
The I/O-Model

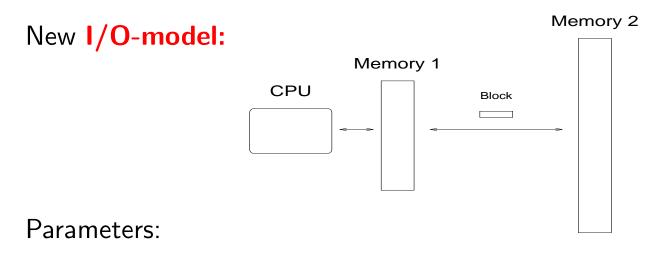
Aggarwal and Vitter, *The Input/Output Complexity of Sorting and Related Problems*. Communications of the ACM, 31(9), p. 1116-1127, 1988.

Analysis of algorithms

The standard model:

- ADD: 1 unit of time
- MULT: 1 unit of time
- BRANCH: 1 unit of time
- MEMACCESS: 1 unit of time

Reality

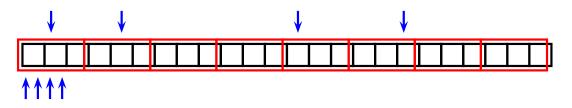

	Access time	Volume
Registers	1 cycle	1 Kb
Cache	5 cycles	512 Kb
RAM	50 cycles	128 Mb
Disk	2,000,000 cycles	20 Gb

CPU speed improves faster than RAM access time and much faster than disk access time

I/O bottleneck

I/O is the bottleneck \downarrow I/O should be optimized (not instruction count)

Analysis of algorithms


- N = no. of elements in problem.
- M = no. of elements that fits in RAM.
- B = no. of elements in a block on disk.
- D = no. of disks (copies of Memory 2)

Cost: Number of I/O's (block transfers) between Memory 1 and Memory 2.

Generic Example

Consider two O(n) algorithms:

- 1. Memory accessed randomly \Rightarrow page fault at each memory access.
- 2. Memory accessed sequentially \Rightarrow page fault every B memory accesses.

$$O(N)$$
 I/Os vs. $O(N/B)$ I/Os

Typically, $B \sim 10^3$.

Specific Examples

QuickSort \sim sequential access

VS.

HeapSort \sim random access

QuickSort: $O(N \log_2(N/M)/B)$ HeapSort: $O(N \log_2(N/M))$