
Designing Dexter-based hypermedia services
for the World Wide Web

Kaj Grønbæk, Niels Olof Bouvin, and Lennert Sloth
Computer Science Department

Aarhus University,
Ny Munkegade, Bldg. 540, 8000 Århus C, Denmark

Phone: +45 8942 3188
E-mail: {kgronbak,bouvin,les}@daimi.aau.dk

In proceedings of Hypertext 97–The Eighth ACM Conference on Hypertext

Southampton, UK, April 6-11, 1997

ABSTRACT

This paper discusses how to augment the WWW with a
Dexter-based hypermedia service that provides anchors,
links and composites as objects stored external to the Web
pages. The hypermedia objects are stored in an object-
oriented database that is accessible on the Web via an
ordinary URL. The Dexter-based hypermedia service is
based on the Devise Hypermedia framework. Three client
solutions are described and discussed, one that is platform
independent based on Netscape Navigator 3.0, utilizing
Java, Javascript, and LiveConnect, and two that are
platform dependent, one utilizing Netscape plug-ins, and
another using Microsoft Internet Explorer 3.0, utilizing
mainly ActiveX. The server part is developed as a
specialization of the Devise Hypermedia framework
accessible through CGI scripts. Thus the system provides
the full power of Dexter-based hypermedia to arbitrary Web
pages on the Internet. This includes the ability for multiple
users to create links from parts of HTML Web pages they
do not own and support for creating links to parts of Web
pages without writing HTML target tags. Support for
providing links to/from parts of non-HTML data, such as
Quicktime movies or VRML documents will also be
possible in the future provided that appropriate open plug-in
modules become available.

KEYWORDS: Open hypermedia service, link objects, World
Wide Web, HTML, Dexter hypertext reference model, Java,
JavaScript, ActiveX, OLE.

1. INTRODUCTION

The hypermedia pioneers Bush, Nelson and Engelbart [5, 8,
24] formulated a grand hypermedia vision that included

support for global distributed hypermedia structures which
meant to include all human writings, and support people in
searching, navigating, reusing and augmenting the giant
“Docuverse.” However, for several decades the hypermedia
implementations produced were local and non-distributed.
NLS/Augment could be distributed on the early Arpanet,
and a few systems like Intermedia and KMS could be
distributed in local area networks, but many systems like
NoteCards[18], HyperCard[9], and Guide were restricted to
run on a single workstation. All these early systems were
built around a special kind of “database” or proprietary file
format which made distribution a very complex issue.

In the 90s, however, parts of the grand vision became a
reality by means of the World Wide Web [3, 4], which was
constructed around much simpler principles than the earlier
systems: a tagged ASCII file format with embedded jump
addresses, a uniform Internet addressing schema, and an
enhanced file transfer protocol. The WWW has become a
popular and efficient means of distributing information with
simple hypermedia links world wide on the Internet.

The vision put forward by the pioneers and many of the
early systems, however, included flexible support for people
to freely create links between documents in the Docuverse.
For example, the Intermedia system[20] was the first to use
the term Web for a hypermedia structure and the first to
provide two-way links as objects between so-called anchor
objects (called ‘blocks’ in Intermedia) stored apart from the
document contents. With this approach Intermedia let users
create two-way links between documents they did not own,
as well as inspect which documents were linked to a given
document. This idea of links and anchors as separate objects
became the central idea of the Dexter Hypertext Reference
Model [16] and systems based on this model, e.g. Devise
Hypermedia[11, 13].

As of today, the WWW provides little support for dynamic
link creation and collaboration. But research on augmenting
the WWW with link services that store link information
separate from the document contents is underway. Hyper-G
[1] and Microcosm’s Distributed Link Service (DLS) [6]

 1

are examples of systems that support non-embedded links to
WWW pages on the Internet and link storage in hypermedia
databases on arbitrary Internet servers.

These next generation WWW systems are, however, only in
their infancy with respect to providing: linking inside pages,
in particular non-text pages; linking in documents as they
are being edited; collaboration support and distribution of
hypermedia databases. This paper contributes to the design
of next generation Web systems by discussing approaches
to augmenting the WWW with support for Dexter-based
hypermedia structures. These approaches are based on the
work by Grønbæk and Trigg [14] on extending the Dexter
model to handle both link objects and embedded addresses.
Implementation experiments with the DHM/WWW system
built on the Devise Hypermedia (DHM) framework [13] are
discussed.

2. EMBEDDED ADDRESSES VERSUS LINK OBJECTS

A characteristic of the WWW is the use of embedded
unidirectional links also known as jump addresses whereas
the Dexter model advocates external links. We outline here
the main differences between these two strategies, and
explain why we find the external link model desirable. Jump
addresses and external links are illustrated in Figure 1 and
their features are schematically compared in Table 1.

The jump addresses found in the WWW are of the now
familiar form <a
href=“http://www.authors.jp/mishima.html#
oeuvre”>Yukio Mishima where www.-
authors.jp names the server where the file
mishima.html containing the label oeuvre is found.

Figure 1: Jump addresses and external links

The biggest advantage of the embedded links in WWW is
their simplicity: there is no need for a specialized link

server, and the WWW only has to manipulate tagged ASCII
files. This simplicity comes at a cost however, as only the
owner of a document can create links from the document.
At the same time links to specific parts of a document can
only be made if there are already target tags at the desired
point in the document. It is impossible to see which
documents point to a document, and there can only be one
set of links from a given document. If two users wish to
have different links from the same document, they must
maintain two copies of the document, identical apart from
the different links. This requires extra maintenance, if the
original document is later changed.

This situation is further complicated if the original
document is not a simple ASCII file. Documents must first
be converted into HTML before they can be properly used
in a WWW context. This problem has been addressed by a
variety of conversion programs, from simple RTF to HTML
conversion to large scale WWW publishing systems such as
Interleaf's Cyberleaf [2]. Powerful as some of these systems
are, their existence is indicative of the problematic nature of
HTML.

Links as implemented in the WWW are unidirectional and
with only modest typing support; link typing as suggested
by e.g. Nelson [24] or Trigg [26] are not possible.

External links are considerably more complicated, but offer
advantages over embedded links. Because the original
document is unaffected by link creation, users can easily
create, maintain and share their own links for a given
document, regardless of who owns the document. As links
in systems based on the Dexter model [16] are first class
objects in a database, links to and from a document can be
traced from the document by querying the link database.
Links are named and have types, so the user can
differentiate between e.g. a quote link and reference link.
Typed links have been found to be of considerable value in
many hypermedia systems [23, 26]. Unlike the WWW,
external links can have more than one target. Finally as
linking is handled outside the documents, the documents
can be of any format.

Go to

Link object

WWW:
Jump-addresses

DEVISE Hypermedia:
Object-based

Anchors act as reference objects for links and are
responsible for encapsulating location information for a
piece of information inside a document. Locating via
anchors is not tied to text, and is limited only by the
methods applications provide for accessing parts of their
data. Anchors can be located in segments of sound and
video, areas of pictures, or rows in a relational database.

3. AUGMENTING THE WWW WITH DEXTER -BASED
HYPERMEDIA

The limitations of the WWW with respect to dynamic link
creation and sharing have been pointed out above. At the
same time, we acknowledge the power of such a simple
notion of linking. Instead of aiming at (naively) replacing

 2

 Embedded address approach Dexter-based approach

Storage of links jump addresses inside content link objects in separate database

Openness with respect
to linking

closed : requires special content format,
e.g. HTML, VRML

open: no requirement on content formats –
applications’ own formats can be linked

Media support links are mostly supported from text
based data

anchors may reference segments in any
data-type, e.g. video

Maps of link
structures

difficult (often impossible) to see who is
referencing a specific node

link relations can be inspected and maps
generated

Distribution simple to distribute – only content has to
be distributed

more complicated to distribute – also links
and anchors

Collaboration collaborative manipulation of link
network is difficult

collaborative manipulation of links is easier
– requires no write permission to content

Table 1: Comparison of the embedded address and Dexter-based approaches

the WWW with a DHM Framework based system1, we
advocate augmenting the WWW with DHM hypermedia
services. This can add value to the WWW, e.g. for
distributed work groups sharing a body of web documents.
Users working with DHM/WWW augmented pages in a
browser can:

• create links to and from parts of WWW documents
without having write access to them;

• follow both ordinary WWW links and the DHM based
links imposed on the pages;

• group WWW documents by mean of composites such
as collections and guided tours;

• obtain CSCW support (e.g. lock exchange and
awareness notifications) on pages that are shared by a
group of users;

To provide DHM based hypermedia support for the WWW,
only modest extensions to the framework classes are
needed. The DHM Framework is sufficiently general to
model the WWW and a WWW component with tailored
anchors and LocSpecs (see [14] for a discussion on
LocSpecs). The main challenge here is to integrate the
architectures of the two system concepts.

This architectural integration involves some of the same
steps described in [12] on tailorability. The DHM support
needs to be integrated in the Application layer to provide a
user interface for the extended functionality and in the
Communication layer to provide HTTP/CGI based
communication between the clients and the Hypermedia
Service. Moreover the Runtime and Storage layer classes

should be specialized to model Web documents. The
architectural integration of a DHM hypermedia service with
the WWW is depicted in Figure 2.

In Figure 2, the small boxes attached to the browsers
represent a small extension to the users’ favorite WWW
browser. In particular, the browser’s user interface is
extended to support communication with the DHM service.
The browser extension can be connected to one or more
Hypermedia Database Servers that all impose link and
composite structures to the Web pages being visited with
the extended browser. The browsers may still communicate
directly with Web servers without going through the
extension module, however, to gain access to the external
links available in the document, the extension module needs
to be activated on the document.

At least two systems already provide a similar external
hypermedia service. The Hyper-G system uses a special
browser called Harmony, which handles both HTML
rendering and the user interface/communication support for
the extended service, i.e. it replaces the user’s ordinary
WWW browser [1]. Harmony supports the manipulation of
links and collections, objects that are stored in an object-
oriented database separate from the base WWW documents.
The second system is Microcosm’s DLS [6] which is based
on a true augmentation of the user’s WWW browser by
means of a “GumShu”. For each platform the GumShu
attaches menus to the title bar of the WWW browser
window. Via these menus, users connect to Microcosm link
bases on the net and use those to follow and create links that
again are stored apart from the base WWW documents.

Both Hyper-G and the Microcosm DLS represent new steps
toward providing value-adding hypermedia services to
WWW documents. Our development based on the DHM
framework takes further steps in this direction. However,
both systems have limitations which we believe it is

1 Different aspects of the Devise Hypermedia Framework
are described in [12-14]

 3

Site X’s
WWW server

User B’s
WWW browser

Hypermedia
DataBase
server

Application
Layer

Communication
Layer

Storage
Layer

(Physical)

Runtime
Layer

(Conceptual)

(Within
Component
Layer)

Hypermedia
Service Process

Application
Interfaces

Storage Classes

OHP
via HTTP

Runtime Classes

(Storage Classes)

User’s
WWW browser

Site X’s
WWW server HTTP

Figure 2: DHM architecture for augmenting the WWW with an open hypermedia
service. Web browsers and documents are integrated as part of the Application layer
of the architecture.

2. how to maintain control over the document (and thus
link) presentation.

possible to overcome. Hyper-G requires a special browser
(and currently also a special text document format, HTF) in
order for the user to get the full benefits of the system,
including the ability to create links and collections.
Microcosm has a slightly different limitation: building a
GumShu requires low level patching of the browser in the
window system of the given platform.

We decided early on that the only acceptable solution to the
first problem was to make the links resemble ordinary links
in the WWW document. This required access to the
document before it reached the browser, so that we could
insert our own links. In addition, we needed to maintain
control over the displayed document, so that we could
continue to insert links from the DHM link server. Our two
solutions to these challenges derive from the different
approaches chosen by the Navigator and the Explorer.

The latest batch of WWW browsers from Netscape and
Microsoft2 have new functionality, such as Java applets and
scripting, that can be utilized to integrate the link database
and the WWW within the browser. In the next section, we
outline two strategies for making the functionality of the
DHM Framework available through WWW browsers.

3.1 Implementing DHM/WWW: challenges and choices

When we decided to augment the Web with an external link
database we were faced with two major client-side
challenges:

1. how to present the new links as natural as possible, and

Navigator offers in its present form the powerful
combination of (Java) applets,3 Javascript, and plug-ins.
Applets are small programs running in a restricted
environment, and are, at least in theory, platform neutral. 4
The Java language is supported by a host of powerful and
increasingly stable class libraries, making development
easy. Javascript programs are interpreted in the HTML

3 As applets are compiled to run on a virtual machine, there
is no need for applets be written in Java, though most still
are.

2 As of this writing, Netscape Navigator 3.0 and Microsoft
Internet Explorer 3.0 (henceforth Navigator and Explorer).

4 In practice, they can be both platform and (especially)
browser dependent.

 4

document, and as such can be used for HTML document
creation. Javascript has suffered from continuous
development, but is now fairly stable. Plug-ins, on the other
hand, are platform-dependent programs (so-called native
programs), designed primarily as contents handlers (of
video, sound, etc.). Netscape implements the SDI (Software
Development Interface) API [25], as defined by Spyglass,
Inc., for remote control of the browser.

3.2 DHM/WWW: a platform-independent solution

To provide a true platform-independent extension to the
users’ browser, we used the Java language5 to write a
general applet that handles browser integration and
communication with the Hypermedia Service. This
approach resulted in the architecture shown in Figure 3.

In the Web architecture it is a natural choice to use HTTP
and CGI scripts to communicate between the browser and
the Hypermedia Service Process (HSP). Thus the HSP runs
on a server host rather than on the users’ workstations as
was proposed for environments with a common file system
(see [11]). This implies an increased work load on the
server hosts, but the HSP and the Hypermedia DataBase
(HDB) are still separate processes that can be distributed
across multiple hosts if performance becomes an issue.

While announcements have been made for Unix versions,
the Explorer is as of yet bound to the Windows and
Macintosh platform. This is a far cry from the 12 platforms
supported by the Navigator, but the Explorer has the
advantage of a tighter integration with its environment on
Windows. In addition to applets and scripting (in Explorer
known as VBScript and JScript), Explorer supports
ActiveX, the latest incarnation of Microsoft’s OLE
technology. Because Explorer conforms to the ActiveX
architecture, it can easily be integrated within other
Windows programs, just as it easily integrates other OLE
programs, such as Microsoft Word or Excel. In its ActiveX
interface Explorer implements a rich set of properties,
methods and events that can be used to control the browser
from other applications.

3.2.1 Application layer
At the Application layer, the browser extension can be
developed as a platform independent DHM/WWW Java
applet. The applet provides a user interface for the
Hypermedia Service functionality and supports the DHM
OHP protocol [10] in its communication with the

5 (http://java.sun.com/)

 5

Communication
Layer

Server hosts

OHP
via HTTP

Hypermedia
DataBase
server

Application
Layer

Storage
Layer

(Physical)

Runtime
Layer

(Conceptual)

(Within
 Component
 Layer)

Hypermedia
Service Process

Application
Interfaces

Storage Classes

Runtime Classes

(Storage Classes)

User’s
WWW browser

WWW browser
Java Applet

with hypermedia
user interface

DHM/WWW Applet
with hypermedia

user interface

CGI scripts

Server
hosts

LiveConnect
or OLEUser’s

WWW browser

Site X’s
WWW server HTTP

Figure 3: DHM based Hypermedia service to the Web by means of a Java or ActiveX applet and
CGI scripts. Note that all the DHM modules from the Communication level and below run on
the server host; only the modules in the Application Layer run on the client workstation.

Hypermedia Service. The applet also handles the
presentation of links in the HTML documents.

The applet (Figure 4) is composed of several threaded
components, linked together by a stream of data originating
from the web server and the Hypermedia Service and
ending up in the Navigator frame. Java threads are
employed to maximize parallelism and performance. The
data streaming is implemented so that new components can
be added seamlessly as needed. 6

The document presented to the user consists of two frames,
one hidden containing the applet and supporting Javascript
functions, and one visible containing the user’s document.

The left side of Figure 5 shows the flow of the HTML
document through the applet from the web server to the
Netscape frame. On the right side is an example of the
transformation of a piece of HTML code. In this case a line
in the original document mentions the Japanese author
Kenzaburo Oe.

The URL of the original document is sent to the DHM
server, which returns an anchor encoded as a LocSpec. The
LocSpec is stored by the applet, and a link containing a
reference to the LocSpec is inserted in the document, as
indicated in the LocSpec. This link is later encapsulated in
Javascript, so that the Navigator always calls back to the
applet when following links. Finally the line is handed over

to a Javascript procedure (printFrame) that prints the line in
a Netscape frame.

Figure 4: The DHM/WWW applet

The URL of the desired document is either input directly in
the applet window or provided indirectly by clicking on a
link in the Navigator frame. The URL is checked, and if
valid, turned over to the first part of the stream shown
above. The task of actually retrieving the document is easily
handled by standard Java library classes.

Communication with the DHM server is carried out using
CGI scripts. The applet constructs a query containing an
opcode and a LocSpec (consisting of the URL, position,
offset, time stamp, etc.), as exemplified in Table 2, and uses
the post method to send the request to the server. The server
returns a stream consisting of LocSpecs encoding the
locations of the anchors as shown in Table 3. The applet
decodes this information and makes it available to the
component inserting links in the HTML stream. An
exception is raised if the time stamp of the anchors are
earlier than the time stamp of the document, alerting the
user to the possibility of corrupted links.

Based on the HTML stream and the anchor information,
links are inserted into the stream. Currently, the algorithm
uses simple position offsets, but we hope soon to have
developed a more sophisticated technique involving the
contexts of link anchors.

Downstream from link insertion is the insertion of
Javascript code. In order to maintain control over the
displayed documents, the applet must be used on all
subsequent follow-links. To ensure this, Javascript code is
inserted in every link, including the ordinary existing URLs,
so that clicking on a link calls the applet with the
appropriate parameters, rather than just causing the browser
to retrieve a new document. If a link has more than one
destination, the user is queried as to which one should be
opened.

In contrast to Java applets, Javascript programs are allowed
to write to a HTML document. In order to present the
document to the user, calls to Javascript functions are
generated and presented to the browser through
LiveConnect.7 Once the document has been generated, the
user can click on any link, causing the applet to repeat the
procedure outlined above. A user can however break out of
this cycle by manually entering a URL or by selecting a
bookmarked URL. As there is no Java equivalent of the
BeforeNavigate event (see below), this cannot be helped.

6 Currently, links are inserted in the document stream based
on position and offset in the original HTML document.
Because HTML documents are apt to change, this
component will later be extended to recognize contexts of
link anchors. This extension will not affect the other
components.

7 LiveConnect was introduced by Netscape in order to
facilitate communication between JavaScript programs,
Java applets and plug-ins. JavaScript objects and methods
can be manipulated by Java applets and vice versa, and both
can control appropriate plug-ins.

 6

by Oe.

by
Oe.

by <a href=““ onClick=“parent.h_f.docu
ment.dhmWeb.followLink(382761471)”
onMouseOver=“window.status=‘DHM:

// 382761471’; return true”>Oe

printFrame(“by <a href=\”\” onClick=
\”parent.h_f.document.dhmWeb.follow
Link(382761471)\” onM...>Oe“)

by Oe.

ExampleWeb server

Decode
LocSpecs

DHM server

Receive HTML

Insert anchors

Add Javascript
to anchors

Generate JS code
to display doc.

Netscape
Frame

Applet

HTTP CGI

LiveConnect

Figure 5: Structure of the DHM/WWW applet

3.2.2 Limitations
The DHM/WWW integration applet was designed to be
platform independent, but unfortunately not browser
independent; as LiveConnect, a necessary part of the current
implementation, is pure Navigator technology. The promise
of Java Beans [22] and the evolution of signed applets will
hopefully provide the Java language with tools versatile
enough to make vendor specific solutions obsolete.
Furthermore, text selection in a browser window cannot be

detected by an applet, making it impossible to support more
elegant link creation.

The performance issue with regard to applets should not be
forgotten – the response time of the DHM/WWW applet
does not match normal Navigator use. As the ‘Just In Time’
compiler technology used by Navigator is still fairly new,
we expect performance to improve as the compiler becomes
more advanced. The current version of the applet uses CGI
to communicate with the DHM server; future versions will
probably employ direct socket communication to eliminate
the overhead of CGI. http://www.daimi.aau.dk/cgidhm/sendhm?QUERY

=webBrowser,0202,http://www.daimi.aau.dk/~b
ouvin/favoritebooks.html,1,(“http://www.dai
mi.aau.dk/~bouvin/favoritebooks.html””Oe””A
nother good read is A Personal Matter by
Oe””374””2””853100323”)

Table 2: Example of an invocation of the
FollowLink operation using a CGI script

3.2.3 Communication layer
At the Communication layer, a CGI script is used to
implement the hypermedia service part of the DHM OHP
protocol. This CGI script is fairly simple; it decodes the
query and starts a communication with the HSP, which
returns a response to the CGI script to send back to the
applet before the script is terminated. The CGI script and
the DHM HSP use simple socket communication.

 7

Table 2 illustrates what is sent from the DHM/WWW applet
when invoking a follow link operation on an anchor in a
document named http://www.daimi.aau.dk/~bouvin/-
favoritebooks.html. The parameters involves a LocSpec,
which consists in this case of the URL of the document, the
selection and its context, the position and offset of the
selection and the last modification date of the document.
The date is sent, so that an exception can be raised and
appropriate steps taken, if the document should be newer
than the date in the LocSpec.

3.3 DHM/WWW: platform-dependent solutions

We now describe a platform-dependent version of the above
applet. Platform dependency is usually not desirable, but in
this case, the advantages of developing to a specific
platform may be worth the tradeoff. Apart from the
differences in the Application layer, the platform dependent
solution still assumes the rest of the model, as shown in
Figure 3, from the Communication layer and down.

3.3.1 Using Navigator
Finally, the sendhm CGI script returns the LocSpecs
matching the anchor (see Table 3), allowing the
DHM/WWW to retrieve the WWW document and present
the destination to the user. If the follow link operation
results in more than one destination document (as in this
case), all links are returned to allow the user to select a
destination. Again the modification date registered by the
Hypermedia service is included in order to enable the applet
to raise a warning if the document has changed since the
anchors were updated.

We have investigated two approaches to this solution, one
using plug-ins and one using the SDI (Software
Development Interface) API [25], as defined by Spyglass,
Inc..

The Plug-in approach
With the introduction of LiveConnect in Navigator 3.0, it is
now feasible to use plug-ins for document retrieval and
processing. Because plug-ins currently have far wider
privileges than applets, they are better able to support the
necessary network communication. (Plug-ins can connect to
more than one server and, running natively, are ostensibly
faster than applets.) Furthermore, plug-ins can stream data
from and to Navigator; a plug-in may request a HTML
document and (after processing it) send it back to the
browser for rendering. Javascript patching is still needed to
maintain control, but this integrates well with the plug-in
since plug-ins can be controlled from Javascript. In this
context the plug-in takes on the role of the DHM/WWW
applet as shown in Figure 4.

3.2.4 Runtime and Storage layers
The Runtime and Storage layers require only minimal
extensions including specializations of Component,
Instantiation, and Presentation classses similar to that
described in [12]. Moreover, the Anchors are designed in
accordance with the unifying concepts, refSpecs and
LocSpecs, proposed in [14]. In this case the LocSpecs
contain redundant information in the form of positions for
the text string to be located. This enables detection and
possibly repair of the LocSpecs if the documents change
after the link is established, as discussed in [7, 19]. The SDI (Software Development Interface) approach

(1,2,(“http://www.authors.jp/oe.html””Oe
””Kenzaburo Oe””70””2” ”850650404”),-
(“http://-
www.daimi.aau.dk/japan.html””Kenzaburo
Oe” ”Yukio Mishima, Kenzaburo Oe and
Musashi Miyamoto are my””230”
”12””852100133”))

Table 3: Example response generated by a
FollowLink operation

 8

Figure 6: DHM menu added to Navigator

Essential to both approaches is that the DHM/WWW
program can be notified, via the BeforeNavigate event,
whenever the WebBrowser control/ InternetExplorer is
about to navigate to a different URL8, handle the retrieval
of the WWW document, and hand the modified document
to the WebBrowser control/InternetExplorer for rendering.
The existence of the BeforeNavigate event eliminates the
need to patch links with Javascript and ensures that control
is always held by the DHM/WWW program. This total
control is not possible with a Javascript solution, as the user
is always free to enter an URL or to use bookmarks,
operations which are not caught by the Javascript program.

Apart from the WWW augmentation we have also
integrated Navigator into a local use context (with a local
DHM server). Figure 6 shows how Navigator can be
augmented with a DHM menu. The menu allows the user to
create new DHM links to URLs, add URLs as anchors for
existing DHM links and follow DHM links.

E.g. a user may create a link from say, Microsoft Word to a
URL; following the link causes Navigator to load the URL.
Likewise, a link can be followed from Navigator to another
document. The user can use ‘Show Connections’ to see the
available links from the WWW document to other
applications’ documents.

3.3.3 Limitations The implementation of the DHM extension consists of three
parts: The main limitations of these two solutions are the platform

dependency and the lack of support for text selection. The
Navigator plug-in should be fairly easy to port to Macintosh
and Unix; it remains to be seen how well Microsoft will be
able to port ActiveX to other platforms.

1. attaching a menu to the menu bar in Navigator,
2. catching the events generated when menu items in the

DHM menu are selected by the user, and
3. fetching and presenting URLs. 4. TOWARDS SUPPORT FOR COOPERATIVE WORK

ON WWW MATERIALS Attaching the DHM menu to the menu bar in Navigator is
done using standard window and menu functions defined in
the Win32 SDK. Catching the menu events from the DHM
menu is implemented using hooks. Fetching and presenting
URLs are accomplished through Netscape’s version of the
SDI (Software Development Interface) API [25]. This
approach could potentially replace the DHM/WWW applet,
but would then only work for Windows.

One of the goals of introducing DHM-based hypermedia in
a WWW context is to support better ways for workgroups
to cooperate on shared materials on the WWW [11]. In this
section we describe how the DHM extension to the Web
described above can be extended to support different
aspects of cooperation on Web materials. We assume in the
following that the workgroup members are registered as
users with the shared DHM/WWW server and that they use
an HTML editor which is integrated with the DHM/WWW
applet.

3.3.2 Using Explorer
As the OLE Automation interface exposed by Explorer is
richer than the SDI API found in Navigator, more control is
possible (see [21] for a description of the interface). There
are two obvious approaches: a DHM/WWW Windows
program can either embed the WebBrowser ActiveX
control, or it can use the InternetExplorer OLE Automation
object to control the Microsoft Internet Explorer
application.

8 Which may happen as a result of external automation,
internal automation from a script, or the user clicking a link
or typing in the address bar.

 9

4.1 Multiple hypermedia structures for the same body
of materials

5. THE VOLUME OF HYPERMEDIA STRUCTURES
COMPARED TO CONTENTS

The approach illustrated in Section 3 immediately provides
support for imposing several different link and composite
structures on the same body of Web documents. At the
same time it allows anyone to make links into and from
documents. This is one step towards support for cooperative
working and it is reminiscent of Intermedia’s multiple
“webs” over a single corpus of documents [15]. Like
Intermedia, we support “annotation access”, the ability for
non-document owners to create links. But as Halasz
proposed in his “Seven issues paper” [17], full support for
cooperative authoring on the Web requires both flexible
transaction mechanisms and awareness notifications.

In an open hypermedia system, information contents are
usually stored apart from hypermedia structures although
some system architectures and databases allow mixed
contents and structure storage [11]. In architectures where
contents is kept completely separate from structure, it is
usually the case that the size of hypermedia structuring data
is much smaller than the contents. To illustrate with an
extreme example, it is possible to create thousands of links
in a large body of digitized video that still only occupy a
fraction of the volume of the contents data. Thus providing
a large body of video together with hypermedia structures
having numerous links does not turn the hypermedia
database into a bottleneck. The bottleneck continues to be
the transfer and playback of the video. In less extreme cases
hypermedia structures still only add minimal overhead to
the resources required to transfer information over the net.

4.2 Locking and long term transactions

Assume that a group of people wants to establish a working
environment in which they can cooperatively use and edit a
set of Web pages residing on one or more servers. They
could then use an DHM-based hypermedia service to
coordinate their work on individual pages. A Java-based
HTML editor could be tailored to request a write lock on
the page to be edited from the hypermedia service before
allowing the editor to change the document. If the write
lock is already taken by another user, the request fails to
assign a write lock, and the requesting user is told who
possesses the write-lock. This way asynchronous
cooperation based on turn taking and exchange of locks on
WWW documents can be supported via an external
hypermedia service.

Implemented in an object-oriented language and using an
object-oriented database, DHM Components typically
require a few hundred bytes depending on the number of
Anchors, RefSpecs and user-defined attributes they
include.9 For instance, establishing a link between anchors
in two different Web documents implies the creation of
three DHM Components (two atomic components and a link
component), which in all requires less than half a Kbyte
storage. Adding more links to the same documents adds
only link components and anchors, not new atomic
components. For example, five new links between anchors
in two given documents may add as little as a single Kbyte
storage in overhead. Compared to typical document sizes on
the Web this is barely noticeable. 4.3 Awareness notifications

Awareness notifications can be supported for Web
documents via a DHM-based hypermedia service. The
client DHM/WWW applet described above needs to be
extended with mechanisms to subscribe to notifications on
specific events. It also needs a thread that listens to
notifications sent from the connected DHM server. This
would allow a user who is unsuccessful in obtaining a write
lock on a given page managed via the DHM server, to
subscribe to a lock release for that particular page.
Whenever the write lock is released, the DHM/WWW
applet receives a notification that can be displayed to the
user.

In short, the main challenge in providing DHM-based
hypermedia for documents residing in a distributed
environment is not storage and transport overhead. The
more serious challenges are to keep documents in the
distributed environment in synch with the hypermedia
databases, and to provide ready access to the DHM
information when a document with links is accessed.

6. CONCLUSION

In providing Dexter-based hypermedia support for linking
and collaboration on the WWW, our initial ambition was to
create a platform-independent DHM/WWW applet that
would run on all Navigator supported platforms. We have
encountered two main obstacles to this goal: network
restrictions and inadequate communication between applets
and browsers (both Netscape and Explorer).

The cooperation support for Web documents is weaker than
the support that can be provided for fully DHM-based
hypermedia structures. For instance, awareness notifications
based on the embedded HTML based links cannot be
distinguished from changes to contents, since the links are
not represented as objects in the Hypermedia Database. But
the hypermedia service can provide full notification support
for the link and composite structures created “on top” of the
Web pages and stored in the hypermedia database.

An applet is not allowed to connect to other than the
originating server. There are good reasons not to give an

9 This is a pessimistic estimate of the overhead, as specific
databases may be able to compress the data even more.

 10

2. Baldazo, R. and S.J. Vaughan-Nichols, Web
Publishing Made Easier. Byte, 1995. December: p.
170 pp.

applet free access to the rest of the Internet, but the
limitations seem unnecessarily harsh. A more subtle
approach allows some granularity regarding which servers
the applet may connect to. Alternatively, signed applets can
be granted greater privileges, a concept similar to ActiveX.

3. Berners-Lee, T., et al. World-Wide Web: An
Information Infrastructure for High-Energy Physics.
in Software Engineering, AI and Expert Systems for
High Energy and Nuclear Physics. 1992. La Londe-
les-Maures, France.

We have found the integration between applets and
browsers to be inadequate. There is no Java equivalent of
Explorer’s BeforeNavigate, and events such as text
selection in a WWW document are not accessible to an
applet in either browser. Effectively, this makes it
impossible to implement elegant link creation in a platform
independent way. Applets are not allowed to write directly
to an HTML document – the existing solution in Navigator
of going through Javascript is unsatisfactory and clumsy.
Rather than having to encapsulate every link in Javascript
code (a hack more than a satisfying solution), an event
should be triggered by the browser, so that the actual
download of data could be handled by a Java applet.
Applets should also be allowed to register themselves as
content handlers with the browser, thus eliminating the need
for plug-ins.

4. Berners-Lee, T., et al., World-Wide Web: The
Information Universe. Electronic Networking:
Research, Applications and Policy, 1992. 1(2).

5. Bush, V., As We May Think. The Atlantic Monthly,
1945. August.

6. Carr, L., et al. The Distributed Link Service: A Tool
for Publishers, Authors and Readers. in Fourth
International World Wide Web Conference : ``The
Web Revolution''. 1995. Boston, Massachusetts, USA.

7. Davis, H.C., S. Knight, and W. Hall. Light
Hypermedia Link Services: A Study of Third Party
Integration. in European Congerence on Hypermedia
Technology (ECHT '94). 1994. Edinburgh, UK.:
ACM.

8. Engelbart, D. Authorship provisions in Augment. in
Proc. IEEE Compcon Conference. 1984. San
Francisco, California: IEEE.

Our alternative to the unsatisfactory platform independent
solution has been to use the two browsers’ proprietary
platform dependent architectures: plug-ins and ActiveX.
Despite the relative ease of porting plug-ins and Microsoft’s
claims that ActiveX will spread to other platforms, this still
runs counter to the original vision of the World Wide Web
as one standard for accessing information. Not only are
users expected to use the “right” browser, they must also
run it on the “right” machine. Even then the integration
between browser and program is insufficient. This
fragmentation of the WWW is highly undesirable, and it
remains to be seen whether Java can mature fast enough to
provide an adequate alternative to the browser/platform
dependent approach.

9. Goodman, D., The Complete HyperCard Handbook.
1987, New York: Bantam Books.

10. Grønbæk, K. Object oriented design of the Distributed
Hypermedia Toolkit (DHTK). EuroCODE report:
CODE-AU-94-5, Computer Science Department,
Aarhus University, Denmark, 1994.

11. Grønbæk, K., et al., Cooperative Hypermedia
Systems: A Dexter-Based Architecture.
Communications of the ACM, 1994. 37(2): p. 64-75.

12. Grønbæk, K. and J. Malhotra. Building Tailorable
Hypermedia Systems: the embedded-interpreter
approach. in ACM conference on Object Oriented
Programming Systems, Languages and Applications
(OOPSLA ‘94). 1994. Portland, Oregon, US, 23-27
October, 1994: ACM.

Since the technology is still in its infancy, augmenting the
WWW with services that provide hypermedia structures
outside the document contents is a challenge, but assuming
that the Web browsers become more open as suggested in
this paper the approach holds great promise. Perhaps, as
envisioned by the hypermedia pioneers, the World Wide
Web will one day become an environment supporting
dynamic link creation and collaboration world wide.

13. Grønbæk, K. and R.H. Trigg, Design issues for a
Dexter-based hypermedia system. Communications of
the ACM, 1994. 37(2): p. 40-49.

14. Grønbæk, K. and R.H. Trigg. Toward a Dexter-based
model for open hypermedia: Unifying embedded
references and link objects. in HYPERTEXT '96 –
Seventh ACM Conference on Hypertext. 1996.
Washington DC, USA, March 16-20. ACKNOWLEDGMENT

15. Haan, B.J., et al., IRIS Hypermedia Services.
Communications of the ACM, 1992. 35(1): p. 36-51.

This work is supported by the Danish National Science
Research Foundation (SNF) grant number 9502631. We
thank a number of anonymous reviewers for their helpful
comments. Finally we thank Randy Trigg for his comments
and suggestions for language improvement.

16. Halasz, F. and M. Schwartz, The Dexter Hypertext
Reference Model. Communications of the ACM, 1994.
37(2): p. 30-39.

17. Halasz, F.G., Reflections on NoteCards: Seven issues
for the next generation of hypermedia systems.
Communications of the ACM, 1988. 31(7): p. 836 -
852.

REFERENCES
1. Andrews, K., F. Kappe, and H. Maurer, Serving

Information to the Web with Hyper-G. Computer
Networks and ISDN Systems, 1995. 27(6).

18. Halasz, F.G., T.P. Moran, and R.H. Trigg, NoteCards
in a Nutshell, in Proceedings of ACM CHI+GI'87

 11

 12

Conference on Human Factors in Computing Systems
and Graphics Interface. 1987. p. 45-52.

19. Hall, W., H. Davis, and G. Hutchings, Rethinking
Hypermedia: The Microcosm Approach. 1996,
Boston: Kluwer Academic Publishers.

20. Meyrowitz, N. Intermedia: The architecture and
construction of an object-oriented hypermedia system
and applications framework. in OOPSLA '86
Conference. 1986.

21. Microsoft. The Web Browser Control and the Internet
Explorer Object. WWW:
http://www.microsoft.com/intdev/sdk/docs/iexplore/,
Microsoft,

22. Microsystems, S. Java‘ Beans: A Component
Architecture for Java. WWW:
http://splash.javasoft.com/beans/WhitePaper.html, Sun
Microsystems,

23. Nanard, J. and M. Nanard, Using Structured Types to
Incorporate Knowledge in Hypertext, in Proceedings
of ACM Hypertext'91. 1991. p. 329-343.

24. Nelson, T.H., Computer Lib/Dream Machines. 1974:
Mindful Press.

25. Spyglass. “Software Development Interface” API.
WWW:
http://www.spyglass.com:4040/newtechnology/integra
tion/iapi.htm, Spyglass, Inc.,

26. Trigg, R.H. A Network-Based Approach to Text
Handling for the Online Scientific Community. Ph.D.
Thesis: TR-1346, University of Maryland, 1983.

	INTRODUCTION
	EMBEDDED ADDRESSES VERSUS LINK OBJECTS
	AUGMENTING THE WWW WITH DEXTER -BASED HYPERMEDIA
	Implementing DHM/WWW: challenges and choices
	DHM/WWW: a platform-independent solution
	Application layer
	Limitations
	Communication layer
	Runtime and Storage layers

	DHM/WWW: platform-dependent solutions
	Using Navigator

	The Plug-in approach
	The SDI (Software Development Interface) approach
	
	Using Explorer
	Limitations

	TOWARDS SUPPORT FOR COOPERATIVE WORK ON WWW MATERIALS
	Multiple hypermedia structures for the same body of materials
	Locking and long term transactions
	Awareness notifications

	THE VOLUME OF HYPERMEDIA STRUCTURES COMPARED TO CONTENTS
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

