions, if we maintain the entire
table.

Notice that the dynamic programming algorithm can report the clustering cost for all k′ ≤ k using an additive
O(k) space by always keeping the final column of the dynamic programming table. On the other hand Wilber
cannot report the costs of all clusterings, but it can report some of them, as it searches for a cluster cost λ that yields
a clustering with k clusters. For each λ that is attempted, the cost of an optimal clustering using a different k may
be reported. For practitioners that want to see the plot of the cost of the best clustering as a function of either k or
λ, the Wilber algorithm might still be sufficient, as it does provide points on that curve and one can even make an
interactive plot: if a desired point on the curve is missing just compute it and add more points to the plot. For a new
λ this takes linear time and for a new k we need to binary search the interval between the currently stored nearest
neighbours.

The simple conclusion is that for these kinds of data, the binary search algorithm is superior even for moderate n
and k, and for large n, k it is the only choice. If one prefers the guarantee of the dynamic programming algorithm,
implementing Wilber allows for saving a non-trivial constant factor in the running time for linear space algorithms
and allows reporting an optimal clustering for any k′ ≤ k in linear time.

Final Remarks
We have given an overview of 1D k-Means algorithms, generalized them to new measures, shown the practical perfor-
mance of several algorithm variants including a simple way of boosting the binary search algorithm. We have defined
the obvious regularized version of 1D k-Means which is important not only for fast algorithms based on binary search
but also linear space solutions for reporting of actual optimal clusterings based on the dynamic programming algo-
rithms. We see a few important problems left open

• Is there an n lgO(1) n time algorithm for 1D k-Means or maybe even an n lgO(1) k time algorithm (if the input

13

is sorted)?

• Is there an n lgO(1) n or even n2−O(1) time algorithm for computing the optimal k-Means costs for all k =
1, . . . , n yielding the sequence λ1, . . . , λn−1 that encodes all relevant information for the given 1D k-Means
instance?

• What is the running time of the search algorithm using the tweak we employed? An easy bound is O(n2) but
we were not able to get such lousy running time in practice. In fact it seemed to be a really good heuristic for
picking the next query point in the binary search.

• The dynamic programming algorithm with a running time of O(kn) can rather easily be parallelized to run
in O((kn lg n)/p) for p processors, by parallelizing the monotone matrix search algorithm (not SMAWK but
the simple O(n lg n) divide and conquer algorithm). For the binary search algorithm, it is possible to try and
improve the lgU to lgp U for p processors, but it would be much better if one could parallelize the linear time
1D regularized k-Means algorithm (or a near linear time version of it).

We wish to thank Pawel Gawrychowski for pointing out important earlier work on concave property.

References
[1] A. Aggarwal, B. Schieber, and T. Tokuyama. Finding a minimum-weight-link path in graphs with the concave

monge property and applications. Discrete & Computational Geometry, 12(3):263–280, 1994.

[2] Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter Shor, and Robert Wilber. Geometric applications of a
matrix-searching algorithm. Algorithmica, 2(1):195–208, 1987.

[3] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for k-means and
euclidean k-median by primal-dual algorithms. CoRR, abs/1612.07925, 2016.

[4] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-hardness of euclidean sum-of-squares
clustering. Machine Learning, 75(2):245–248, 2009.

[5] Valerio Arnaboldi, Marco Conti, Andrea Passarella, and Fabio Pezzoni. Analysis of ego network structure in
online social networks. In Privacy, security, risk and trust (PASSAT), 2012 international conference on and 2012
international confernece on social computing (SocialCom), pages 31–40. IEEE, 2012.

[6] David Arthur and Sergei Vassilvitskii. How slow is the k-means method? In Proceedings of the Twenty-second
Annual Symposium on Computational Geometry, SCG ’06, pages 144–153. ACM, 2006.

[7] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027–1035. Society for Industrial and
Applied Mathematics, 2007.

[8] Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The hardness of approxi-
mation of euclidean k-means. In 31st International Symposium on Computational Geometry, SoCG 2015, June
22-25, 2015, Eindhoven, The Netherlands, pages 754–767, 2015.

[9] Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, and Joydeep Ghosh. Clustering with bregman diver-
gences. J. Mach. Learn. Res., 6:1705–1749, December 2005.

[10] Jean-Daniel Boissonnat, Frank Nielsen, and Richard Nock. Bregman voronoi diagrams. Discrete & Computa-
tional Geometry, 44(2):281–307, 2010.

[11] Mordecai J. Golin and Yan Zhang. A dynamic programming approach to length-limited huffman coding: space
reduction with the monge property. IEEE Trans. Information Theory, 56(8):3918–3929, 2010.

14

[12] D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences. Commun. ACM,
18(6):341–343, June 1975.

[13] D. S. Hirschberg and L. L. Larmore. The least weight subsequence problem. SIAM Journal on Computing,
16(4):628–638, 1987.

[14] Olga Jeske, Mareike Jogler, Jörn Petersen, Johannes Sikorski, and Christian Jogler. From genome mining to
phenotypic microarrays: Planctomycetes as source for novel bioactive molecules. Antonie Van Leeuwenhoek,
104(4):551–567, 2013.

[15] Maria M. Klawe. A simple linear time algorithm for concave one-dimensional dynamic programming. Technical
report, Vancouver, BC, Canada, Canada, 1989.

[16] Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability for k-means.
Information Processing Letters, 120:40–43, 2017.

[17] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The Planar k-Means Problem is NP-Hard,
pages 274–285. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[18] Frank Nielsen and Richard Nock. Optimal interval clustering: Application to bregman clustering and statistical
mixture learning. IEEE Signal Process. Lett., 21:1289–1292, 2014.

[19] Diego Pennacchioli, Michele Coscia, Salvatore Rinzivillo, Fosca Giannotti, and Dino Pedreschi. The retail
market as a complex system. EPJ Data Science, 3(1):1, 2014.

[20] Baruch Schieber. Computing a minimum weight-link path in graphs with the concave monge property. Journal
of Algorithms, 29(2):204 – 222, 1998.

[21] Andrea Vattani. k-means requires exponentially many iterations even in the plane. Discrete & Computational
Geometry, 45(4):596–616, 2011.

[22] Haizhou Wang and Joe Song. Ckmeans.1d.dp: Optimal and fast univariate clustering; R package version 4.0.0.,
2017.

[23] Haizhou Wang and Mingzhou Song. Ckmeans. 1d. dp: optimal k-means clustering in one dimension by dynamic
programming. The R Journal, 3(2):29–33, 2011.

[24] Robert Wilber. The concave least-weight subsequence problem revisited. Journal of Algorithms, 9(3):418 – 425,
1988.

[25] Xiaolin Wu. Optimal quantization by matrix searching. J. Algorithms, 12(4):663–673, December 1991.

[26] F. Frances Yao. Efficient dynamic programming using quadrangle inequalities. In Proceedings of the Twelfth
Annual ACM Symposium on Theory of Computing, STOC ’80, pages 429–435. ACM, 1980.

A Reducing space usage of O(kn) time dynamic programming algorithm
using Hirschberg

Remeber that each row of T and D (Equation 2, 3) only refers to the previous row. Thus one can clearly “forget”row
i− 1 when we are done computing row i In the following, we present an algorithm that avoids the table T entirely.

The key observation is the following: Assume k > 1 and that for every prefix x1, . . . , xm, we have computed the
optimal cost of clustering x1, . . . , xm into bk/2c clusters. Note that this is the set of values stored in the bk/2c’th
row of D. Assume furthermore that we have computed the optimal cost of clustering every suffix xm, . . . , xn into

15

k − bk/2c clusters. Let us denote these costs by D̃[k − bk/2c][m] for m = 1, . . . , n. Then clearly the optimal cost of
clustering x1, . . . , xn into k clusters is given by:

D[k][n] =
n

min
j=1

D[bk/2c][j] + D̃[k − bk/2c][j + 1]. (4)

The main idea is to first compute row bk/2c of D and row k−bk/2c of D̃ using linear space. From these two, we can
compute the argument j minimizing (4). We can then split the reporting of the optimal clustering into two recursive
calls, one reporting the optimal clustering of points x1, . . . , xj into bk/2c clusters, and one call reporting the optimal
clustering of xj+1, . . . , xn into k− bk/2c clusters. When the recursion bottoms out with k = 1, we can clearly report
the optimal clustering using linear space and time as this is just the full set of points.

From Section 2.2 we already know how to compute row bk/2c of D using linear space: Simply call SMAWK to
compute row i of D for i = 1, . . . , bk/2c, where we throw away row i− 1 of D (and don’t even store T) when we are
done computing row i. Now observe that table D̃ can be computed by taking the points x1, . . . , xn and reversing their
order by negating the values. This way we obtain a new ordered sequence of points X̃ = x̃1 ≤ x̃2 ≤ · · · ≤ x̃n where
x̃i = −xn−i+1. Running SMAWK repeatedly for i = 1, . . . , k − bk/2c on the point set X̃ produces a table D̂ such
that D̂[i][m] is the optimal cost of clustering x̃1, . . . , x̃m = −xn, . . . ,−xn−m+1 into i clusters. Since this cost is the
same as clustering xn−m+1, . . . , xn into i clusters, we get that the (k−bk/2c)’th row of D̂ is identical to the i’th row
of D̃ if we reverse the order of the entries.

To summarize the space saving algorithm for reporting the optimal clustering, does as follows: Let L be an initially
empty output list of clusters. If k = 1, append to L a cluster containing all points. Otherwise (k > 1), use SMAWK on
x1, . . . , xn and−xn, . . . ,−x1 to compute row bk/2c ofD and row k−bk/2c of D̃ using linear space (by evicting row
i−1 from memory when we have finished computing row i) andO(kn) time. Compute the argument j minimizing (4)
in O(n) time. Evict row bk/2c of D and row k−bk/2c of D̃ from memory. Recursively report the optimal clustering
of points x1, . . . , xj into bk/2c clusters (which appends the output to L). When this terminates, recursively report
the optimal clustering of points xj+1, . . . , xn into k − bk/2c clusters. When the algorithm terminates, L contains the
optimal clustering of x1, . . . , xn into k clusters.

At any given time, the algorithm uses O(n) space: We evict all memory used to compute the value j minimizing
(4) before recursing. Furthermore, we complete the first recursive call (and evict all memory used) before starting the
second recursive call. Finally, for the recursion, we do not need to copy x1, . . . , xj . It suffices to remember that we
are only working on the subset of inputs x1, . . . , xj .

Let F (n, k) denote the time used by the above algorithm to compute an optimal clustering of n sorted points into
k clusters. Then there is a constant C > 0 such that F (n, k) satisfies the recurrence: F (n, 1) ≤ Cn, and for k > 1:

F (n, k) ≤ n
max
j=1

F (j, bk/2c) + F (n− j, k − bk/2c) + Cnk.

We claim that F (n, k) satisfies F (n, k) ≤ 3Ckn. We prove the claim by induction in k. The base case k = 1 follows
trivially by inspection of the formula for F (n, 1). For the inductive step k > 1, we use the induction hypothesis to
conclude that F (n, k) is bounded by

n
max
j=1

3Cjbk/2c+ 3C(n− j)(k − bk/2c) + Cnk

≤ n
max
j=1

3Cjdk/2e+ 3C(n− j)dk/2e+ Cnk

= 3Cndk/2e+ Ckn.

For k > 1, we have that dk/2e ≤ (2/3)k, therefore:

F (n, k) ≤ 3Cn(2/3)k + Ckn = 3Ckn.

16

