B–**Trees**

[Bayer & McCreight, 1972]

An Application of B–Trees

Core indexing data structure in many database management systems

TELSTRA, an Australian telecommunications company, maintains a customer database with 51.000.000.000 rows and 4.2 terabytes of data

(a, b)-Trees and B-trees

[Bayer & McCreight, 1972]

Definition A tree is an (a, b)-tree if $a \ge 2$, $b \ge 2a - 1$ and

- All leaves have the same depth.
- All internal nodes have degree at most *b*.
- All internal nodes except the root have degree at least *a*.
- The root has degree at least two.

(a, 2a - 1)-trees are also denoted **B**-trees

Properties of (a, b)-**Trees**

Lemma N leaves implies $\left\lceil \frac{\log n}{\log b} \right\rceil \le \text{height} \le \left\lfloor \frac{(\log n) - 1}{\log a} \right\rfloor + 1$

Lemma Searches require $O(\log_a n)$ I/Os if b = O(B)

Updates in (a, b)**–Trees**

- Search for location to insert or delete a leaf
- Create/delete leaf and search key at the parent node
- Rebalance using the following transformations

Example : Insert into a (2,4)–Tree

Analysis of (a, b)-Trees – Insertions Only

Theorem

n insertions imply $n / \lfloor (b+1)/2 \rfloor^h$ splits at height *h* i.e. in total O(n/b) splits

Proof

- Nodes are created due to splits
- All nodes except the root has degree at least $\lfloor (b+1)/2 \rfloor^h$
- The number of nodes in the lowest level dominates all other levels

Analysis of (a, b)-Trees

Theorem If $b \ge 2a$, then *i* insertions and *d* deletions perform at most $O(\delta^h(i+d))$ splits and fusions at height *h*, where $\delta < 1$ depends on *a* and *b*

Proof (sketch) Amortization argument, each node has a potential ϕ (= measure of unbalancedness)

Theorem If $b \ge 2a$, then the total # splits and # fusions is O(i + d). If $b \ge (2 + \varepsilon)a$, for some $\varepsilon > 0$, the number of node splittings and node fusions is $O(\frac{1}{a}(i + d))$

EMADS Fall 2003: B–Trees

Analysis of (a, b)-Trees

Theorem

(B/3, B)-trees perform $\Theta(1/B)$ rebalancing per update

Theorem

 $(\lfloor B/2 \rfloor, B)$ -trees perform $\Theta(1)$ rebalancing per update

Theorem

 $(\lceil B/2 \rceil, B)$ -trees perform $\Theta(\log_B N)$ rebalancing per update if B odd

Lower Bound for Searching

Theorem Searching for an element among N elements in external memory requires $\Omega(\log_{B+1} N)$ I/Os

Proof (sketch)

- Adversary argument
- Algorithm knows total order of stored elements
- Initially all elements are candidates for being the query element
- If prior to an I/O there are C candidate elements left, then there exists anwers leaving $\left[\frac{C-B}{B+1}\right]$ candidates after reading B elements

Note The lower bound holds even if an I/O can read *B* arbitrary elements from memory