
B–Trees

[Bayer & McCreight, 1972]
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An Application of B–Trees

Core indexing data structure in many database management systems

TELSTRA, an Australian telecommunications company,

maintains a customer database with 51.000.000.000

rows and 4.2 terabytes of data
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(a, b)–Trees and B–trees
[Bayer & McCreight, 1972]
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Definition A tree is an (a, b)–tree if a ≥ 2, b ≥ 2a − 1 and

• All leaves have the same depth.

• All internal nodes have degree at most b.

• All internal nodes except the root have degree at least a.

• The root has degree at least two.

(a, 2a − 1)–trees are also denoted B–trees
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Properties of (a, b)–Trees
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Lemma N leaves implies
⌈

log n

log b

⌉

≤ height ≤
⌊

(log n)−1
log a

⌋

+ 1

Lemma Searches require O(loga n) I/Os if b = O(B)
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Updates in (a, b)–Trees

• Search for location to insert or delete a leaf

• Create/delete leaf and search key at the parent node

• Rebalance using the following transformations

Split

Fusion

Share

b + 1

> a a − 1

a − 1a 2a − 1

⌊

b+1

2

⌋⌈

b+1

2

⌉

≥ a a
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Example : Insert into a (2,4)–Tree
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⇓ Insert(11)
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Analysis of (a, b)–Trees – Insertions Only

Theorem

n insertions imply n/ b(b + 1)/2ch splits at height h

i.e. in total O(n/b) splits

Proof

• Nodes are created due to splits

• All nodes except the root has degree at least b(b + 1)/2ch

• The number of nodes in the lowest level dominates all other levels

2
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Analysis of (a, b)–Trees
Theorem If b ≥ 2a, then i insertions and d deletions perform at
most O(δh(i + d)) splits and fusions at height h, where δ < 1 depends
on a and b

Proof (sketch) Amortization argument, each node has a potential φ
(= measure of unbalancedness)

b + 1β

1

2

1 + δ1

δ2

a − 1

2
α

φ

degree1
1

δ1

a − 1 2

Theorem If b ≥ 2a, then the total # splits and # fusions is O(i + d).
If b ≥ (2 + ε)a, for some ε > 0, the number of node splittings and
node fusions is O( 1

a
(i + d))
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Analysis of (a, b)–Trees

Theorem

(B/3, B)–trees perform Θ(1/B) rebalancing per update

Theorem

(bB/2c , B)–trees perform Θ(1) rebalancing per update

Theorem

(dB/2e , B)–trees perform Θ(logB N) rebalancing per update if B odd
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Lower Bound for Searching

Theorem Searching for an element among N elements in external
memory requires Ω(logB+1 N) I/Os

Proof (sketch)

• Adversary argument

• Algorithm knows total order of stored elements

• Initially all elements are candidates for being the query element

• If prior to an I/O there are C candidate elements left, then there

exists anwers leaving
⌈

C−B
B+1

⌉

candidates after reading B elements

2

Note The lower bound holds even if an I/O can read B arbitrary
elements from memory
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