

Design issues for a Dexter-based hypermedia system

Kaj Grønbæk
Computer Science Department, Aarhus University,
Ny Munkegade 116, DK 8000 Aarhus C, Denmark.

Randall H. Trigg
Xerox PARC

3333 Coyote Hill Rd., Palo Alto, CA 94304, USA

October 29, 1993
To appear in Communications of the ACM, February, 1994.

Abstract

This paper discusses experiences and lessons learned from the design of an open hypermedia
system, one that integrates applications and data not “owned” by the hypermedia. The Dexter
Hypertext Reference Model [8] was used as the basis for the design. Though our experiences
were generally positive, we found the model constraining in certain ways and underdeveloped in
others. For instance, Dexter argues against dangling links, but we found several situations where
permitting and supporting dangling links was advisable. In Dexter, the data objects making up a
component's contents are encapsulated in the component; in practice, references to objects stored
apart from the hypermedia structure should be allowed. We elaborate Dexter's notion of
composite component to include composites that “contain” other components and composites
with structured contents, among others. The paper also includes a critique of Dexter's notion of
link directionality, proposes a distinction between marked and unmarked anchors, and discusses
anchoring within a composite.

1. Introduction

The hypermedia work discussed here is part of the DeVise project at the Computer Science De-
partment, Aarhus University, Denmark [4]. The DeVise project is developing general tools to
support experimental system development and cooperative design in a variety of application
areas including large engineering projects. These use settings are characterized by group work
distributed over time, space and hardware platforms. The requirements this intensely
collaborative, open-ended work makes on hypermedia include: a shared database, access from
multiple platforms, portability, extensibility and tailorability. For a detailed discussion of our
engineering project use setting and its CSCW and hypermedia requirements, see [5].
 To our knowledge, no hypermedia system met these requirements on the platforms we needed
to support. Having to build our own, we nonetheless wanted to benefit from the experience and
expertise of past and present hypermedia designers. It was for this reason that we decided to use
the Dexter Hypertext Reference Model [8] (called “Dexter” in the rest of this paper) as our
platform. Dexter is an attempt to capture the best design ideas from a group of “classic”
hypertext systems, in a single overarching data and process model. Although these systems have
differing design goals and address a variety of application areas, Dexter managed to combine and
generalize many of their best features.
 We took the Dexter reference model as the starting point and turned it into an object-oriented
design and prototype implementation (called DeVise Hypermedia, or just "DHM"), running on

1

the Apple Macintosh. As programming environment, we chose the Mjølner Beta System sup-
porting the object oriented programming language BETA [12]. The Mjølner Beta System
includes an object-oriented database [10], in which our hypermedia structures are stored.
 Among the media supported by DHM are text, graphics, and video, using a styled text editor,
a simple drawing editor, and a Quicktime movie player, respectively. DHM also supports link
and node browser composites and a composite to capture screen configurations of open
components (modeled on the NoteCards TableTop [18]). In addition to traversing links
(including multi-headed ones), users can edit link endpoints using a graphical interface.
Components can also be retrieved and presented via title search. Dexter's model of anchoring is
extended to include a distinction between marked and unmarked anchors. Finally, in contrast to
Dexter, DHM explicitly supports dangling links.
 In short, our attempt to directly “implement” Dexter was largely successful. We were
surprised at the robustness of the resulting design - it met several of our goals not explicitly
identified in the Dexter paper. At the same time, we uncovered holes in the model, areas where
further development is needed. For some of these, we now feel prepared to offer proposals for
other hypermedia designers. Those involving the overall architecture, details of the data and
process model, and tailorability are described in [3]
 This paper reviews the Dexter model before discussing our experiences in applying it. Our
focus here is on links, anchors, composites and cross-layer interfaces. For each of these, we
comment on the utility and applicability of Dexter, identify the implementation choices made in
our prototype, and make recommendations for designers of future systems and standards. We
close with research issues and open questions.

2. The Dexter Model

The Dexter Hypertext Reference Model [8] separates a hypertext system into three layers having
well defined interfaces as shown in Figure 1.

User
interface

Client Server: support for
distributed multi-user
access

File structure/
database organization/
persistent object storage

Different types
of materials /
media

Individual
applications

Runtime
layer

Storage
layer

Within-component
layer

Presentation
specifications

Anchors

Figure 1: The Dexter model layers and interfaces.1
The Storage layer captures the persistent, storable objects making up the hypertext. The basic
object provided in the Storage layer is the component. As shown in Figure 2, components are

1Some of the text appearing in the figure is our own.

 2

divided into contents, corresponding to the component’s data, and component information. The
component information includes a general purpose set of attributes, a presentation specification
and a set of anchors. The atomic component is an abstraction replacing the widely used but
weakly defined concept of ‘nodes’ in a hypertext network. Composite components provide a
hierarchical structuring mechanism. The contents of a link component is a list of specifiers, each
including a presentation specification as well as component and anchor identifiers. A hypertext is
simply a set of components.

Component LinkComponent

Contents

Component
Info

Attributes
Presentation
Specification Anchors

Component
Info

Specifiers

Attributes
Presentation
Specification Anchors

Figure 2: Component structure in the Storage Layer.
The Within-component layer corresponds to individual applications. The applications are
responsible, for example, for supporting content selections for link anchoring.
 The interface between the storage and within-component layers is based on the notion of
anchors. Anchors consist of an identifier that can be referred to by links and a value that picks
out the anchored part of the material.
 The Runtime layer is responsible for handling links, anchors, and components at runtime.
Objects in the runtime layer include sessions, managing interaction with particular hypertexts,
and instantiations, managing interaction with particular components. The runtime layer provides
tool independent user interface facilities through operations like NewComponent,
AddLinkEndpoints, and FollowLink.
 The interface between the Storage layer and the Runtime layer includes presentation
specifications which determine how components are presented at runtime. Presentation
specifications might include information on screen location and size of a presentation window, as
well as a “mode” for presenting a component. Halasz and Schwartz [8] use the example of an
animation component that can be opened in either run mode or edit mode.

3. Links

Links have traditionally formed the heart of hypertext systems. Indeed, the traversable network
structures formed by links distinguish hypertext from other means of organizing information.
Hypertext systems have implemented links in several ways, many of which are unified by
Dexter’s notion of link component. In addition to the typical source/destination links, Dexter can
model multi-headed links. Furthermore, because links are components, they can be the endpoints
of other links. Through the use of specifiers, the Dexter model supports computed as well as
static links. Simple “typing” can be supported by adding attributes to the link component. But

 3

DHM also supports full-fledged typing of links due to its object oriented component design.

Figure 3: Creating a link with one source endpoint, anchored in the currently selected text:
"components".

Though in principle a Dexter link could have fewer than two endpoints, this is expressly
forbidden by the model’s semantics. In DHM, we have relaxed this constraint; that is, "dangling"
links having zero or one endpoint are perfectly legal. This means that we can avoid the modal
"start link / end link" link creation style of many hypertext interfaces. In DHM's user interface,
links can be created in two ways: (1) a “New Link” operation creating a link having one endpoint
based on the current selection in the active editor (Figure 3); in this case no instantiation or link
editor is opened. And, (2) via a new node operation creating a link with an open instantiation and
link editor; in this case the link has no endpoints (see the ‘Link 78’ link instantiation in Figure 4).
Endpoints can be added to the link at any time and as shown in Figure 4, links can have other
links as an endpoints.
 In our implementation of links, we confronted two problems with Dexter’s model: 1) its
aversion to dangling links and 2) its notion of link directionality.

Figure 4: Two open link instantiations. Link32 has three endpoints, two in the 'Intro' text
component, the third in the 'Ovals' component. Link 78 has no endpoints.

 4

Dangling links
In spite of Dexter’s explicit aversion to dangling links, we chose to support them for several
reasons. First, they allow lazy updating and garbage collection following node and anchor
deletion. This is useful when the link to be deleted (or modified) lives on another machine or is
currently locked by another user. A second, related situation involves data objects outside the
control of the hypermedia, for example, files with component data needing to be moved or
deleted. Third, the dangling endpoint can be “re-linked” or re-connected to another node or
anchor without having to rebuild the entire link (especially useful for multi-headed links).
Finally, dangling links can be created intentionally as place holders when the desired endpoint
node or anchor does not yet exist.2 The presence of such dangling links could be monitored by
the system either on command or automatically. Users could then be prompted to reconnect
"missing" link endpoints.
 We imagine four different dangling link situations arising in an integrated Dexter-based
hypermedia system: 1) the endpoint’s component has been deleted, 2) its anchor has been
deleted, 3) relevant data objects referred to by the component’s contents are unavailable, and 4)
the anchor value is invalid. In the first two cases, the deletion operation modifies the objects so
that later calls to followLink raise exceptions. Component deletion is implemented by clearing
the anchors list and component contents, and setting a “deleted” flag. Anchor deletion is carried
out similarly.
 Cases 3 and 4 usually result from actions outside the control of the hypermedia. For example,
data objects making up a component's contents can become unavailable if the contents is a file
identifier, and the file has been moved or deleted independent of the hypermedia (case 3). In this
case the followLink operation should catch the file system exception and pass it along as a
dangling exception to the user.
 In case 4, the data specified by the anchor value becomes invalid when relevant parts of the
component's contents are modified with editors outside the hypermedia. This situation is
impossible to detect in general during a CreateLinkMarker or a FollowLink operation, since the
lookup/computation of anchor value may not raise an exception. An example is when the anchor
value is still legal but out of date, as a result of "unauthorized" editing of the surrounding text.
Currently in DHM, we have implemented detection and re-link options for case 1.

Link directionality
The Dexter model includes only minimal motivation for its notion of link directionality. We are
told that each link specifier indicates a directionality using one of the constants FROM, TO,
BIDIRECT, or NONE, depending on whether the endpoint is to be interpreted as a source,
destination, both source and destination or neither, respectively. Furthermore, every link must
have at least one TO specifier.3 Such directionality constants are used to model the link seman-
tics of existing hypermedia systems. For example, Intermedia links are modeled with BIDIRECT
directionality on all specifiers. This is because the endpoints of an Intermedia link are
directionally interchangeable [6].4 In NoteCards, on the other hand, links have a definite source
and destination [9].
 However, this scheme seems insufficient to model the ways people interpret link direction in

2An anonymous reviewer mentioned an example from asynchronous collaborative writing: When sharing parts of a hypertext, the
links should dangle while being shared, but be re-attached when returned.
3An anonymous reviewer informs us that the wording of the constraint should have been, "at least one TO or BIDIRECT
specifier."
4Intermedia anchor attributes can, however, be notated with directionality information.

 5

practice. Consider the following three notions of directionality:

Semantic direction: This concerns the semantic relationship between the components captured by
the link. For example, a “Supports” link connecting components A and B has a direction in
which it normally “reads”; the argument in Component A “supports” the claim in Component B
[17, Ch. 4].

Creation direction: This direction corresponds to the order in which the link endpoints were
created: the source of the link is the first endpoint created while the destination is the last.

Traversal direction: This direction specifies how the link can be traversed. HyperCard links, for
example, can only be traversed from source to destination.5 NoteCards links can be traversed in
both directions, although the interface style is different. When moving from source to
destination, one clicks on the source anchor’s icon. To move from destination to source, a menu
of “back-links” is opened in the destination component and the appropriate link icon is chosen.

These senses of link direction are in principle orthogonal. For example, the directions in which
one can physically traverse a link in a particular system need not depend on the link’s semantic
direction. Nonetheless, many systems enforce dependencies. In NoteCards, for example, the
creation direction corresponds to the traversal direction.
 DHM currently supports selection of creation and traversal directions in the user interface,
based in part on the Dexter proposal for direction attributes on link specifiers. When creating a
link the user can choose the first endpoint to be either Source, Destination or Both (see Figure 3).
This corresponds to setting either FROM, TO or BIDIRECT, respectively, as the value of the
direction attribute on the corresponding specifier. Similar choices are available when adding
endpoints to a link with the Add Endpoint operation. By default, endpoints created using New
Link are Sources and those created with Add Endpoint are destinations.
 The direction values recorded in the specifiers support the user's choice of traversal direction.
As shown in Figure 5, the Follow Link operation can be invoked with a direction parameter.

Figure 5: FollowLink invoked with a direction parameter.
When following a link in the Forward direction, endpoints with Direction value TO or
BIDIRECT are presented. In the Backward direction, endpoints with Direction value FROM or
BIDIRECT are presented. When following a link in All directions, all endpoints are presented.
 As described above, the Dexter direction values were originally introduced to model
directionality in existing systems. Designers of systems based on the model need to make
operational interpretations of the values. This is straightforward for the TO and FROM values,
though less clear for NONE and BIDIRECT. In DHM we use BIDIRECT for endpoints that are

5This is because HyperCard links are implemented as “Go” statements in a script in the link’s source component. This also
means that link's cannot normally be seen from their destination cards.

 6

conceived of as both Source and Destination. Currently, we have not chosen a semantics for the
NONE value, but it could be used to mark endpoints that (temporarily) should not be presented
when following a link. Such endpoints would still be accessible, however, through a link
instantiation (see Figure 4). Link instantiations also allow the user to change the direction values
of the individual endpoints.
 Semantic direction is not explicitly supported in DHM (nor in Dexter), but the general
attribute mechanism that allows creation of different link types could also support assigning
semantic directions to links.

4. Anchors

One of Dexter’s major contributions is its explicit identification of anchors as the “glue”
connecting network structures to the contents of particular components. Anchors are a controlled
means of referring into the “within-component” layer. Without them, links connect only whole
components.
 Dexter's anchors are defined relative to a component and have an ID that is unique within that
component. Link specifiers must identify both the component id and the anchor id. Explicit
mention of the ids can be avoided, however, by use of the resolver function. Thus the component
appearing at a link’s endpoint can be computed dynamically at run-time.
 The biggest problem with Dexter’s model of anchors is that they are not properly related to
composites. That is, although the contents of a composite (a list of baseComponents) is “visible”
(i.e. explicitly represented) in Dexter, no mention is made of how anchors should refer to
baseComponents within a parent composite. In DHM we allow composites to include full-
fledged components (see Section 5), adding further problems. For example, can an anchor in the
parent composite be tied to an anchor in one of its components? That is, can a link “indirect”
through a composite’s anchor, to an enclosed component’s anchor?
 There are other anchor-related issues not discussed in the Dexter model. Consider, for
example, links to whole components. Should they have an empty Anchor reference in the
specifier or should there be a “whole-component” anchor type? In that case, should all whole-
component links share a single whole-component anchor, or should there be one anchor for each
link endpoint? Indeed the general issue of sharing versus multiplying anchors is left open in
Dexter. When creating a new link, should one always try to reuse any existing applicable anchor?
Suppose there is more than one?
 DHM extends Dexter’s model of anchors in several ways. First, we use dynamic references
(“pointers”) instead of anchor ids.6 This means that link specifiers point directly at component
anchors avoiding the need for an accessor function. Similar benefits accrue from our block-
structured type definitions. For example, a component need not include an explicit reference to
its enclosing hypertext, since the component definition is nested within the definition of a
hypertext. Likewise, an anchor need not include an explicit reference to its enclosing
component.
 DHM distinguishes three high-level anchor types which are independent of the type of the
enclosing component. Whole-component anchors support the degenerate case of link endpoints
not anchored within a component’s contents.7
 A marked anchor is one for which an object is directly embedded in the component’s contents.

6Utilizing an OODB makes our pointers persistent. We nonetheless maintain component and anchor ids in order to be able to
generate transportable interchange formats for the hypermedia structure.
7In DHM, all links with whole-component endpoints in a component share a single whole-component anchor.

 7

This object is called a link marker in Dexter. It may or may not be visible – indeed, some link
markers (e.g. an Emacs “mark”) may never be made visible as such. Link markers can be
implemented in a variety of ways depending on the medium and the application. Visible icons
inserted in text or graphic windows can serve as link markers (e.g. NoteCards link icons). But a
link marker can also correspond to what Meyrowitz [14] calls a “permanent tie." Such an object
can “track” editing changes to the component’s contents including changes to the selection itself.
The instantiation may or may not choose to make the link marker visible (see e.g. Intermedia’s
arrow icon registering the presence of a permanent selection). DHM supports link markers in text
components by maintaining outlined regions around the anchored text selections (see e.g. Figure
5). A command-click within the link marker region invokes a follow on the corresponding
marked anchor’s links.
 Unmarked anchors have no link markers; normally their location within a component must be
computed. Text components in DHM support a particular kind of unmarked anchor called
keyword anchor, resembling the endpoints of HyperTies text links [16]. As an example, consider
the situation of creating a new link shown in Figure 3. Assume that creating this new link
requires creating a new anchor (as opposed to reusing an existing one), and that the anchor is to
be a keyword anchor. In that case, a copy of the selected text string "components" is saved as the
anchor's value. If we later invoke FollowLink from this component (assuming we haven't
selected some marked anchor), the values of all keyword anchors will be checked against the
currently selected text. In particular, if the current selection’s text matches the string
"components", then the link created earlier in Figure 3 will be followed.
 What sets a marked anchor apart from an unmarked one is the ability to retrieve the anchor
directly from a selection in the component’s editor. If a link marker is currently selected (or
clicked on) in an active instantiation, then the instantiation is able to directly access the
corresponding marked anchor. This is in contrast to unmarked anchors, where a search is
required. In general, each unmarked anchor must be asked whether it is currently “selected” (or
perhaps more descriptively, “applicable”). The operation of following a link from a marked
anchor takes constant time, whereas following a link from an unmarked anchor requires in the
worst case time proportional to the total number of unmarked anchors in the component.8

5. Structures

The notion of structure (usually hierarchical) has been a part of most hypertext systems since the
time of NLS/Augment in the 60’s [2]. For example, in KMS (as well as its ancestor ZOG), a
hierarchical structuring capability is built in to every node [1]. That is, all nodes (called “frames”
in ZOG/KMS) can act as containers for other nodes. Usually, however, hierarchical structuring
(and on rare occasions, non-hierarchical structuring), is supported through separate mechanisms.
 In his landmark “Seven Issues” paper [7], Halasz proposed that the composite be elevated to
peer status with atomic nodes and links. Composites would provide a means of capturing non-
link based organizations of information, making structuring beyond pure networks an explicit
part of hypertext functionality.9 Halasz also argued for the related notions of computed and
virtual composites. The contents of a computed composite might be, say, the result of a structural
query over the hypertext returning sets of nodes and links as “hits.” A virtual composite is
created on demand at runtime, but not saved in the database. Later, in Aquanet [13], the
composite idea was used to capture slot-based structures consisting of nodes and relations, multi-

8This can be improved using hash tables and the like.
9A similar appeal was made by van Dam in his attack on links as “go to” statements [19].

 8

headed variants of links.
 Halasz [7] also criticized purely link-based structures arguing that they lack a single node
capturing the overall structure. The Dexter model’s composite addresses this critique. As an
aggregation of base components, it acts both as a full-fledged node in the network, and as
container for the structure. In particular, such a composite can contain link components (in
addition to atomic nodes and other composites) and thus capture complex non-hierarchical
network structures (like Aquanet relations). Furthermore, because of Dexter’s clean separation of
storage and runtime environments, virtual composites are a simple variant.
 Though Dexter’s notion of composite is a significant step forward, it is only one point in a
spectrum of possible designs, each having certain advantages and meeting certain needs. Our
architecture extends some of the features of composites to all components and supports tailoring
for particular applications. Users adding a new component type to our prototype make choices
along several dimensions:
Virtual / non-virtual components
Any component type (not just composites) can be made virtual by setting a flag. Such
components resemble normal components, but are only saved in the databse if pointed at by
another component (say, a link). Virtual components resemble objects in a dynamic
programming environment; if they are not pointed at, then garbage collection reclaims them. For
example, a virtual component might be created automatically to display the results of a user-
instigated search over the components in the hypertext. Such a component persists beyond the
current session only if the user creates a link to (or from) it, or adds it to an existing non-virtual
composite.
Computed / static components
Any component type (again, not just composites) can be the result of a computation rather than
manually created by the user. A typical example is a component created on the basis of executing
a query. An attribute contains the information used to perform the computation. The component’s
contents can later be recomputed, either on demand or automatically. Some computed
components (like browsers) reflect the contents or structure of parts of the network. In such
cases, recomputation can be based on periodic checks of the relevant sub-net, or be forced by
changes to the relevant components or structures.

Figure 6: A link browser composite in DHM; lists all links to and from the ‘Introduction’
node.

Component contents
Typically, the contents of a component in a hypermedia system is not simply a flat set of

 9

enclosed data objects as suggested by the Dexter model. The contents are often structured and
can include external data objects or references to other components
 Figure 6 shows an example of a composite type supporting link browsing in DHM. The Link
browsers are implemented as virtual, computed composites with contents consisting of lists of
references to LinkComponents. Though not anticipated by the Dexter model, this kind of
component was fairly easy to implement using the framework described above.

6. Integration and component contents

The phenomenon of system developers “owning the world” is becoming increasingly rare.
Today, most practical computer environments consist of several third-party applications, perhaps
customized for particular work settings by local programmers or user “tailors.” Unfortunately,
the application's inner workings and structures are rarely open to the developer trying to integrate
them into a larger environment. The problem is exacerbated if the environment includes a variety
of platforms.
 In the last few years, researchers and developers have tried to use hypermedia to address this
integration problem [6,11,14,15]. They argue that rather than build a hypermedia system that
includes all the applications needed in the work setting, one should employ hypermedia as a
linking architecture, “connecting” the world rather than “owning” it.
 The Dexter reference model makes certain important contributions to this effort. At the
architectural level, Dexter distinguishes between objects belonging to the hypermedia (both
runtime and storage), and the “within-component layer” belonging to an application. In addition
to describing the hypermedia data model, Dexter offers two important concepts that help cross
the boundary: anchors and presentation specifications (or “pspecs”). Anchors support linking to
and from points within the contents of an application document. Pspecs provide a means of
storing with a Dexter component information on how to start and configure the appropriate
application.
 In this way, Dexter opens the possibility of integrating third-party applications into a linked
hypermedia environment. But it leaves unaddressed at least two important integration-related
questions. First, Dexter does not distinguish between components whose contents are managed
(in particular, stored) by the hypermedia and those whose contents are managed by third-party
applications.
 The second problem involves application documents having internal structure. Such
documents can be integrated as a single unit into the hypermedia using a component “wrapper,”
but often the document’s internal structure needs to be “exposed” for link anchoring. Dexter
suggests using composite components, but says almost nothing about how to anchor within the
subcomponents of a composite. Nor does it discuss whether or how a composite component’s
structure should model the internal structure of an application document.
 In what follows, we discuss various possibilities for storing and structuring component
contents.

Atomic components
Figure 7 shows two possible relations between an atomic component and an anchored data
object.

 10

(a) (b)
Figure 7: Data is either part of an atomic component's contents or referenced by it. Dotted
arrows denote references out of the hypermedia structure, e.g. file identifiers.

Figure 7a shows the traditional situation where an application and its data objects are built into
the hypermedia system. DrawComponents in DHM, for example, encapsulate lists of graphical
objects stored in the OODB together with the components.
 In Figure 7b, on the other hand, data objects wrapped by a component are stored separately
and only referenced by the contents of the component. In DHM such a component/data object
relationship characterizes FileComponents and MovieComponents. FileComponents are used to
wrap arbitrary files in the file system, using file ids stored in the component contents. In this
way, DHM supports linking (using WholeComponent anchors) to documents created with
applications like Microsoft Word or Excel. The followLink operation automatically launches the
appropriate applications on the files.
 MovieComponents "wrap" Quicktime movies,10 large multimedia data objects (from five to
several hundred MB) too complex to be easily stored in the hypermedia's OODB. Hence, they are
better handled using MovieFiles referred to by the component contents.11 In this case, the
component contents is again a file identification object.
 Typically, an atomic data object belongs to exactly one atomic component. But there are cases
where two or more components need to share data. Here the components could have different
types and/or different sets of anchors. Such multiple "views" can be supported by the
containment style shown in Figure 7b. An example is movie files that are shared across several
hypertexts.

Composite components
With regard to more complex structures of components and data objects, we found Dexter’s
notion of composite too narrow. According to Dexter, a composite may only contain
encapsulated data objects (see for example, the bottom left composite in Figure 8). As noted by
Halasz & Schwartz [8] this kind of composite can model structures like graphical canvases. For
other applications, however, composites need to refer to external data objects or other
components. In the following we discuss examples of such composite types.
Composites "containing" components
We first consider composites that refer to other components as shown in Figure 8. One example
is the TableTopComposite used to save configurations of components presented together on the
screen [18].

10QuickTime™ by Apple Computer Inc. implements a format for storing/compressing digitized video.
11In the current version of DHM, we support only one movie per MovieFile (and thus, one per component).

 11

Figure 8: A composite referring to components of arbitrary type. Solid arrows denote
internal pointers to hypermedia components.

The contents of a TableTopComposite in DHM is a list of “pointers” to components of arbitrary
type (including links and other composites); the composite does not directly contain or wrap the
data objects.
Another example is a search composite. Here the contents is a list of components (again of
arbitrary type) resulting from a title search or a query over component attributes. In DHM, such
search composites are implemented as virtuals (see Section 5).
 Figure 9 shows a slightly different kind of composite also used to group components. In this
case, the composite is both virtual and has contents restricted to certain component types.

Figure 9: A virtual composite restricted to refer to LinkComponents. Shading indicates
that the composite is virtual.

The VirtualLinkComposite shown in Figure 9 is used in DHM to implement a variety of link
browsers. VirtualLinkComposites are “computed” composites; their creation requires collecting a
set of links for an entire hypertext, a specific component, or a specific anchor, depending on the
kind of link browser.
 When appropriate, restricting the component types pointed at by a composite allows
customization of the composite's interface. For example, the VirtualLinkComposite interface
supports inspecting individual link specifiers. A non-typed composite would require runtime
checking of the types of contained objects.
Encapsulated data objects
Up to this point we have focused on composites referring to other components; we now turn to
composites referring directly to data objects. In Figure 10, the data objects depicted as triangles
are encapsulated in a "container" object (drawn as a rectangle). In this case, the internal structure

 12

of the rectangular object is visible to the hypermedia system. Hence the composite and its nested
components can refer both to the enclosing object and to its internal structure.12

12A nested component is one whose definition lies within the block structure of the parent component and thus can only be seen
in the context of the parent component. (The block structure of DHM's object-oriented component definitions is similar to the
block structure found in procedural programming languages like Pascal.)

 13

 14

Figure 10: Typed composite with nested components points at encapsulated data objects.
An example of such a composite is used to represent modules in the Mjølner Beta programming
environment [12]. Mjølner supports fine grained modularization of programs using atomic
modules called ‘fragments’ contained in parent 'fragment groups'. Each fragment group is stored
on a file. To represent such structures in DHM, we use a FragmentGroupComposite whose
contents includes a reference to a fragment group file and a list of references to atomic
FragmentComponents, declared inside the block structure of the FragmentGroupComposite. The
nested structure of the ‘real world’ data objects (fragments and fragment groups) is mapped
directly onto the nested structure of the representing components. Hence, we can link both to the
composite and to the nested atomic components representing individual fragments.
 We provide anchors at the FragmentGroupComposite level, to comments made at the group
level, and at the FragmentComponent level, to comments and source code belonging to
individual fragments.
Structured composites
An Aquanet relation [13], is an example of a hypermedia composite with structured contents. A
fundamental feature of an Aquanet relation is that it resembles a multi-headed link with named
endpoints.
 We suggest implementing such relations as composites with contents consisting of a keyed
table of component references (see Figure 11). Such a composite can refer to basic objects
(atomic components) as well as to other relations (structured composite components). In
addition, instantiations of such composites can support link-like "endpoint" presentation. Here,
"endpoints" refer to the components pointed at by the composite's encapsulated structure.

 15

 16

Figure 11: A composite with structured contents.

Summary
The above examples show the need to support a broad view of component contents when
developing open Dexter-based hypermedia systems. Integrating components of the Storage layer
with data objects of the within-component layer is one important aspect (as illustrated by the
difference between a DrawComponent and a MovieComponent). Another is the internal
integration of components and composites as illustrated by the cases of TableTopComposite and
VirtualLinkComposite. Table 1 summarizes the discussion in this section along three dimensions.

Structure of contents Type/location of contents Definition of contents
• Atomic
• Unstructured collection
• Structured collection
 - sorted list
 - keyed table
 - tree
 - ...

• Data objects
 - within component
 - outside component
• Components
 - restricted types
 - unrestricted

• Encapsulated in this
component

• Globally visible

Table 1: Three aspects of component contents.

7. Concluding remarks

This paper discussed experiences from Dexter-based hypermedia development in the DeVise
project at Aarhus University. The work has lead to clarifications and extensions to the Dexter
model. Those treated in this paper are concerned with integration issues and the design of central
object classes like links, anchors, and composites.
 Our work on Dexter based hypermedia contributes to the Esprit III project, EuroCODE, aimed
at developing a CSCW Open Development Environment, a so-called “CSCW shell." One of the
EuroCODE activities involves extending our Dexter based hypermedia architecture to support
cooperation via long term transactions, flexible locking and event notifications. The open,
extensible architecture we are developing comprises an object oriented framework for
developing multi-user hypermedia applications [3].

Acknowledgments

This work has been supported by the Danish Research Programme for Informatics, grant number
5.26.18.19. Our thanks also go to the members of the DeVise project at Aarhus University and
four anonymous reviewers.

References

1. Akscyn, R., McCracken D., & Yoder, E. 1988. KMS: A distributed hypermedia system for
managing knowledge in organizations. CACM, 31, 7, (July), 820-835.

 17

2. Engelbart, D. C. 1984. Authorship provisions in AUGMENT. Proceedings of the 1984
COMPCON Conference, COMPCON '84 Digest, (San Francisco, Calif., February), pp. 465-
472.

3. Grønbæk, K, Hem, J.A., Madsen, O.L., & Sloth, L. Designing Dexter-Based Cooperative
Hypermedia. In this volume.

4. Grønbæk, K. & Knudsen, J. L. Tools and Techniques for Experimental System Develop-
ment. In Systä, K., Kellomäki, P., & Mäkinen, R.(eds.) Proceedings of the Nordic Workshop
on Programming Environment Research, Tampere, Finland, January 8-10, 1992.

5. Grønbæk, K., Kyng, M., & Mogensen, P. CSCW challenges in large-scale technical projects
– a case study. To appear in Proceedings of Conference on Computer Supported Cooperative
Work ‘92, Toronto, Ontario, November, 1992.

6. Haan, B.J., Kahn, P., Riley, V.A., Coombs, J.H., & Meyrowitz, N.K. IRIS Hypermedia
Services. Communications of the ACM 35(1), January 1992, pp.36-51.

7. Halasz, F. 1988. Reflections on NoteCards: Seven issues for the next generation of
hypermedia systems. Commun. ACM, 31, 7, (July), 836-852.

8. Halasz, F., & Schwartz, M. 1990. The Dexter hypertext reference. Proceedings of the
Hypertext Standardization Workshop, (Gaithersburg, Md., January), pp. 95-133.

9. Halasz, F., Moran, T., & Trigg, R. 1987. NoteCards in a nutshell. Proceedings of the CHI
‘87 Conference, (Toronto, Canada, April), pp. 45-52.

10. Hem, J.A., Madsen, O.L., Møller, K.J., Nørgaard, C., & Sloth, L. Object Oriented Database
Interface. Deliverable D5.2, ESPRIT project 5305 EuroCoOp IT Support for Distributed
Cooperative Work, December 1991.

11. Kacmar, C.J. & Leggett, J.J. PROXHY: A Process-Oriented Extensible Hypertext
Architecture. ACM Transactions on Information Systems 9(4), October 1991, pp. 399-419.

12. Kristensen, B.B., Madsen, O.L., Møller-Pedersen, B., & Nygaard, K: Object-Oriented
Programming in the Beta Programming Language. Addison-Wesley, forthcoming (1992).

13. Marshall, C.C., Halasz, F.G., Rogers, R.A., & Janssen, W.C. Aquanet: a hypertext tool to
hold your knowledge in place. Proceedings of Hypertext ‘91, ACM New York, December
1991, pp. 261-275.

14. Meyrowitz, N. The Missing Link: Why We’re All Doing Hypertext Wrong. In Barrett (ed.)
The Society of Text. MIT Press, Cambridge Massachusetts, 1989, pp. 107-114.

15. Pearl, Amy. 1989. Sun’s link service: A protocol for open linking. Proceedings of the
Hypertext ‘89 Conference, (Pittsburgh, Pa., November), pp. 137-146.

16. Shneiderman, B. 1987. User interface design for the HyperTIES electronic encyclopedia.
Proceedings of the Hypertext '87 Conference, (Chapel Hill, November), pp. 189-194.

17. Trigg, R. 1983. A network-based approach to text handling for the online scientific
community. Ph.D. dissertation. University of Maryland (University MicroFilms #8429934),
College Park, Md.

 18

 19

18. Trigg, Randall. 1988. Guided tours and tabletops: Tools for communicating in a hypertext
environment. ACM Trans. Off. Inf. Syst., 6,4, (October), 398-414.

19. van Dam, A. 1988. Hypertext '87: Keynote Address. CACM, 31, 7, (July), 887-895.

CR Categories and Subject Descriptors: E.1 [Data Structures]: Hypertext; H.1.2 [Models and
Principles]: User/Machine Systems - human information processing; H.2.1 [Database
Management]: Logical Design - hypertext; H.3.2 [Information storage and retrieval]: Information
storage - hypertext; H.4.2 [Information Systems Applications]: Types of Systems -hypermedia;
H.5.1 [Multimedia Information Systems]: Hypertext Navigation and Maps; I.7.2 [Document
Preparation]: Hypertext/Hypermedia.
General Terms: Hypermedia, hypertext.
Additional Key Words and Phrases: Dexter model, Composites, Dangling Links, Open
Hypermedia.

ABOUT THE AUTHORS:
KAJ GRØNBÆK is assistant professor at the Computer Science Department, Aarhus
University, Denmark. Current research interests include cooperative design, Computer
Supported Cooperative Work, development and use of hypermedia technology, and system
development with focus on object oriented tools and techniques. Authors' Present Address:
Computer Science Department, Aarhus University, Bld. 540, Ny Munkegade; DK-8000 Aarhus
C; Denmark; email: kgronbak@daimi.aau.dk.
RANDALL H. TRIGG is a member of the research staff at Xerox Palo Alto Research Center.
Current research interests include participatory design, the design and evolution of tailorable
computer systems, hypermedia, computer supported cooperative work, and connections between
social science and system design. Authors' Present Address: Xerox Palo Alto Research Center,
3333 Coyote Hill Road, Palo Alto, CA 94304; email: trigg@parc.xerox.com.

