I/O-comparison trees

[Arge, Knudsen, Larsen, 93]

Result

Goal:

A general reduction theorem:

Lower bound on comparisons to solve a problem \Downarrow

Lower bound on I/Os to solve the problem

Method:
Extend the notion of comparison trees.

Standard Comparison Trees

- Binary trees.
- Internal node labelled with pairs of elements, represents comparisons.
- Edges labelled with one of the possible outcomes of the comparison above.
- Leaves labelled with one possible answer to problem ("Yes/No" for decision problems, a permutation for construction problems, an element for search problems)

Tree solves a problem \Downarrow
\forall leaves l : \forall input x ending in l : label of l is correct for x.

I/O Comparison Trees

- Add unary I/O-nodes to comparison trees.
- I/O node labelled with position in memory of all elements before and after I/O.
- Root and leaves: I/O-nodes.
- Comparison nodes may only compare nodes in RAM (given by label of lowest ancestor which is an I/O-node).

Compression

Compress comparison-only subtrees:

T : minimal height comparison tree to sort contents of RAM at v.

Reduction

Compress entire tree by compressing all comparison-only subtrees in top-down order:

$$
T_{1} \rightarrow T_{2}
$$

By induction on number of I/O-nodes on path: an input x will pass exactly the same I/O-nodes (same number of nodes having the same labels) in T_{1} and T_{2}.

Corollary: x ends up in leaf with same label in T_{1} and T_{2}.
Finally, remove all I/O-nodes from T_{2} :

$$
T_{2} \rightarrow T_{3}
$$

Now T_{3} is standard comparison tree solving same problem.

Height of T

Theorem: Comparison complexity of sorting n elements is $\Theta(n \log n)$.
Theorem: Comparison complexity of merging two sorted lists of lengths n and m is $\Theta(m(\log (n / m)+1))$, assuming $n \geq m$.

Type of I/O at v	Height of T at most
Untouched	$B \log B+B \log ((M-B) / B)$
Touched	$B \log ((M-B) / B)$

At most N / B untouched blocks.

Reduction Analysis

\forall inputs x :

$$
\begin{aligned}
\mid \text { path in } T_{3} \mid & =\mid \text { sti i } T_{2} \mid-\left[\mathrm{I} / \mathrm{Os} \text { in } T_{2}\right] \\
& \leq\left[\mathrm{I} / \mathrm{Os} \text { in } T_{2}\right] \cdot(B \log (M / B)-1-1)+(N / B) B \log B \\
& \leq\left[\mathrm{I} / \mathrm{Os} \text { in } T_{2}\right] \cdot B \log (M / B)+(N / B) B \log B \\
& \leq\left[\mathrm{I} / \mathrm{Os} \text { in } T_{1}\right] \cdot B \log (M / B)+N \log B
\end{aligned}
$$

\exists comparison lower bound $L \Rightarrow L \leq \mid$ path in $T_{3} \mid$

$$
\frac{L-N \log B}{B \log (M / B)} \leq \mathrm{I} / \mathrm{Os} \text { in } T_{1}
$$

Examples

$$
\frac{L-N \log B}{B \log (M / B)} \leq \mathrm{I} / \mathrm{Os} \text { in } T_{1}
$$

Problem	L	I/O Lower Bound
Sorting	$N \log N$	$(N / B) \log _{M / B}(N / B)$
Set equality	$N \log N$	do.
Set inclusion	$N \log N$	do.
Set disjointness	$N \log N$	do.

Multiset sorting, duplicate removal, mode finding: see paper.

