### I/O-comparison trees

[Arge, Knudsen, Larsen, 93]

#### Result

#### Goal:

A general reduction theorem:

Lower bound on comparisons to solve a problem  $$\downarrow$$  Lower bound on I/Os to solve the problem

#### Method:

Extend the notion of comparison trees.

#### **Standard Comparison Trees**

- Binary trees.
- Internal node labelled with pairs of elements, represents comparisons.
- Edges labelled with one of the possible outcomes of the comparison above.
- Leaves labelled with one possible answer to problem ("Yes/No" for decision problems, a permutation for construction problems, an element for search problems)



Tree **solves** a problem  $\downarrow \downarrow$   $\forall$  leaves  $l: \forall$  input x ending in l: label of l is correct for x.

# I/O Comparison Trees

- Add unary I/O-nodes to comparison trees.
- I/O node labelled with position in memory of all elements before and after I/O.
- Root and leaves: I/O-nodes.
- Comparison nodes may only compare nodes in RAM (given by label of lowest ancestor which is an I/O-node).



### Compression

Compress comparison-only subtrees:



T: minimal height comparison tree to sort contents of RAM at v.

### Reduction

Compress entire tree by compressing all comparison-only subtrees in top-down order:

$$T_1 \to T_2$$

By induction on number of I/O-nodes on path: an input x will pass exactly the same I/O-nodes (same number of nodes having the same labels) in  $T_1$  and  $T_2$ .

Corollary: x ends up in leaf with same label in  $T_1$  and  $T_2$ .

Finally, remove all I/O-nodes from  $T_2$ :

$$T_2 \to T_3$$

Now  $T_3$  is standard comparison tree solving same problem.

## Height of T

**Theorem:** Comparison complexity of sorting n elements is  $\Theta(n \log n)$ .

**Theorem:** Comparison complexity of merging two sorted lists of lengths n and m is  $\Theta(m(\log(n/m) + 1))$ , assuming  $n \ge m$ .



At most N/B untouched blocks.

### **Reduction Analysis**

 $\forall$  inputs x:

$$\begin{aligned} |\mathsf{path} \text{ in } T_3| &= |\mathsf{sti} \text{ i } T_2| - [\mathsf{I}/\mathsf{Os} \text{ in } T_2] \\ &\leq [\mathsf{I}/\mathsf{Os} \text{ in } T_2] \cdot (B \log(M/B) - 1 - 1) + (N/B)B \log B \\ &\leq [\mathsf{I}/\mathsf{Os} \text{ in } T_2] \cdot B \log(M/B) + (N/B)B \log B \\ &\leq [\mathsf{I}/\mathsf{Os} \text{ in } T_1] \cdot B \log(M/B) + N \log B \end{aligned}$$

 $\exists$  comparison lower bound  $L \Rightarrow L \leq |\text{path in } T_3|$ 

 $\frac{L - N \log B}{B \log(M/B)} \le \mathsf{I}/\mathsf{Os} \text{ in } T_1$ 

#### **Examples**

$$\frac{L - N \log B}{B \log(M/B)} \le \mathsf{I}/\mathsf{Os} \text{ in } T_1$$

| Problem          | L          | I/O Lower Bound        |
|------------------|------------|------------------------|
| Sorting          | $N \log N$ | $(N/B)\log_{M/B}(N/B)$ |
| Set equality     | $N \log N$ | do.                    |
| Set inclusion    | $N \log N$ | do.                    |
| Set disjointness | $N \log N$ | do.                    |

Multiset sorting, duplicate removal, mode finding: see paper.