
Buffer Trees

Lars Arge. The Buffer Tree: A New Technique for Optimal I/O

Algorithms. In Proceedings of Fourth Workshop on Algorithms and

Data Structures (WADS), Lecture Notes in Computer Science

Vol. 955, Springer-Verlag, 1995, 334-345.

1

Computational Geometry

2

Pairwise Rectangle Intersection

A

B

C

E

D

F

Input N rectangles

Output all R pairwise intersections

Example (A, B) (B, C) (B, F) (D, E) (D, F)

Intersection Types

Intersection Identified by. . .

A

B Orthogonal Line Segment Intersection

on 4N rectangle sides

E

D

Batched Range Searching

on N rectangles and N upper-left corners

Algorithm Orthogonal Line Segment Intersection

+ Batched Range Searching + Duplicate removal

3

Orthogonal Line Segment Intersection

Input N segments, vertical and horizontal

Output all R intersections

sweepline

y1

y2

y3

y4

Sweepline Algorithm

• Sort all endpoints w.r.t. x-coordinate

• Sweep left-to-right with a range tree T

storing the y-coordinates of horizontal

segments intersecting the sweepline

• Left endpoint ⇒ insertion into T

• Right endpoint ⇒ deletion from T

• Vertical segment [y1, y2] ⇒
report T ∩ [y1, y2]

Total (internal) time O(N · log2 N + R)

4

Range Trees

Create Create empty structure

Insert(x) Insert element x

Delete(x) Delete the inserted element x

Report(x1, x2) Report all x ∈ [x1, x2] x2x1

Binary search trees B-trees

(internal) (# I/Os)

Updates O(log2 N) O(logB N)

Report O(log2 N + R) O(logB N + R
B)

Orthogonal Line Segment Intersection using B-trees

O(Sort(N) + N · logB N + R
B) I/Os . . .

5

Batched Range Searching

Input N rectangles and points

Output all R (r, p) where point p is within rectangle r

sweepline

Sweepline Algorithm
• Sort all points and left/right rectangle

sides w.r.t. x-coordinate

• Sweep left-to-right while storing the

y-intervals of rectangles intersecting

the sweepline in a segment tree T

• Left side ⇒ insert interval into T

• Right side ⇒ delete interval from T

• Point (x, y) ⇒ stabbing query :

report all [y1, y2] where y ∈ [y1, y2]

Total (internal) time O(N · log2 N + R)

6

Segment Trees

Create Create empty structure

Insert(x1, x2) Insert segment [x1, x2]

Delete(x1, x2) Delete the inserted segment [x1, x2]

Report(x) Report the segments [x1, x2] where x ∈ [x1, x2]

Assumption The endpoints come from a fixed set S of size N + 1

• Construct a balanced binary tree on the N intervals defined by S

• Each node spans an interval and stores a linked list of intervals

• An interval I is stored at the O(log N) nodes where the node

intervals ⊆ I but the intervals of the parents are not

Create O(N log2 N)

Insert O(log2 N)

Delete O(log2 N)

Report O(log2 N + R)

7

Computational Geometry – Summary

A

B

C

E

D

F

Pairwise Rectangle Intersection

Orthogonal Line Segment Intersection

Batched Range Searching

O(N · log2 N + R)

Range Trees

Segment Trees

Updates O(log2 N)

Queries O(log2 N + R)

8

Observations on Range and Segment Trees

• Only inserted elements are deleted, i.e. Delete does not have to

check if the elements are present in the structure

• Applications are off-line, i.e. amortized performance is sufficient

• Queries to the range trees and segment trees can be answered lazily,

i.e. postpone processing queries until there are sufficient many

queries to be handled simultaneously

• Output can be generated in arbitrary order, i.e. batched queries

• The deletion time of a segment in a segment tree is known when the

segment is inserted, i.e. no explicit delete operation required

Assumptions for buffer trees

9

Buffer Trees

“General transformation”

=⇒

On-line Internal Batched External

10

Buffer Trees

• (a, b)-tree, a = m/4 and b = m

• Buffer at internal nodes m blocks

• Buffers contain delayed operations, e.g. Insert(x) and Delete(x)

• Internal memory buffer containing ≤ B last operations

Moved to root buffer when full

.. ..

... ...

..

.. ...
........

����
����
����
����
����
����

���
����
����
����
����
����
����

���
� � �� � �� � �� � �O(logm n)

B

m blocks

1
4

m . . . m

11

Buffer Emptying : Insertions Only

O(n
m) buffer empty operations per

internal level, each of O(m) I/Os

⇒ in total O(Sort(N)) I/Os

Emptying internal node buffers
• Distribute elements to children

• For each child with more than m blocks of elements recursively

empty buffer

Emptying leaf buffers
• Sort buffer

• Merge buffer with leaf blocks

• Rebalance by splitting nodes bottom-up (buffers are now empty)

Corollary Optimal sorting by top-down emptying all buffers

.. ..

... ...

..

.. ...
........

����
����

����
����
����
����
���

����
����

����
����
����
����
���

� � �� � �� � �� � �O(logm n)

B

m blocks

1
4

m . . . m

12

Priority Queues

• Operations : Insert(x) and DeleteMin

• Internal memory min-buffer containing the 1
4mB smallest elements

• Allow nodes on leftmost path to have degree between 1 and m

⇒ rebalancing only requires node splittings

• Buffer emptying on leftmost path

⇒ two leftmost leaves contain ≥ mB/4 elements

• Insert and DeleteMin amortized O(1
B logM/B

N
B) I/Os

....

... ...

..

.. ...
........

����
����
����
����
����
����
���

����
����
����
����
����
����
���

� � �� � �� � �

� � �� � �� � �

O(logm n)

B

m blocks

1
4

m . . . m

13

Batched Range Trees

Delayed operations in buffers : Insert(x), Delete(x), Report(x1, x2)

Assumption : Only inserted elements are deleted

14

Time Order Representation

Definition A buffer is in time order representation (TOR) if

1. Report queries are older than Insert operations and younger than

Delete operations

2. Insertions and deletions are in sorted order

3. Report queries are sorted w.r.t. x1

x1, x2, . . . [x11, x12], [x21, x22], . . .
timeDelete Report

x1 ≤ x2 ≤ · · ·

Insert

y1, y2, . . .

y1 ≤ y2 ≤ · · ·x11 ≤ x21 ≤ · · ·

15

Constructing Time Order Representations

Lemma A buffer of O(M) elements can be made into TOR using

O(M+R
B) I/Os where R is the number of matches reported

Proof

• Load buffer into memory

• First Inserts are shifted up thru time

– If Insert(x) passes Report(x1, x2) and x ∈ [x1, x2] then a match

is reported

– If Insert(x) meets Delete(x), then both operations are removed

• Deletes are shifted down thru time

– If Delete(x) passes Report(x1, x2) and x ∈ [x1, x2] then a match

is reported

• Sort Deletions, Reports and Insertion internally

• Output to buffer 2

16

Merging Time Order Representations

Lemma Two list S1 and S2 in TOR where the elements in S2 are older

than the elements in S1 can be merged into one time ordered list in

O(|S1|+|S2|+R
B) I/Os

Proof

1. Swap i2 and d1 and remove canceling operations

2. Swap d1 and s2 and report matches

3. Swap i2 and s1 and report matches

4. Merge lists

� �� �� �� �

i1

s1

s2

d2

d1

i2

i1

s1

i2

d2

d1

s2

i1

d2

d1

s2

i2

s1

i

s

d

i1

s1

d1

i2

s2

d2

S1

S2

Step 3Step 2Step 1 Step 4

time

2

17

Emptying All Buffers

Lemma Emptying all buffers in a tree takes O(N+R
B) I/Os

Proof

• Make all buffers into time order representation, O(N+R
B) I/Os

• Merge buffers top-down for complete layers ⇒ since layer sizes

increase geometrically, #I/Os dominated by size of lowest level, i.e

O(N+R
B) I/Os

.. ..

... ...

..

.. ...
........

����
����
����
����
����
����

���
����
����
����
����
����
����

���
� � �� � �� � �� � �O(logm n)

B

m blocks

1
4

m . . . m

2

Note The tree should be rebalanced afterwards

18

Emptying Buffer on Overflow

Invariant Emptying a buffer distributes information to children in TOR

1. Load first m blocks in and make TOR and report matches

2. Merge with result from parent in TOR that caused overflow

3. Identify which subtrees are spanned completely by a Report(x1, x2)

4. Empty subtrees identified in 3.

• Merge with Delete operations

• Generate output for the range queries spanning the subtrees

• Merge Insert operations

5. Distribute remaining information to trees not found in 3.

19

Batched Range Trees - The Result

Rebalancing As in (a, b)-trees, except that buffers must be empty. For

Fusion and Sharing a forced buffer emptying on the sibling is required,

causing O(m) addtional I/Os. Since at most O(n/m) rebalacning steps

done ⇒ O(n) additional I/Os.

Total #I/Os Bounded by generated output O(R
B), and O(1

B) I/O for

each level an operation is moved down.

Theorem Batched range trees support

Updates O(1
N Sort(N)) amortized I/Os

Queries O(1
N Sort(N) + R

B) amortized I/Os

20

Batched Segment Trees

√

m nodes

n leaves

m nodes

EA B
C D

F

O(logm n)

• Internal node:

– Partition x-interval in
√

m slabs/intervals

– O(m) multi-slabs defined by continuous ranges of slabs

– Segments spanning at least one slab (long segment) stored in list

associated with largest multi-slab it spans

– Short segments, as well as ends of long segments, are stored

further down the tree

21

Batched Segment Trees

√

m nodes

n leaves

m nodes

EA B
C D

F

O(logm n)

• Buffer-emptying process in O(m + R
B) I/Os:

– Load buffer — O(m)

– Store long segments from buffer in multi-slab lists — O(m)

– Report “intersections” between queries from buffer and segments

in relevant multi-slab lists — O(R
B)

– “Push” elements one level down — O(m)

22

Batched Segment Trees

Theorem Batched segment trees support

Updates O(1
N Sort(N)) amortized I/Os

Queries O(1
N Sort(N) + R

B) amortized I/Os

23

Orthogonal Line Segment Intersection

sweepline

y1

y2

y3

y4

• Sort all endpoints w.r.t. x-coordinate Sort(N)

• Sweep left-to-right with a batched range tree T O(N
B)

• Left endpoint ⇒ insertion into T }

O(1
B logM/B

N
B)

• Right endpoint ⇒ deletion from T

• Vertical segment ⇒ batched report O(1
B logM/B

N
B + R

B)

O(Sort(N) + R
B) I/Os

24

Batched Range Searching

sweepline

• Sort w.r.t. x-coordinate Sort(N)

• Sweep left-to-right with a batched segment tree T O(N
B)

• Left side ⇒ insert interval into T }

O(1
B logM/B

N
B)

• Right side ⇒ delete interval from T

• Point ⇒ batched stabbing query O(1
B logM/B

N
B + R

B)

O(Sort(N) + R
B) I/Os

25

Pairwise Rectangle Intersection

A

B

C

E

D

F

Orthogonal line Batched range Duplicate
segment intersection searching removal

=
A

B

+ E

D

+ ?

4N rectangle sides N rectangles and
N upper-left corners

Trick Only generate one intersection between two rectangles

⇒ O(Sort(N) + R
B) I/Os

26

Buffer Tree Applications – Summary

A

B

C

E

D

F

Pairwise Rectangle Intersection

Orthogonal Line Segment Intersection

Batched Range Searching

O(Sort(N) + R
B)

Batched Range Trees

Batched Segment Trees

}

Updates O(1
N Sort(N))

Queries O(1
N Sort(N) + R

B)

Priority Queues O(1
N Sort(N))

27

