
I/O-comparison trees

[Arge, Knudsen, Larsen, 93]

EMADS Fall 2003: I/O Comparison Trees Page 1

Result

Goal:

A general reduction theorem:

Lower bound on comparisons to solve a problem

⇓

Lower bound on I/Os to solve the problem

Method:

Extend the notion of comparison trees.

EMADS Fall 2003: I/O Comparison Trees Page 2

Standard Comparison Trees

• Binary trees.

• Internal node labelled with pairs of

elements, represents comparisons.

• Edges labelled with one of the pos-

sible outcomes of the comparison

above.

• Leaves labelled with one possible an-

swer to problem (”Yes/No” for deci-

sion problems, a permutation for con-

struction problems, an element for

search problems)

i : j

xi < xj xi ≥ xj

Tree solves a problem

⇓

∀ leaves l: ∀ input x

ending in l: label of l is

correct for x.

EMADS Fall 2003: I/O Comparison Trees Page 3

I/O Comparison Trees

• Add unary I/O-nodes to comparison

trees.

• I/O node labelled with position in

memory of all elements before and

after I/O.

• Root and leaves: I/O-nodes.

• Comparison nodes may only compare

nodes in RAM (given by label of low-

est ancestor which is an I/O-node).

x1 : 34, x2 : 1024, . . .

x1 : 986, x2 : 1024, . . .

EMADS Fall 2003: I/O Comparison Trees Page 4

Compression

Compress comparison-only subtrees:

v

T1 T2 T3 T4

v1 v2 v3 v4

→ T

v

T1 T1 T3 T2

v1 v1 v3 v2

T : minimal height comparison tree to sort contents of RAM at v.

EMADS Fall 2003: I/O Comparison Trees Page 5

Reduction

Compress entire tree by compressing all comparison-only subtrees in

top-down order:

T1 → T2

By induction on number of I/O-nodes on path: an input x will pass

exactly the same I/O-nodes (same number of nodes having the same

labels) in T1 and T2.

Corollary: x ends up in leaf with same label in T1 and T2.

Finally, remove all I/O-nodes from T2:

T2 → T3

Now T3 is standard comparison tree solving same problem.

EMADS Fall 2003: I/O Comparison Trees Page 6

Height of T

Theorem: Comparison complexity of sorting n elements is Θ(n log n).

Theorem: Comparison complexity of merging two sorted lists of lengths

n and m is Θ(m(log(n/m) + 1)), assuming n ≥ m.

T

v

T1 T1 T3 T2

v1 v1 v3 v2

Type of I/O at v Height of T at most

Untouched B log B + B log((M − B)/B)

Touched B log((M − B)/B)

At most N/B untouched blocks.

EMADS Fall 2003: I/O Comparison Trees Page 7

Reduction Analysis

∀ inputs x:

|path in T3| = |sti i T2| − [I/Os in T2]

≤ [I/Os in T2] · (B log(M/B) − 1 − 1) + (N/B)B log B

≤ [I/Os in T2] · B log(M/B) + (N/B)B log B

≤ [I/Os in T1] · B log(M/B) + N log B

∃ comparison lower bound L ⇒ L ≤ |path in T3|

L − N log B

B log(M/B)
≤ I/Os in T1

EMADS Fall 2003: I/O Comparison Trees Page 8

Examples

L − N log B

B log(M/B)
≤ I/Os in T1

Problem L I/O Lower Bound

Sorting N log N (N/B) logM/B(N/B)

Set equality N log N do.

Set inclusion N log N do.

Set disjointness N log N do.

Multiset sorting, duplicate removal, mode finding: see paper.

EMADS Fall 2003: I/O Comparison Trees Page 9

