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Abstract 

This paper discusses experiences and lessons learned from the design of an open hypermedia 
system, one that integrates applications and data not “owned” by the hypermedia. The Dexter 
Hypertext Reference Model [8] was used as the basis for the design. Though our experiences 
were generally positive, we found the model constraining in certain ways and underdeveloped in 
others. For instance, Dexter argues against dangling links, but we found several situations where 
permitting and supporting dangling links was advisable. In Dexter, the data objects making up a 
component's contents are encapsulated in the component; in practice, references to objects stored 
apart from the hypermedia structure should be allowed. We elaborate Dexter's notion of 
composite component to include composites that “contain” other components and composites 
with structured contents, among others. The paper also includes a critique of Dexter's notion of 
link directionality, proposes  a distinction between marked and unmarked anchors, and discusses 
anchoring within a composite. 

1. Introduction 

The hypermedia work discussed here is part of the DeVise project at the Computer Science De-
partment, Aarhus University, Denmark [4]. The DeVise project is developing general tools to 
support experimental system development and cooperative design in a variety of application 
areas including large engineering projects. These use settings are characterized by group work 
distributed over time, space and hardware platforms. The requirements this intensely 
collaborative, open-ended work makes on hypermedia include: a shared database, access from 
multiple platforms, portability, extensibility and tailorability. For a detailed discussion of our 
engineering project use setting and its CSCW and hypermedia requirements, see [5]. 
 To our knowledge, no hypermedia system met these requirements on the platforms we needed 
to support. Having to build our own, we nonetheless wanted to benefit from the experience and 
expertise of past and present hypermedia designers. It was for this reason that we decided to use 
the Dexter Hypertext Reference Model [8] (called “Dexter” in the rest of this paper) as our 
platform. Dexter is an attempt to capture the best design ideas from a group of “classic” 
hypertext systems, in a single overarching data and process model. Although these systems have 
differing design goals and address a variety of application areas, Dexter managed to combine and 
generalize many of their best features.  
 We took the Dexter reference model as the starting point and turned it into an object-oriented 
design and prototype implementation (called DeVise Hypermedia, or just "DHM"), running on 
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the Apple Macintosh. As programming environment, we chose the Mjølner Beta System sup-
porting the object oriented programming language BETA [12]. The Mjølner Beta System 
includes an object-oriented database [10], in which our hypermedia structures are stored. 
 Among the media supported by DHM are text, graphics, and video, using a styled text editor, 
a simple drawing editor, and a Quicktime movie player, respectively. DHM also supports link 
and node browser composites and a composite to capture screen configurations of open 
components (modeled on the NoteCards TableTop [18]). In addition to traversing links 
(including multi-headed ones), users can edit link endpoints using a graphical interface. 
Components can also be retrieved and presented via title search. Dexter's model of anchoring is 
extended to include a distinction between marked and unmarked anchors. Finally, in contrast to 
Dexter, DHM explicitly supports dangling links. 
 In short, our attempt to directly “implement” Dexter was largely successful. We were 
surprised at the robustness of the resulting design - it met several of our goals not explicitly 
identified in the Dexter paper. At the same time, we uncovered holes in the model, areas where 
further development is needed. For some of these, we now feel prepared to offer proposals for 
other hypermedia designers. Those involving the overall architecture, details of the data and 
process model, and tailorability are described in [3]  
 This paper reviews the Dexter model before discussing our experiences in applying it. Our 
focus here is on links, anchors, composites and cross-layer interfaces. For each of these, we 
comment on the utility and applicability of Dexter, identify the implementation choices made in 
our prototype, and make recommendations for designers of future systems and standards. We 
close with research issues and open questions. 

2. The Dexter Model 

The Dexter Hypertext Reference Model [8] separates a hypertext system into three layers having 
well defined interfaces as shown in Figure 1. 

User 
interface

Client Server: support  for 
distributed multi-user 
access
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persistent object storage

Different types 
of materials / 
media

Individual 
applications

Runtime 
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Presentation 
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Figure 1: The Dexter model layers and interfaces.1 
The Storage layer captures the persistent, storable objects making up the hypertext. The basic 
object provided in the Storage layer is the component. As shown in Figure 2, components are 

                                                 
1Some of the text appearing in the figure is our own. 
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divided into contents, corresponding to the component’s data, and component information. The 
component information includes a general purpose set of attributes, a presentation specification 
and a set of anchors. The atomic component is an abstraction replacing the widely used but 
weakly defined concept of ‘nodes’ in a hypertext network. Composite components provide a 
hierarchical structuring mechanism. The contents of a link component is a list of specifiers, each 
including a presentation specification as well as component and anchor identifiers. A hypertext is 
simply a set of components. 

Component LinkComponent

Contents

Component  
Info

Attributes
Presentation 
Specification Anchors

Component  
Info

Specifiers

Attributes
Presentation 
Specification Anchors

 

Figure 2: Component structure in the Storage Layer. 
The Within-component layer corresponds to individual applications. The applications are 
responsible, for example, for supporting content selections for link anchoring.  
 The interface between the storage and within-component layers is based on the notion of 
anchors. Anchors consist of an identifier that can be referred to by links and a value that picks 
out the anchored part of the material. 
 The Runtime layer is responsible for handling links, anchors, and components at runtime. 
Objects in the runtime layer include sessions, managing interaction with particular hypertexts, 
and instantiations, managing interaction with particular components. The runtime layer provides 
tool independent user interface facilities through operations like NewComponent, 
AddLinkEndpoints, and FollowLink.  
 The interface between the Storage layer and the Runtime layer includes presentation 
specifications which determine how components are presented at runtime. Presentation 
specifications might include information on screen location and size of a presentation window, as 
well as a “mode” for presenting a component. Halasz and Schwartz [8] use the example of an 
animation component that can be opened in either run mode or edit mode. 

3. Links 

Links have traditionally formed the heart of hypertext systems. Indeed, the traversable network 
structures formed by links distinguish hypertext from other means of organizing information. 
Hypertext systems have implemented links in several ways, many of which are unified by 
Dexter’s notion of link component. In addition to the typical source/destination links, Dexter can 
model multi-headed links. Furthermore, because links are components, they can be the endpoints 
of other links.  Through the use of specifiers, the Dexter model supports computed as well as 
static links. Simple “typing” can be supported by adding attributes to the link component. But 
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DHM also supports full-fledged typing of links due to its object oriented component design.  

 

Figure 3: Creating a link with one source endpoint, anchored in the currently selected text: 
"components". 

Though in principle a Dexter link could have fewer than two endpoints, this is expressly 
forbidden by the model’s semantics. In DHM, we have relaxed this constraint; that is, "dangling" 
links having zero or one endpoint are perfectly legal.  This means that we can avoid the modal 
"start link / end link" link creation style of many hypertext interfaces. In DHM's user interface, 
links can be created in two ways: (1) a “New Link” operation creating a link having one endpoint 
based on the current selection in the active editor (Figure 3); in this case no instantiation or link 
editor is opened. And, (2) via a new node operation creating a link with an open instantiation and 
link editor; in this case the link has no endpoints (see the ‘Link 78’ link instantiation in Figure 4).  
Endpoints can be added to the link at any time and as shown in Figure 4, links can have other 
links as an endpoints.  
 In our implementation of links, we confronted two problems with Dexter’s model: 1) its 
aversion to dangling links and 2) its notion of link directionality. 

 
Figure 4: Two open link instantiations.  Link32 has three endpoints, two in the 'Intro' text 
component, the third in the 'Ovals' component.  Link 78 has no endpoints. 
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Dangling links 
In spite of Dexter’s explicit aversion to dangling links, we chose to support them for several 
reasons. First, they allow lazy updating and garbage collection following node and anchor 
deletion. This is useful when the link to be deleted (or modified) lives on another machine or is 
currently locked by another user. A second, related situation involves data objects outside the 
control of the hypermedia, for example, files with component data needing to be moved or 
deleted.  Third, the dangling endpoint can be “re-linked” or re-connected to another node or 
anchor without having to rebuild the entire link (especially useful for multi-headed links). 
Finally, dangling links can be created intentionally as place holders when the desired endpoint 
node or anchor does not yet exist.2 The presence of such dangling links could be monitored by 
the system either on command or automatically. Users could then be prompted to reconnect 
"missing" link endpoints. 
 We imagine four different dangling link situations arising in an integrated Dexter-based 
hypermedia system: 1) the endpoint’s component has been deleted, 2) its anchor has been 
deleted, 3) relevant data objects referred to by the component’s contents are unavailable, and 4) 
the anchor value is invalid. In the first two cases, the deletion operation modifies the objects so 
that later calls to followLink raise exceptions. Component deletion is implemented by clearing 
the anchors list and component contents, and setting a “deleted” flag. Anchor deletion is carried 
out similarly.  
 Cases 3 and 4 usually result from actions outside the control of the hypermedia. For example, 
data objects making up a component's contents can become unavailable if the contents is a file 
identifier, and the file has been moved or deleted independent of the hypermedia (case 3). In this 
case the followLink operation should catch the file system exception and pass it along as a 
dangling exception to the user.  
 In case 4, the data specified by the anchor value becomes invalid when relevant parts of the 
component's contents are modified with editors outside the hypermedia. This situation is 
impossible to detect in general during a CreateLinkMarker or a FollowLink operation, since the 
lookup/computation of anchor value may not raise an exception. An example is when the anchor 
value is still legal but out of date, as a result of "unauthorized" editing of the surrounding text. 
Currently in DHM, we have implemented detection and re-link options for case 1. 

Link directionality 
The Dexter model includes only minimal motivation for its notion of link directionality. We are 
told that each link specifier indicates a directionality using one of the constants FROM, TO, 
BIDIRECT, or NONE, depending on whether the endpoint is to be interpreted as a source, 
destination, both source and destination or neither, respectively. Furthermore, every link must 
have at least one TO specifier.3 Such directionality constants are used to model the link seman-
tics of existing hypermedia systems. For example, Intermedia links are modeled with BIDIRECT 
directionality on all specifiers. This is because the endpoints of an Intermedia link are 
directionally interchangeable [6].4 In NoteCards, on the other hand, links have a definite source 
and destination [9]. 
 However, this scheme seems insufficient to model the ways people interpret link direction in 
                                                 
2An anonymous reviewer mentioned an example from asynchronous collaborative writing: When sharing parts of a hypertext, the 
links should dangle while being shared, but be re-attached when returned. 
3An anonymous reviewer informs us that the wording of the constraint should have been, "at least one TO or BIDIRECT 
specifier."  
4Intermedia anchor attributes can, however, be notated with directionality information. 
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practice. Consider the following three notions of directionality: 

Semantic direction: This concerns the semantic relationship between the components captured by 
the link. For example, a “Supports” link connecting components A and B has a direction in 
which it normally “reads”; the argument in Component A “supports” the claim in Component B 
[17, Ch. 4]. 

Creation direction: This direction corresponds to the order in which the link endpoints were 
created: the source of the link is the first endpoint created while the destination is the last. 

Traversal direction: This direction specifies how the link can be traversed. HyperCard links, for 
example, can only be traversed from source to destination.5 NoteCards links can be traversed in 
both directions, although the interface style is different. When moving from source to 
destination, one clicks on the source anchor’s icon. To move from destination to source, a menu 
of “back-links” is opened in the destination component and the appropriate link icon is chosen. 

These senses of link direction are in principle orthogonal. For example, the directions in which 
one can physically traverse a link in a particular system need not depend on the link’s semantic 
direction. Nonetheless, many systems enforce dependencies. In NoteCards, for example, the 
creation direction corresponds to the traversal direction. 
 DHM currently supports selection of creation and traversal directions in the user interface, 
based in part on the Dexter proposal for direction attributes on link specifiers. When creating a 
link the user can choose the first endpoint to be either Source, Destination or Both (see Figure 3). 
This corresponds to setting either FROM, TO or BIDIRECT, respectively, as the value of the 
direction attribute on the corresponding specifier. Similar choices are available when adding 
endpoints to a link with the Add Endpoint operation. By default, endpoints created using New 
Link are Sources and those created with Add Endpoint are destinations.  
 The direction values recorded in the specifiers support the user's choice of traversal direction. 
As shown in Figure 5, the Follow Link operation can be invoked with a direction parameter.  

 

Figure 5: FollowLink invoked with a direction parameter. 
When following a link in the Forward direction, endpoints with Direction value TO or 
BIDIRECT are presented. In the Backward direction, endpoints with Direction value FROM or 
BIDIRECT are presented. When following a link in All directions, all endpoints are presented.  
 As described above, the Dexter direction values were originally introduced to model 
directionality in existing systems. Designers of systems based on the model need to make 
operational interpretations of the values. This is straightforward for the TO and FROM values, 
though less clear for NONE and BIDIRECT. In DHM we use BIDIRECT for endpoints that are 
                                                 
5This is because HyperCard links are implemented as “Go” statements in a script in the link’s source component.  This also 
means that link's cannot normally be seen from their destination cards.  
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conceived of as both Source and Destination. Currently, we have not chosen a semantics for the 
NONE value, but it could be used to mark endpoints that (temporarily) should not be presented 
when following a link. Such endpoints would still be accessible, however, through a link 
instantiation (see Figure 4). Link instantiations also allow the user to change the direction values 
of the individual endpoints. 
 Semantic direction is not explicitly supported in DHM (nor in Dexter), but the general 
attribute mechanism that allows creation of different link types could also support assigning 
semantic directions to links. 

4. Anchors 

One of Dexter’s major contributions is its explicit identification of anchors as the “glue” 
connecting network structures to the contents of particular components. Anchors are a controlled 
means of referring into the “within-component” layer. Without them, links connect only whole 
components. 
 Dexter's anchors are defined relative to a component and have an ID that is unique within that 
component. Link specifiers must identify both the component id and the anchor id. Explicit 
mention of the ids can be avoided, however, by use of the resolver function. Thus the component 
appearing at a link’s endpoint can be computed dynamically at run-time. 
 The biggest problem with Dexter’s model of anchors is that they are not properly related to 
composites. That is, although the contents of a composite (a list of baseComponents) is “visible” 
(i.e. explicitly represented) in Dexter, no mention is made of how anchors should refer to 
baseComponents within a parent composite. In DHM we allow composites to include full-
fledged components (see Section 5), adding further problems. For example, can an anchor in the 
parent composite be tied to an anchor in one of its components? That is, can a link “indirect” 
through a composite’s anchor, to an enclosed component’s anchor? 
 There are other anchor-related issues not discussed in the Dexter model. Consider, for 
example, links to whole components. Should they have an empty Anchor reference in the 
specifier or should there be a “whole-component” anchor type? In that case, should all whole-
component links share a single whole-component anchor, or should there be one anchor for each 
link endpoint? Indeed the general issue of sharing versus multiplying anchors is left open in 
Dexter. When creating a new link, should one always try to reuse any existing applicable anchor? 
Suppose there is more than one? 
 DHM extends Dexter’s model of anchors in several ways. First, we use dynamic references 
(“pointers”) instead of anchor ids.6 This means that link specifiers point directly at component 
anchors avoiding the need for an accessor function. Similar benefits accrue from our block-
structured type definitions. For example, a component need not include an explicit reference to 
its enclosing hypertext, since the component definition is nested within the definition of a 
hypertext.  Likewise, an anchor need not include an explicit reference to its enclosing 
component. 
 DHM distinguishes three high-level anchor types which are independent of the type of the 
enclosing component. Whole-component anchors support the degenerate case of link endpoints 
not anchored within a component’s contents.7  
 A marked anchor is one for which an object is directly embedded in the component’s contents. 
                                                 
6Utilizing an OODB makes our pointers persistent. We nonetheless maintain component and anchor ids in order to be able to 
generate transportable interchange formats for the hypermedia structure. 
7In DHM, all links with whole-component endpoints in a component share a single whole-component anchor. 
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This object is called a link marker in Dexter. It may or may not be visible – indeed, some link 
markers (e.g. an Emacs “mark”) may never be made visible as such.   Link markers can be 
implemented in a variety of ways depending on the medium and the application. Visible icons 
inserted in text or graphic windows can serve as link markers (e.g. NoteCards link icons). But a 
link marker can also correspond to what Meyrowitz [14] calls a “permanent tie." Such an object 
can “track” editing changes to the component’s contents including changes to the selection itself. 
The instantiation may or may not choose to make the link marker visible (see e.g. Intermedia’s 
arrow icon registering the presence of a permanent selection). DHM supports link markers in text 
components by maintaining outlined regions around the anchored text selections (see e.g. Figure 
5). A command-click within the link marker region invokes a follow on the corresponding 
marked anchor’s links. 
 Unmarked anchors have no link markers; normally their location within a component must be 
computed. Text components in DHM support a particular kind of unmarked anchor called 
keyword anchor, resembling the endpoints of HyperTies text links [16]. As an example, consider 
the situation of creating a new link shown in Figure 3.  Assume that creating this new link 
requires creating a new anchor (as opposed to reusing an existing one), and that the anchor is to 
be a keyword anchor.  In that case, a copy of the selected text string "components" is saved as the 
anchor's value. If we later invoke FollowLink from this component (assuming we haven't 
selected some marked anchor), the values of all keyword anchors will be checked against the 
currently selected text. In particular, if the current selection’s text matches the string 
"components", then the link created earlier in Figure 3 will be followed. 
 What sets a marked anchor apart from an unmarked one is the ability to retrieve the anchor 
directly from a selection in the component’s editor. If a link marker is currently selected (or 
clicked on) in an active instantiation, then the instantiation is able to directly access the 
corresponding marked anchor. This is in contrast to unmarked anchors, where a search is 
required. In general, each unmarked anchor must be asked whether it is currently “selected” (or 
perhaps more descriptively, “applicable”). The operation of following a link from a marked 
anchor takes constant time, whereas following a link from an unmarked anchor requires in the 
worst case time proportional to the total number of unmarked anchors in the component.8 

5. Structures 

The notion of structure (usually hierarchical) has been a part of most hypertext systems since the 
time of NLS/Augment in the 60’s [2]. For example, in KMS (as well as its ancestor ZOG), a 
hierarchical structuring capability is built in to every node [1]. That is, all nodes (called “frames” 
in ZOG/KMS) can act as containers for other nodes. Usually, however, hierarchical structuring 
(and on rare occasions, non-hierarchical structuring), is supported through separate mechanisms. 
 In his landmark “Seven Issues” paper [7], Halasz proposed that the composite be elevated to 
peer status with atomic nodes and links. Composites would provide a means of capturing non-
link based organizations of information, making structuring beyond pure networks an explicit 
part of hypertext functionality.9 Halasz also argued for the related notions of computed and 
virtual composites. The contents of a computed composite might be, say, the result of a structural 
query over the hypertext returning sets of nodes and links as “hits.” A virtual composite is 
created on demand at runtime, but not saved in the database. Later, in Aquanet [13], the 
composite idea was used to capture slot-based structures consisting of nodes and relations, multi-

                                                 
8This can be improved using hash tables and the like. 
9A similar appeal was made by van Dam in his attack on links as “go to” statements [19]. 
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headed variants of links. 
 Halasz [7] also criticized purely link-based structures arguing that they lack a single node 
capturing the overall structure. The Dexter model’s composite addresses this critique. As an 
aggregation of base components, it acts both as a full-fledged node in the network, and as 
container for the structure. In particular, such a composite can contain link components (in 
addition to atomic nodes and other composites) and thus capture complex non-hierarchical 
network structures (like Aquanet relations). Furthermore, because of Dexter’s clean separation of 
storage and runtime environments, virtual composites are a simple variant.  
 Though Dexter’s notion of composite is a significant step forward, it is only one point in a 
spectrum of possible designs, each having certain advantages and meeting certain needs. Our 
architecture extends some of the features of composites to all components and supports tailoring 
for particular applications. Users adding a new component type to our prototype make choices 
along several dimensions: 
Virtual /  non-virtual components 
Any component type (not just composites) can be made virtual by setting a flag. Such 
components resemble normal components, but are only saved in the databse if pointed at by 
another component (say, a link). Virtual components resemble objects in a dynamic 
programming environment; if they are not pointed at, then garbage collection reclaims them.  For 
example, a virtual component might be created automatically to display the results of a user-
instigated search over the components in the hypertext.  Such a component persists beyond the 
current session only if the user creates a link to (or from) it, or adds it to an existing non-virtual 
composite. 
Computed /  static components 
Any component type (again, not just composites) can be the result of a computation rather than 
manually created by the user. A typical example is a component created on the basis of executing 
a query. An attribute contains the information used to perform the computation. The component’s 
contents can later be recomputed, either on demand or automatically. Some computed 
components (like browsers) reflect the contents or structure of parts of the network. In such 
cases, recomputation can be based on periodic checks of the relevant sub-net, or be forced by 
changes to the relevant components or structures. 

 

Figure 6: A link browser composite in DHM; lists all links to and from the ‘Introduction’ 
node. 

Component contents 
Typically, the contents of a component in a hypermedia system is not simply a flat set of 
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enclosed data objects as suggested by the Dexter model. The contents are often structured and 
can include external data objects or references to other components  
 Figure 6 shows an example of a composite type supporting link browsing in DHM. The Link 
browsers are implemented as virtual, computed composites with contents consisting of lists of 
references to LinkComponents. Though not anticipated by the Dexter model, this kind of 
component was fairly easy to implement using the framework described above. 

6. Integration and component contents 

The phenomenon of system developers “owning the world” is becoming increasingly rare. 
Today, most practical computer environments consist of several third-party applications, perhaps 
customized for particular work settings by local programmers or user “tailors.” Unfortunately, 
the application's inner workings and structures are rarely open to the developer trying to integrate 
them into a larger environment. The problem is exacerbated if the environment includes a variety 
of platforms. 
 In the last few years, researchers and developers have tried to use hypermedia to address this 
integration problem [6,11,14,15]. They argue that rather than build a hypermedia system that 
includes all the applications needed in the work setting, one should employ hypermedia as a 
linking architecture, “connecting” the world rather than “owning” it.  
 The Dexter reference model makes certain important contributions to this effort. At the 
architectural level, Dexter distinguishes between objects belonging to the hypermedia (both 
runtime and storage), and the “within-component layer” belonging to an application. In addition 
to describing the hypermedia data model, Dexter offers two important concepts that help cross 
the boundary: anchors and presentation specifications (or “pspecs”). Anchors support linking to 
and from points within the contents of an application document. Pspecs provide a means of 
storing with a Dexter component information on how to start and configure the appropriate 
application. 
 In this way, Dexter opens the possibility of integrating third-party applications into a linked 
hypermedia environment. But it leaves unaddressed at least two important integration-related 
questions. First, Dexter does not distinguish between components whose contents are managed 
(in particular, stored) by the hypermedia and those whose contents are managed by third-party 
applications. 
 The second problem involves application documents having internal structure. Such 
documents can be integrated as a single unit into the hypermedia using a component “wrapper,” 
but often the document’s internal structure needs to be “exposed” for link anchoring. Dexter 
suggests using composite components, but says almost nothing about how to anchor within the 
subcomponents of a composite. Nor does it discuss whether or how a composite component’s 
structure should model the internal structure of an application document. 
 In what follows, we discuss various possibilities for storing and structuring component 
contents.  

Atomic components 
Figure 7 shows two possible relations between an atomic component and an anchored data 
object.  
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(a)         (b) 
Figure 7: Data is either part of an atomic component's contents or referenced by it. Dotted 
arrows denote references out of the hypermedia structure, e.g. file identifiers. 

Figure 7a shows the traditional situation where an application and its data objects are built into 
the hypermedia system. DrawComponents in DHM, for example, encapsulate lists of graphical 
objects stored in the OODB together with the components.  
 In Figure 7b, on the other hand, data objects wrapped by a component are stored separately 
and only referenced by the contents of the component. In DHM such a component/data object 
relationship characterizes FileComponents and MovieComponents. FileComponents are used to 
wrap arbitrary files in the file system, using file ids stored in the component contents. In this 
way, DHM supports linking (using WholeComponent anchors) to documents created with 
applications like Microsoft Word or Excel. The followLink operation automatically launches the 
appropriate applications on the files. 
 MovieComponents "wrap" Quicktime movies,10 large multimedia data objects (from five to 
several hundred MB) too complex to be easily stored in the hypermedia's OODB. Hence, they are 
better handled using MovieFiles referred to by the component contents.11 In this case, the 
component contents is again a file identification object.  
 Typically, an atomic data object belongs to exactly one atomic component. But there are cases 
where two or more components need to share data. Here the components could have different 
types and/or different sets of anchors. Such multiple "views" can be supported by the 
containment style shown in Figure 7b.  An example is movie files that are shared across several 
hypertexts. 

Composite components  
With regard to more complex structures of components and data objects, we found Dexter’s 
notion of composite too narrow.  According to Dexter, a composite may only contain 
encapsulated data objects (see for example, the bottom left composite in Figure 8). As noted by 
Halasz & Schwartz [8] this kind of composite can model structures like graphical canvases. For 
other applications, however, composites need to refer to external data objects or other 
components. In the following we discuss examples of such composite types.  
Composites "containing" components  
We first consider composites that refer to other components as shown in Figure 8. One example 
is the TableTopComposite used to save configurations of components presented together on the 
screen [18].  

                                                 
10QuickTime™ by Apple Computer Inc. implements a format for storing/compressing digitized video. 
11In the current version of DHM, we support only one movie per MovieFile (and thus, one per component). 
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Figure 8: A composite referring to components of arbitrary type. Solid arrows denote 
internal pointers to hypermedia components. 

The contents of a TableTopComposite in DHM is a list of “pointers” to components of arbitrary 
type (including links and other composites); the composite does not directly contain or wrap the 
data objects.  
Another example is a search composite. Here the contents is a list of components (again of 
arbitrary type) resulting from a title search or a query over component attributes. In DHM, such 
search composites are implemented as virtuals (see Section 5).  
 Figure 9 shows a slightly different kind of composite also used to group components. In this 
case, the composite is both virtual and has contents restricted to certain component types. 

 

 

Figure 9: A virtual composite restricted to refer to LinkComponents. Shading indicates 
that the composite is virtual. 

The VirtualLinkComposite shown in Figure 9 is used in DHM to implement a variety of link 
browsers. VirtualLinkComposites are “computed” composites; their creation requires collecting a 
set of links for an entire hypertext, a specific component, or a specific anchor, depending on the 
kind of link browser.  
 When appropriate, restricting the component types pointed at by a composite allows 
customization of the composite's interface. For example, the VirtualLinkComposite interface 
supports inspecting individual link specifiers. A non-typed composite would require runtime 
checking of the types of contained objects. 
Encapsulated data objects 
Up to this point we have focused on composites referring to other components; we now turn to 
composites referring directly to data objects. In Figure 10, the data objects depicted as triangles 
are encapsulated in a "container" object (drawn as a rectangle). In this case, the internal structure 
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of the rectangular object is visible to the hypermedia system. Hence the composite and its nested 
components can refer both to the enclosing object and to its internal structure.12 

                                                 
12A nested component is one whose definition lies within the block structure of the parent component and thus can only be seen 
in the context of the parent component.  (The block structure of DHM's object-oriented component definitions is similar to the 
block structure found in procedural programming languages like Pascal.) 
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Figure 10: Typed composite with nested components points at encapsulated data objects. 
An example of such a composite is used to represent modules in the Mjølner Beta programming 
environment [12]. Mjølner supports fine grained modularization of programs using atomic 
modules called ‘fragments’ contained in parent 'fragment groups'. Each fragment group is stored 
on a file. To represent such structures in DHM, we use a FragmentGroupComposite whose 
contents includes a reference to a fragment group file and a list of references to atomic 
FragmentComponents, declared inside the block structure of the FragmentGroupComposite. The 
nested structure of the ‘real world’ data objects (fragments and fragment groups) is mapped 
directly onto the nested structure of the representing components. Hence, we can link both to the 
composite and to the nested atomic components representing individual fragments.  
 We provide anchors at the FragmentGroupComposite level, to comments made at the group 
level, and at the FragmentComponent level, to comments and source code belonging to 
individual fragments.  
Structured composites 
An Aquanet relation [13], is an example of a hypermedia composite with structured contents. A 
fundamental feature of an Aquanet relation is that it resembles a multi-headed link with named 
endpoints.  
 We suggest implementing such relations as composites with contents consisting of a keyed 
table of component references (see Figure 11). Such a composite can refer to basic objects 
(atomic components) as well as to other relations (structured composite components). In 
addition, instantiations of such composites can support link-like "endpoint" presentation. Here, 
"endpoints" refer to the components pointed at by the composite's encapsulated structure. 
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Figure 11: A composite with structured contents.  

Summary 
The above examples show the need to support a broad view of component contents when 
developing open Dexter-based hypermedia systems. Integrating components of the Storage layer 
with data objects of the within-component layer is one important aspect (as illustrated by the 
difference between a DrawComponent and a MovieComponent). Another is the internal 
integration of components and composites as illustrated by the cases of TableTopComposite and 
VirtualLinkComposite. Table 1 summarizes the discussion in this section along three dimensions. 

Structure of contents Type/location of contents Definition of contents 
• Atomic 
• Unstructured  collection  
• Structured  collection  
 - sorted list 
 - keyed table 
 - tree 
 - ... 

• Data objects 
 - within component 
 - outside component 
• Components 
 - restricted types 
 - unrestricted 

• Encapsulated in this 
component 
 
• Globally visible 

Table 1: Three aspects of component contents. 

7. Concluding remarks 

This paper discussed experiences from Dexter-based hypermedia development in the DeVise 
project at Aarhus University. The work has lead to clarifications and extensions to the Dexter 
model. Those treated in this paper are concerned with integration issues and the design of central 
object classes like links, anchors, and composites.  
 Our work on Dexter based hypermedia contributes to the Esprit III project, EuroCODE, aimed 
at developing a CSCW Open Development Environment, a so-called “CSCW shell." One of the 
EuroCODE activities involves extending our Dexter based hypermedia architecture to support 
cooperation via long term transactions, flexible locking and event notifications. The open, 
extensible architecture we are developing comprises an object oriented framework for 
developing multi-user hypermedia applications [3].  
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