R-trees:
external-memory data structures
for searching geometric objects

Herman Haverkort — University of Aarhus
Window queries
Window queries
Filtering approach: first search bounding boxes…
Window queries

Filtering approach: first search bounding boxes…
Window queries

Filtering approach: first search bounding boxes...
Window queries

Filtering approach: first search bounding boxes...
Filtering approach: first search bounding boxes... then check objects one by one.
Window queries

Filtering approach: first search bounding boxes... then check objects one by one.

Worst-case-efficient? In terms of query objects, not really...

Analysis on level of bounding boxes still useful.
\(N \) rectangles, \(T \) answers, block size \(B \)

Goal: visit \(O(sublinear(N/B) + T/B) \) blocks.
Window queries with bounding volume hierarchies
R-tree: Group data into nodes of size B:
- Leaves contain $\Theta(B)$ objects’ bounding boxes (example: 2 each);
- Internal nodes have $\Theta(B)$ children (example: 4).
Window queries with bounding volume hierarchies

R-tree: Group data into nodes of size B:
- Leaves contain $\Theta(B)$ objects’ bounding boxes;
- Internal nodes have $\Theta(B)$ children.
Window queries with bounding volume hierarchies

R-tree: Group data into nodes of size B:

- Leaves contain $\Theta(B)$ objects’ bounding boxes;
- Internal nodes have $\Theta(B)$ children. Each node stores the bounding box of each of its children.
Lower bounds

Special case: objects are points.
R-trees use only linear space, so $\Omega(\sqrt{N/B} + T/B)$ worst-case lower bound.

Special case: queries are points.
Also $\Omega(\sqrt{N/B} + T/B)$.

General case: objects and queries are rectangles.
$\Omega(\sqrt{N/B} + T/B)$.
R-tree heuristics: Hilbert R-tree [Kamel & Faloutsos]

Order the rectangles by the position of their centers along the curve
R-tree heuristics: Hilbert R-tree [Kamel & Faloutsos]

Order the rectangles by the position of their centers along the curve
R-tree heuristics: Hilbert R-tree [Kamel & Faloutsos]

Order the rectangles by the position of their centers along the curve
R-tree heuristics: Hilbert R-tree [Kamel & Faloutsos]

Order the rectangles by the position of their centers along the curve
R-tree heuristics: Hilbert R-tree [Kamel & Faloutsos]

Order the rectangles by the position of their centers along the curve
R-tree heuristics: Hilbert R-tree [Kamel & Faloutsos]

Order the rectangles by the position of their centers along the curve
R-tree heuristics: Hilbert R-tree [Kamel & Faloutsos]

Order the rectangles by the position of their centers along the curve
Order the rectangles by the position of their centers along the curve.
R-tree heuristics: Hilbert R-tree [Kamel & Faloutsos]

Order the rectangles by the position of their centers along the curve;
Put a B-tree on top.

Variant: order by points \((x_{\text{min}}, y_{\text{min}}, x_{\text{max}}, y_{\text{max}})\) along 4D curve.

Building in \(O\left(\frac{N}{B} \log \frac{M}{B} \frac{N}{B}\right)\) I/O’s
Inserts and deletes in \(O(\log_B \frac{N}{M})\) I/O’s.
R-tree heuristics: Hilbert R-tree [Kamel & Faloutsos]

Query efficiency?
R-tree heuristics: Hilbert R-tree [Kamel & Faloutsos]

Query efficiency?
R-tree heuristics: Hilbert R-tree [Kamel & Faloutsos]

Query efficiency?
R-tree heuristics: Hilbert R-tree [Kamel & Faloutsos]

Query efficiency?
R-tree heuristics: Hilbert R-tree [Kamel & Faloutsos]

Query efficiency?

$\Theta(N/B)$ nodes visited, while $T = 0$.
R-tree heuristics: Top-down Greedy Split [García et al.]

Build R-tree bottom-down by recursively dividing input into two.

Make nodes of degree B by combining binary cuts.

How to choose a binary cut?

- Consider the four orderings by $x_{\text{min}}, y_{\text{min}}, x_{\text{max}}$ and y_{max}.
- For each ordering, consider B cutting positions.
- Choose the cut that minimizes the sum of the areas of the two resulting bounding boxes.
R-tree heuristics: Top-down Greedy Split [García et al.]
R-tree heuristics: Top-down Greedy Split [García et al.]

x_{min}-cuts
R-tree heuristics: Top-down Greedy Split [García et al.]
R-tree heuristics: Top-down Greedy Split [García et al.]

x_{min}-cuts

\[
\frac{N}{B} \quad \frac{N}{B} \quad \frac{N}{B}
\]
R-tree heuristics: Top-down Greedy Split [García et al.]

- y_{max}-cuts
- x_{max}-cuts
- y_{min}-cuts
- x_{min}-cuts
R-tree heuristics: Top-down Greedy Split [García et al.]

Continue until all sets have size N/B

size N/B already:
no recursion
Continue until all sets have size N/B

size N/B already:
no recursion
R-tree heuristics: Top-down Greedy Split [García et al.]

Continue until all sets have size N/B

one node:

Build the subtrees for the children recursively
R-tree heuristics: Top-down Greedy Split [García et al.]

Continue until all sets have size N/B

Build the subtrees for the children recursively

Worst-case building time: $O\left(\frac{N}{B} \log_2 N\right)$
Worst-case query time: $\Theta\left(N/B\right)$
Update time: use logarithmic method?
R-trees with worst-case-optimal query time

PR-tree and pseudo-PR-tree.
Building P-trees: step 1
Building P-trees: step 1

Make leftmost rectangle a child of the root
Building P-trees: step 1

For each direction, make most extreme rectangle a child (priority box) of the root.
Building P-trees: step 1

For each direction, make most extreme rectangle a child (priority box) of the root.
Building P-trees: step 1

For each direction, make most extreme rectangle a child (priority box) of the root.
Building P-trees: step 2

Divide remaining rectangles by the x_{min}-coordinates...
Building P-trees: step 2

Build subtrees recursively, dividing by $x_{\text{min}}, y_{\text{min}}, x_{\text{max}}$ and y_{max}-coordinates in a round-robin fashion, like in a kd-tree).
A window query visits two types of nodes.

Type A: children of nodes that have (at least) one priority box reported as an answer

At most T priority boxes reported (by definition) $\rightarrow O(T)$ such children.

Type B: children of nodes that have no priority box reported as an answer

A bit more difficult...
Analysing case B (children of nodes that have no priority box reported as an answer)

A query window Q, and the four P-boxes of a node ν:

Each P-box separated from Q by line through edge of Q, e.g.:
A is separated from Q since $x_{\text{max}}(A) < x_{\text{min}}(Q)$.

Dividing by $x_{\text{min}}, y_{\text{min}}, x_{\text{max}}$ and y_{max}-coordinates in a round-robin fashion is like building a kd-tree on 4D points $(x_{\text{min}}, y_{\text{min}}, x_{\text{max}}, y_{\text{max}})$:

A is separated from Q since $x_{\text{max}}(A) < x_{\text{min}}(Q)$, so in 4D: the point for A lies on the low side of the hyperplane $x_{\text{max}} = x_{\text{min}}(Q)$.

Analysing case B (children of nodes that have no priority box reported as an answer)
Analysing case B (children of nodes that have no priority box reported as an answer)

A lies on the low side of the hyperplane $x_{\text{max}} = x_{\text{min}}(Q)$.

Node ν must also have a P-box B with $x_{\text{max}}(B) > x_{\text{min}}(Q)$, otherwise we would not visit this node.

Thus: ν’s cell in the kd-tree, is cut by 3D-hyperplane $x_{\text{max}} = x_{\text{min}}(Q)$.
Analysing case B (children of nodes that have no priority box reported as an answer)

B is also separated from Q, by another line through an edge of Q:

Because of A, ν's kd-cell is cut by hyperplane $x_{\text{max}} = x_{\text{min}}(Q)$.
Because of B, ν's kd-cell is cut by hyperplane $y_{\text{min}} = y_{\text{max}}(Q)$.

Fact: in a 4D kd-tree, only $O(\sqrt{N})$ cells can simultaneously intersect two orthogonal 3D-hyperplanes.
Querying P-trees

A window query visits two types of nodes.

Type A: children of nodes that have (at least) one priority box reported as an answer

At most T priority boxes reported (by definition) $\rightarrow O(T)$ such children.

Type B: children of nodes that have no priority box reported as an answer

Dividing by x_{\min}, y_{\min}, x_{\max} and y_{\max}-coordinates in a round-robin fashion is like building a kd-tree on 4D points $(x_{\min}, y_{\min}, x_{\max}, y_{\max})$. The kd-cell of a type-B node simultaneously intersects two orthogonal 3D-hyperplanes in 4D space (out of four hyperplanes defined by Q). Fact: in a 4D kd-tree, there can be only $O(\sqrt{N})$ such cells.
Querying P-trees

A window query visits two types of nodes.

Type A: children of nodes that have (at least) one priority box reported as an answer

At most T priority boxes reported (by definition) $\rightarrow O(T)$ such children.

Type B: children of nodes that have no priority box reported as an answer

By analysing the kd-tree in 4D: $O(\sqrt{N})$ such children.

Total: $O(\sqrt{N} + T)$
Making P-trees I/O-efficient: step 1
Making P-trees I/O-efficient: step 1

Make leftmost rectangle a child of the root
Making P-trees I/O-efficient: step 1

Make leftmost rectangle B leftmost rectangles a child of the root...
Making P-trees I/O-efficient: step 1

Make leftmost rectangle B leftmost rectangles a child of the root and store bounding box in the root.
Making P-trees I/O-efficient: step 1

For each direction, put B most extreme rectangles in a priority leaf.
For each direction, put B most extreme rectangles in a priority leaf.
Making P-trees I/O-efficient: step 1

For each direction, put B most extreme rectangles in a priority leaf.
Making P-trees I/O-efficient: step 2

Divide remaining rectangles by the x_{min}-coordinates...
Making P-trees I/O-efficient: step 2

Build subtrees recursively, dividing by x_{min}, y_{min}, x_{max} and y_{max}-coordinates in a round-robin fashion, like in a kd-tree).
Making P-trees I/O-efficient: analysis

A window query visits two types of nodes.

Type A: children of nodes that have (at least) one priority box all rectangles in (at least) one priority leaf reported as answers

T answers fill at most T/B priority leaves $\rightarrow O(T/B)$ such children.

Type B: children of nodes that have no priority box leaf completely reported as answers

By analysing the kd-tree in 4D (which has only N/B leaves): $O(\sqrt{N/B})$ such children.

Total: $O(\sqrt{N/B} + T/B)$
Analysing case B (children of nodes that have no priority box reported as an answer)

A query window Q, and the four P-boxes of a node ν. From each P-leaf a box which is not an answer:

Each such box separated from Q by line through edge of Q, e.g.: A is separated from Q since $x_{\text{max}}(A) < x_{\text{min}}(Q)$.

$x_{\text{max}}(A)$ and $x_{\text{min}}(Q)$ refer to the maximum and minimum x-coordinates of the boxes A and Q, respectively.
A window query visits two types of nodes.

Type A: children of nodes that have (at least) one priority box all rectangles in (at least) one priority leaf reported as answers

T answers fill at most T/B priority leaves $\rightarrow O(T/B)$ such children.

Type B: children of nodes that have no priority box leaf completely reported as answers

By analysing the kd-tree in 4D (which has only N/B leaves): $O(\sqrt{N/B})$ such children.

Total: $O(\sqrt{N/B} + T/B)$
Building PR-trees efficiently

Like a 4-dimensional kd-tree.

Sort into four lists, one for each coordinate.

Build $\Theta(M^{1/4})$ nodes = $\Theta(\log M)$ levels at a time.

In each round, add a filtering step:

Each node gets four priority leaves of size $O(B)$; filter boxes through the tree—the extreme boxes will be ”caught” by the priority leaves.
Experiments

Implemented with Duke’s TPIE (Transparent Parallel I/O-Environment):

- 2D Hilbert R-tree
- 4D Hilbert R-tree
- Top-down Greedy Split (TGS)
- our Priority R-tree

Tested with:

- Real-life data: TIGER road map data:
 up to 17 mln bounding boxes of road line segments;
- Synthetic data: 10 mln random rectangles,
 uniformly distributed in unit square,
 with varying parameters
Cartographic data

Data: road segments
Queries: squares with areas from 0.25% to 2%

Shown: Number of I/Os spent in answering a query T/B
Random rectangles of variable size

Data: sides of rectangles uniformly distributed in $[0, max_side]$
Queries: squares with area 1%
Random boxes of variable shape

Data: randomly oriented rectangles with area 10^{-6} and aspect ratio a

Queries: squares with area 1%
Random boxes with variable distribution

Data: uniformly distributed points, then transform \((x, y)\) to \((x, y^c)\)
Queries: squares with area 1\%, transformed in the same way
“Worst-case” random boxes

Data: 10 000 clusters of height 10^{-5} on a horizontal line
Queries: rectangles of width 1, height 10^{-7}, through all clusters

<table>
<thead>
<tr>
<th>tree:</th>
<th>Hilbert 2D</th>
<th>Hilbert 4D</th>
<th>PR-tree</th>
<th>TGS-tree</th>
</tr>
</thead>
<tbody>
<tr>
<td># I/Os:</td>
<td>32 920</td>
<td>83 389</td>
<td>1 060</td>
<td>22 158</td>
</tr>
<tr>
<td>% of the R-tree visited:</td>
<td>37%</td>
<td>94%</td>
<td>1%</td>
<td>25%</td>
</tr>
</tbody>
</table>
In theory:

The PR-tree is the first R-tree variant that answers a window query in $O(\sqrt{N/B} + T/B)$ I/Os in the worst case.

In practice:

Window queries in real-life and relatively nicely distributed data: roughly the same as best previous R-trees.

Window queries in more extreme data: PR-trees outperforms best previous R-trees significantly.
What about...

...construction time?

tree : theory : on 10 mln boxes

Hilbert : $O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$ I/Os : 5 min.

PR : $O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$ I/Os : 20 min.

TGS : $O\left(\frac{N}{B} \log_2 \frac{N}{B}\right)$ I/Os (typically) : 60-240 min.

...update time?

Hilbert : like a B-tree: $O\left(\log_B \frac{N}{M}\right)$ I/Os

PR : similar to Hilbert, amortized

...higher dimensions?

PR-tree answers window query in $O\left((\frac{N}{B})^{1-1/d} + \frac{T}{B}\right)$ I/Os
Still to do

<table>
<thead>
<tr>
<th>Problem</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap (\Omega((\frac{dN}{B})^{1-1/d} + \frac{dT}{B})) — (O((\frac{dN}{B})^{1-1/d} + \frac{d^2T}{B}))</td>
<td>other priorities</td>
</tr>
<tr>
<td>Make it cache-oblivous</td>
<td>getting close!</td>
</tr>
<tr>
<td>Speed up point queries theoretically</td>
<td>(\log_2 N \log_B N) in disjoint data</td>
</tr>
<tr>
<td>Speed up point queries in practice</td>
<td>we’re puzzled</td>
</tr>
<tr>
<td>Experiment with updates</td>
<td>maybe later</td>
</tr>
<tr>
<td>Experiment with 3D</td>
<td>maybe later</td>
</tr>
<tr>
<td>Generalize to more flexible bounding volumes</td>
<td>almost there!</td>
</tr>
</tbody>
</table>
THAT’S ALL FOLKS

http://haverkort.net/herman/cs/