I/O-Model

- **Parameters**
 \[N = \# \text{elements in problem instance} \]
 \[B = \# \text{elements that fits in disk block} \]
 \[M = \# \text{elements that fits in main memory} \]
 \[K = \# \text{output size in searching problem} \]

- We often assume that \(M > B^2 \)

- **I/O**: Movement of block between memory and disk
Fundamental Bounds

<table>
<thead>
<tr>
<th>Internal</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning:</td>
<td>N</td>
</tr>
<tr>
<td>Sorting:</td>
<td>$N \log N$</td>
</tr>
<tr>
<td>Permuting</td>
<td>N</td>
</tr>
<tr>
<td>Searching:</td>
<td>$\log_2 N$</td>
</tr>
<tr>
<td>External</td>
<td>$\frac{N}{B}$</td>
</tr>
</tbody>
</table>

- $\frac{N}{B} \log_{M/B} \frac{N}{B}$
- $\min\{N, \frac{N}{B} \log_{M/B} \frac{N}{B}\}$
- $\log_B N$
Fundamental Data Structures

- **B-trees**: Node degree $\Theta(B) \Rightarrow$ queries in $O(\log_B N + T/B)$
 - Rebalancing using split/fuse \Rightarrow updates in $O(\log_B N)$
- **Weight-balanced B-trees**: Weight rather than degree constraint
 $\Rightarrow \Omega(w(v))$ updates below v between rebalancing operations on v
- **Persistent B-trees**:
 - Update in current version in $O(\log_B N)$
 - Search in all previous versions in $O(\log_B N + T/B)$
- **Buffer trees**
 - Batching of operations to obtain $O\left(\frac{1}{B} \log_{M/B} \frac{N}{B}\right)$ bounds
 $\Rightarrow O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$ construction algorithms
Interval Management

• Problem:
 – Maintain N intervals with unique endpoints dynamically such that stabbing query with point x can be answered efficiently

• As in (one-dimensional) B-tree case we are interested in
 – $O(N/B)$ space
 – $O(\log_B N)$ update
 – $O(\log_B N + T/B)$ query
Interval Management: Static Solution

- **Sweep** from left to right maintaining persistent B-tree
 - Insert interval when left endpoint is reached
 - Delete interval when right endpoint is reached

- Query \(x \) answered by reporting all intervals in B-tree at “time” \(x \)
 - \(O\left(\frac{N}{B}\right) \) space
 - \(O\left(\log_B N + \frac{T}{B}\right) \) query
 - \(O\left(\frac{N}{B} \log_B N\right) \) construction using buffer technique
- Base tree on endpoints – “slab” X_v associated with each node v
- Interval stored in highest node v where it contains midpoint of X_v
- Intervals I_v associated with v stored in
 - Left slab list sorted by left endpoint (search tree)
 - Right slab list sorted by right endpoint (search tree)
⇒ Linear space and $O(\log N)$ update (assuming fixed endpoint set)
• Query with x on left side of midpoint of X_{root}
 – Search left slab list left-right until finding non-stabbed interval
 – Recurse in left child
 ⇒ $O(\log N + T)$ query bound
Externalizing Interval Tree

- **Natural idea:**
 - Block tree
 - Use B-tree for slab lists
- **Number of stabbed intervals in large slab list may be small (or zero)**
 - We can be forced to do I/O in each of $O(\log N)$ nodes
Externalizing Interval Tree

• Idea:
 – Decrease fan-out to $\Theta(\sqrt{B}) \Rightarrow$ height remains $O(\log_B N)$
 – $\Theta(\sqrt{B})$ slabs define $\Theta(B)$ multislabs
 – Interval stored in two slab lists (as before) and one multislab list
 – Intervals in small multislab lists collected in underflow structure
 – Query answered in v by looking at 2 slab lists and not $O(\log N)$
External Interval Tree

- Base tree: Weight-balanced B-tree with branching parameter $\frac{1}{4}\sqrt{B}$ and leaf parameter B on endpoints
 - Interval stored in highest node v where it contains slab boundary
- Each internal node v contains:
 - Left slab list for each of $\Theta(\sqrt{B})$ slabs
 - Right slab lists for each of $\Theta(\sqrt{B})$ slabs
 - $\Theta(B)$ multislab lists
 - Underflow structure
- Interval in set I_v of intervals associated with v stored in
 - Left slab list of slab containing left endpoint
 - Right slab list of slab containing right endpoint
 - Widest multislab list it spans
- If $< B$ intervals in multislab list they are instead stored in underflow structure (\Rightarrow contains $\leq B^2$ intervals)
External Interval tree

- Each leaf contains $< \frac{B}{2}$ intervals (unique endpoint assumption)
 - Stored in one block
- Slab lists implemented using B-trees
 - $O(1 + \frac{T_v}{B})$ query
 - Linear space
 * We may “wasted” a block for each of the $\Theta(\sqrt{B})$ lists in node
 * But only $\Theta(\frac{N}{B\sqrt{B}})$ internal nodes
- Underflow structure implemented using static structure
 - $O(\log_B B^2 + \frac{T_v}{B}) = O(1 + \frac{T_v}{B})$ query
 - Linear space
- Linear space
External Interval Tree

- **Query with** \(x \)
 - Search down tree for \(x \) while in node \(v \)
 reporting all intervals in \(I_v \) stabbed by \(x \)

- **In node** \(v \)
 - Query two slab lists
 - Report all intervals in relevant multislab lists
 - Query underflow structure

- **Analysis:**
 - Visit \(O(\log_B N) \) nodes
 - Query slab lists
 - Query multislab lists
 - Query underflow structure
 \[O(1 + \frac{T_v}{B}) \]

\[\Rightarrow O(\log_B N + \frac{T}{B}) \]
External Interval Tree

- **Update** – ignoring base tree update/rebalancing:
 - Search for relevant node
 - Update two slab lists \(O(\log_B N) \)
 - Update multislab list or underflow structure

- **Update** of underflow structure in \(O(1) \) I/Os amortized
 - Maintain update block with \(\leq B \) updates
 - Check of update block adds \(O(1) \) I/Os to query bound
 - Rebuild structure when \(B \) updates have been collected using
 \[
 O\left(\frac{B^2}{B} \log_B B^2\right) = O(B) \text{ I/Os (Global rebuilding)}
 \]

\[\downarrow\]

Update in \(O(\log_B N) \) I/Os amortized
External Interval Tree

• Note:
 – Insert may increase number of intervals in underflow structure for some multislab to B
 – Delete may decrease number of intervals in multislab to B
 ↓
 Need to move B intervals to/from multislab/underflow structure

• We only move
 – Intervals from multislab list when decreasing to size $B/2$
 – Intervals to multislab list when increasing to size B
 ↓

$O(1)$ I/Os amortized used to move intervals
Base Tree Update

- Before **inserting** new interval we insert new endpoints in base tree using $O(\log_B N)$ I/Os
 - Leads to rebalancing using splits
 \downarrow
 Boundary in v **becomes boundary in** $\text{parent}(v)$
 \downarrow
 Intervals need to be moved

- Move intervals (update secondary structures) in $O(w(v))$ I/Os
 $\Rightarrow O(1)$ amortized split bound (weight balanced B-tree)
 $\Rightarrow O(\log_B N)$ amortized insert bound
Splitting Interval Tree Node

- When \(\nu \) splits we may need to move \(O(w(\nu)) \) intervals
 - Intervals in \(\nu \) containing boundary
 - Intervals in \(\text{parent}(\nu) \) with endpoints in \(X_\nu \) containing boundary
- Intervals move to two new slab and multislab lists in \(\text{parent}(\nu) \)
Splitting Interval Tree Node

- Moving intervals in v in $O(w(v))$ I/Os
 - Collected in left order (and remove) by scanning left slab lists
 - Collected in right order (and remove) by scanning right slab lists
 - Removed multislab lists containing boundary
 - Remove from underflow structure by rebuilding it
 - Construct lists and underflow structure for v' and v'' similarly
Splitting Interval Tree Node

- Moving intervals in $parent(v)$ in $O(w(v))$ I/Os
 - Collect in left order by scanning left slab list
 - Collect in right order by scanning right slab list
 - Merge with intervals collected in $v \Rightarrow$ two new slab lists
 - Construct new multislab lists by splitting relevant multislab list
 - Insert intervals in small multislab lists in underflow structure
External Interval Tree

• Split in $O(1)$ I/Os amortized
 – Space: $O(N/B)$
 – Query: $O(\log_B N + T/B)$
 – Insert: $O(\log_B N)$ I/Os amortized

• Deletes in $O(\log_B N)$ I/Os amortized using global rebuilding:
 – Delete interval as previously using $O(\log_B N)$ I/Os
 – Mark relevant endpoint as deleted
 – Rebuild structure in $O(N \log_B N)$ after $N/2$ deletes

• Note: Deletes can also be handled using fuse operations
External Interval Tree

- External interval tree
 - Space: $O(N/B)$
 - Query: $O(\log_B N + \frac{T}{B})$
 - Updates: $O(\log_B N)$ I/Os amortized

- Removing amortization:
 - Moving intervals to/from underflow structure
 - Delete global rebuilding
 - Underflow structure update
 - Base node tree splits

Perform operations/construction lazily
Move lazily – complicated:
- Interference
- Queries
Summary/Conclusion: Interval Management

- Interval management corresponds to simple form of 2d range search
 - Diagonal corner queries
- We obtained the same bounds as for the 1d case
 - Space: $O(N/B)$
 - Query: $O(\log_B N + T_B)$
 - Updates: $O(\log_B N)$ I/Os
Summary/Conclusion: Interval Management

• Main problem in designing structure:
 – Binary → large fan-out

• Large fan-out resulted in the need for
 – Multislabs and multislab lists
 – Underflow structure to avoid $O(B)$-cost in each node

• General solution techniques:
 – Filtering: Charge part of query cost to output
 – Bootstrapping:
 * Use $O(B^2)$ size structure in each internal node
 * Constructed using persistence
 * Dynamic using global rebuilding
 – Weight-balanced B-tree: Split/fuse in amortized $O(1)$
Three-Sided Range Queries

- Interval management: “1.5 dimensional” search

- More general 2d problem: Dynamic 3-sidede range searching
 - Maintain set of points in plane such that given query \((q_1, q_2, q_3)\), all points \((x, y)\) with \(q_1 \leq x \leq q_2\) and \(y \geq q_3\) can be found efficiently
Three-Sided Range Queries

- Report all points \((x, y)\) with \(q_1 \leq x \leq q_2\) and \(y \geq q_3\)
- **Static solution:**
 - Sweep top-down inserting \(x\) in persistent B-tree at \((x, y)\)
 - Answer query by performing range query with \([q_1, q_2]\) in B-tree at \(q_3\)
- **Optimal:**
 - \(O(N/B)\) space
 - \(O(\log_B N + T/B)\) query
 - \(O(\frac{N}{B} \log_{M/B} \frac{N}{B})\) construction
- **Dynamic?** … in internal memory priority search tree…. next time
References

• **External Memory Geometric Data Structures**
 Lecture notes by Lars Arge.
 – Section 6