
Integrating Temporal Media and Open Hypermedia on
the World Wide Web

Niels Olof Bouvin* & René Schade**

*Department of Computer Science,
University of Aarhus,

Aabogade 34A, DK8200 Aarhus N, Denmark

**Tele Danmark Internet
Olof Palmes Allé 36

DK8200 Aarhus N, Denmark

1 ABSTRACT
The World Wide Web has since its beginning provided linking to and from text documents encoded
in HTML. The Web has evolved and most Web browsers now support a rich set of media types ei-
ther by default or by the use of specialised content handlers, known as plug-ins. The limitations of
the Web linking model are well known and they also extend into the realm of the other media types
currently supported by Web browsers. This paper introduces the Mimicry system that allows authors
and readers to link to and from temporal media (video and audio) on the Web. The system is inte-
grated with the Arakne Environment, an open hypermedia integration aimed at Web augmentation.
The links created are stored externally, allowing for links to and from resources not owned by the
(link) author. Based on the experiences a critique is raised of the limited APIs supported by plug-ins.

2 KEYWORDS
Temporal media, open hypermedia, plug-ins, Web augmentation

3 INTRODUCTION
The World Wide Web has since its beginning steadily embraced more and more types of media. To-
day the average Web user will be exposed to pictures, video clips, sound recordings, music, and will
interact with programs or 3D worlds residing on Web pages. These types of media are either handled
by the Web browser itself or handled by specialised programs, ‘viewers’ or ‘plug-ins’. Most media
types are however supported/handled in the sense that it is possible to link to the entire media clip or
to include it on a Web page, but not link from the media clip itself or to a segment of the media clip.
Pictures are the exception, using image maps, to provide starting points for navigation. However all
media types (HTML and otherwise) share the limitations of inline unidirectional links1; links cannot
originate from documents not owned by the hopeful link creator, and the destinations of a link into a
HTML document are limited to the named regions in the target document. These deficiencies are
being addressed by integrating open hypermedia systems and the Web, allowing link structures to be
stored externally of documents. This approach also allows for links to and from media types less
amenable to modification than HTML, provided that suitable plug-ins or viewers are used.

This paper describes an open hypermedia integration to provide linking facilities to and from tempo-
ral media (such as video and audio clips). A search for an appropriate plug-in to provide the neces-
sary functionality left the authors empty-handed. This resulted in the implementation of the Mimicry
player which substitutes for a plug-in. Through the Mimicry controller, the system interacts with the
Arakne Environment [4], allowing users to create multiheaded bi-directional links to and from tem-
poral media clips, embedded or otherwise, as well as to and from HTML documents.

The results achieved by the Mimicry system (and the relative ease of implementing the ideas behind
it) raise the question, why plug-in developers do not yet provide the functionality to support such a
system. It would substantially ease the work of Web page designers, as media clips or parts thereof

1 With the possible exception of image maps, which may have links defined externally.

could be reused, as well as supporting new (on the Web) technologies such as linking to and from
temporal media.

The paper begins by introducing related work in the field of open hypermedia and on the Web. The
merits of emerging standards such as SMIL, HTML+TIME, and XLink/XPointer are discussed. The
Arakne Environment wherein the Mimicry system runs is introduced and described. The Mimicry
system (player and controller) is described in detail and an example of Mimicry usage is given.
Based on the experiences with the Mimicry system, the current state of plug-ins is discussed in the
context of hypermedia systems. Finally directions for future work are discussed and a conclusion is
reached.

4 RELATED WORK
This section will introduce the notion of externally stored link structures, open hypermedia systems,
Web augmentation, and the work done with integration of temporal media and hypermedia systems.

Inline unidirectional links Anchor-based bidirectional links

link

Figure 1 - Inline and anchor-based linking

4.1 Separating document and structure
The linking model found in the World Wide Web is based on inline unidirectional links. While sim-
ple and scaleable, this linking model is in some contexts inadequate in comparison with the linking
model found in most modern hypermedia systems. Inline links are hard to maintain2; it is impossible
to determine which links point to a page3; there can be only one set of links in a document; a link
may point to only one destination rather than many; and this destination is limited to either a whole
document or a named region therein. The problems with this approach can be illustrated by the fol-
lowing example: consider a situation, where a company decides on a Web based Intranet solution to
allow easy access to their technical documentation. The Web, given the URL naming scheme, is very
well suited for document distribution. The technical documents are crucial to several independent
groups in the company and they all wish to put links into the technical document. Current Web tech-
nology yields two scenarios: either give each group access to copies modifiable by the respective
group, or incorporate all links into one central document. The former makes updating the technical
documentation difficult, and the latter will clutter the technical document with links interesting to
one group, but irrelevant to the rest. Both cases leave the technical document open to undesirable
modification. A safer and more maintainable solution would be to have one copy of the documenta-
tion available and then have each group use their own set of links into the documentation. This can
not be done with the existing Web linking model.

2 In the sense that links may point to documents that do no longer exist or have been moved.
3 Save a brute force approach using search engines, which is computational expensive and not nec-
essarily accurate.

A way to achieve this kind of flexibility is through the use of anchor-based hypermedia, which sepa-
rates the anchor (or endpoint) and the link from the document. An anchor specifies a span in a docu-
ment (up to the entire document), an area in a picture, a segment of a video clip and so forth. Links
specify relationships between anchors, as seen in Figure 1. Anchors and links are stored outside the
documents. A hypermedia application used by a user inserts links into documents as they are re-
trieved (e.g. not at the server, but at the client). The user can through the hypermedia application
decide which sets of links to use, and the company described above would thus be able to maintain
several sets of links to the same technical documentation.

There are pros and cons of this approach. As links and anchors are now separate they can be main-
tained separately and can be checked and updated independently of the documents they link. Links
can be bi-directional, multiheaded and link into documents without modifying them. However, the
insertion of links into the document on the fly carries some additional overhead, and does generally
not scale as well as the simpler inline link model.

A great benefit of the anchor-based linking approach is that of opaque anchors, that is, the general
system is not concerned with how an anchor addresses a selection in a media type. The general
model need not be modified if a new anchor type is introduced to support a new media type, as long
as the new anchor type adheres to the general anchor specification. The anchoring code (such as the
ability to display an anchor into the media type) must of course still be written, but storage, link fol-
lowing, etc. is unaffected. This allows for complex anchoring constructs, and allows the developers
to support new applications and media types without sacrificing existing work.

Anchors are created to match their media type. They must carry enough information to be able to
identify the selection that the user had in mind when the anchor was created. In the case of text an-
chors, this information often consists of a selection and a context around the selection, so that it may
be uniquely identified. An image anchor could (depending on its use) be as simple as two co-
ordinate pairs to identify a rectangular selection, or be complex enough to identify arbitrary shapes
as destinations. In the context of temporal media, it is natural to use time as unit in the system of co-
ordinate. Frames are another possibility but the frame rate of a media clip may vary accordingly to
the bandwidth of the user’s connection. Furthermore some temporal media types, such as audio may
not have frames at all.

4.2 Open Hypermedia and the Web
Open hypermedia systems are characterised by a focus on integration with third-party software.
Historically, hypermedia systems have often been closed and monolithic, requiring other programs to
comply to the standards of the hypermedia system in order to provide hypermedia functionality. This
is problematic as it closes the door on existing non-compliant applications, and expects developers to
change their programs – an unlikely proposition at best. Recognising that most people are not willing
to throw away their applications in order to utilise a hypermedia system has led the open hypermedia
community to integrate existing applications into their hypermedia systems instead. The level of
which this is possible varies accordingly to the applications, ranging from the simple (show docu-
ment) to the advanced (a full integration). Whitehead handles the implications of integrating third-
party applications with open hypermedia integration in [21].

A natural consequence of the open hypermedia approach is the interest of integrating the Web into
open hypermedia systems. Several groups in the field have created Web integration tools, and a non-
exhaustive list includes DLS [5][6], DHM/WWW [8], Webvise [9], Navette [3], Chimera [1], and
HyperWave [18].

A common approach to open hypermedia Web integration is to modify Web pages while en route to
the Web browser. This modification usually consists of the addition of links or other kinds of struc-
ture. These links are stored on a structure server and are inserted into the pages using CGI-scripts,
proxies, or programs controlling the Web browser. The interface presented to the user varies, ranging
from no interface at all to full authoring applications allowing the users to modify and extend upon
the existing collections of links and anchors. Most however allow the user to create links to and from
whatever pages the user may desire, thus alleviating one of the major limitations of the existing Web
architecture mentioned above. For a fuller discussion on the techniques of open hypermedia Web
integration and Web augmentation in general, see [4].

The main target of these integrations has been Web pages rather than other kinds of Web-distributed
media, as HTML is easily analysed and modified by use of proxies or other means. Other kinds of
media that could be interesting include graphics and temporal media, streaming or otherwise. These
data types are less readily modified, come in great variation, and requires viewers or plug-ins that
may be difficult to integrate with an open hypermedia system.

4.3 Hypermedia and Temporal Media
Several hypermedia systems have been extended or devised specifically to handle temporal media.
The most influential hypermedia model to incorporate the notion of temporal data is HyTime [7],
which allows for multidimensional anchors (including the temporal dimension). HyTime is a general
standard aimed at interchange and does as such not specify the interaction between hypermedia ap-
plication and multimedia applications. While many systems have integrated temporal media one way
or another, some systems go further, such as AEDI [2], which tries to ease work with large amounts
of temporal data with structured indexing. Some systems try to facilitate automatic tracking and lo-
cation of anchors in media clips; two well-known examples are Himotoki [10] and MAVIS [15].
While the possibility of selecting an object in one frame, and have the system automatically track the
object in the rest of the video clip certainly is alluring, it is also quite computational expensive, and
probably unlikely in a Web setting.

The ambitions of the authors are far more modest. We are merely interested in being able to create
links to and from segments of temporal media. Future version may include anchors that cover an
area of a video clip for some duration, but the area is not expected to move.

4.4 Temporal Media on the Web
The use of temporal media on the Web has steadily increased. It is today commonplace for news
sites to bring either video clips or to provide access to whole TV shows online. Likewise the research
community (notably the linguistic) has taken to making animations or sound recordings available.
This opens for a hitherto unseen availability of valuable research material (such as historic film clips
or language recordings), and therefore also an increasing demand to be able to interact with these
media clips in new and innovative ways.

An example of an organisation beginning to put large amounts of temporal data on the Web is the
Danish national library, Statsbiblioteket. In order to facilitate research, the library has made an in-
creasing amount of historically interesting Danish sound files available on the Web [20].

4.5 Emerging standards
Some of the new emerging W3C standards are of special interest to the subject of this paper. This
section will briefly describe these and discuss the implications for temporal media on the Web. It
should be noted however that these are still evolving standards, and can be expected to undergo
some transformation before being finalised.

SMIL [19] (Synchronised Multimedia Integration Language) is a recent Recommendation from
W3C. It is an effort to support the layout and synchronisation of multimedia clips, e.g. synchronising
a video clip with animations or a slide show with audio narrative and HTML documents. The stan-
dard is presentation oriented, and as such requires an authoring tool to modify.

HTML+TIME [12] (Timed Interactive Multimedia Extensions for HTML) is a proposed standard
inspired by SMIL, and is concerned with the implementation of SMIL concepts in HTML. It thus
adds a concept of timing to HTML and allows any HTML element to appear for a defined duration.
Of special interest in this context is the timed hyperlink, and the integration of media players, which
can be addressed and timed. Not only can the players be set to begin playing at a predetermined time,
it is also possible to address inside the media clip and thus play a segment of a media clip, using the
clip-begin and clip-end attributes. As HTML elements (in particular links) can be synchro-
nised with other elements’ timing events, it would be simple to create links that would synch with
segments of a media clip, e.g. links appearing during a segment of a video clip and disappearing after
the segment had been played.

As such HTML+TIME has certain requirements of content handlers that fit nicely with the require-
ments of links to and from temporal media. Specifically media players should be able to synch with
events, as well allow the showing of segments. This is however a very new (proposed) standard and
so far no Web browsers or media players the authors are aware of meet the HTML+TIME require-
ments.

A general problem with SMIL and HTML+TIME from the standpoint of the authors is that these
standards address authoring of presentations and thus is in principle (though admittedly far more
advanced) no different than the existing HTML authoring tools. The basic problem of links being
created exclusively by the author of the document remains. These standards also address a somewhat
different problem than linking to and from temporal media, as a key point of SMIL and
HTML+TIME is synchronisation and presentation.

Both standards are, as noted above, still in development and may very well change in the future.

XML defines a way to describe structured data and documents. XPointer and XLink (XML Linking
Language) are the accompanying resource location and linking standards. As of this writing, neither
is in ‘Recommended’ state from W3C, but this is expected to happen sometime in 1999.

XPointer [17] is designed to specify locations in XML and other well-structured documents. The
syntax is based on the Text Encoding Initiative ‘extended pointer’. This is a rather compact and tree-
oriented notation, which might take the following form: LG�IRR��FKLOG���6(&��FKLOG���/,67�. This expres-
sion would start at the entity identified as ‘foo’, continue at this entity’s third child of the type ‘SEC’,
and end with that child’s fourth child of the type ‘LIST’. This format is not XML, which might come
as a surprise, but it has the advantage that it can be used in URLs.

XLink [16] is the language that ties XPointers together in links. XLink are not limited to XPointers –
while endpoints in XML documents typically will be described with XPointers, XLink links can
have any Web resource as a destination. Links may be in-line (as in HTML) or out-of-line, that is
residing outside the linked documents. XLink supports bi-directional multiheaded links. Out-of-line
links may be stored in simple text files or handled by link bases. XLink does not offer any protocol
for such link servers.

XLink and XPointer are, from a Web augmentation standpoint, mainly interesting, if XML becomes
widespread on the Web. While the linking constructs are quite powerful in XML documents, the

standards are not aimed at improving the state of the art with respect to HTML, that is not well-
formed, nor does it address the intricacies of other media types, such as video or audio.

5 THE ARAKNE ENVIRONMENT
The Arakne Environment, shown in Figure 2, is a runtime environment aimed at supporting Web
augmentation tools. The environment is primarily but not exclusively aimed at providing advanced
hypermedia functionality to the Web. The environment is based on the Arakne framework [4], which
is a general Web augmentation model, and was designed to be open and extensible. It currently sup-
ports a navigational hypermedia tool, Navette, and a guided tour tool, Ariadne [14].

Structure layer

Operations

Navette Ariadne

Proxy

Web Server

HTTP

Hyperstructure
Store

Browser

HTTP

OHP

Service layer

Content layer

Arakne Environment

Structure
Server

Structure
Server

HyperStore DBMS

Mimicry
Controller

Mimicry
Controller

Web Browser

Figure 2 - The Arakne Environment

The framework may support any number of Web augmentation tools. These tools (known as ‘nav-
lets’) are dependent on four core components of the Arakne framework: the Operations, the Hyper-
structure Store, the Browser, and the Proxy. The navlet is the domain specific part of a Web aug-
mentation tool. It provides a user interface as well as special logic to handle the specific domain.
This may include deciding which links to display in a Web page based on information retrieved from
the Hyperstructure Store component, or interfacing to the Proxy component for analysis of docu-
ments or to modify documents. Depending on the situation the computation and analysis may be
carried out by the navlet or by another component.

The Operations component models the communication with the structure server layer. This compo-
nent will thus typically support the same services as the structure server(s). This is where on the wire
issues, such as network communication, marshalling, and multiplexing, are handled.

The Hyperstructure Store is the interface between the navlets and the Operations. The Hyperstructure
Store provides convenience functions for the navlets, as well as caching the results of the queries
retrieved with Operations. The Hyperstructure Store will also alert navlets to changes in the struc-
tures they subscribe to.

The Proxy component models the modification and analysis of Web content. Depending on their
domain, navlets may require the Proxy to modify Web pages, and these requests for modifications
are collected by the Proxy and used to modify the Web page. Other navlets may require access to the
content of a Web page, which is also handled by the Proxy.

The Browser component models the user’s Web browser. Through the Browser navlets can retrieve
and modify the state of the Web browser such as which URL is currently displayed; the structure of
the current frame set; whether a selection has been made in a frame and if so, what and where.
Communication with plug-ins and applets running in the Web browser is also handled through the
Browser component.

The situation depicted in Figure 2 is a situation of two navlets running in the Arakne Environment:
Navette is a link creation tool, and thus needs access to the Proxy in order to insert links into Web
pages. Ariadne is a guided tour tool and does not modify Web pages; and is thus not connected to the
Proxy. Both however need to be able to tell and set the state of the currently displayed documents
and to interact with the Web browser in other ways, as well as retrieving data from the structure
server through the Hyperstructure Store.

By providing the components described above and by having an open architecture, the Arakne Envi-
ronment aims to provide developers with an environment that allows for easy implementation of
Web augmentation tools. The Arakne Environment is written in Java (but is not an applet), and cur-
rently integrates with the Microsoft Internet Explorer. The current version uses the DHMProxy [9] to
insert links and other structures into Web pages. The relative ease of development has made the envi-
ronment well suited for experiments such as the Mimicry system described herein.

6 THE MIMICRY PLAYER
The Coconut project has developed the Mimicry player to support linking to and from temporal me-
dia in the Arakne Environment. Realising that if we wanted to integrate temporal media into our hy-
permedia system, we would have to do it ourselves, as no existing plug-in seemed to offer an ade-
quate API, we started looking for the easiest way to support temporal media.

The Java Media Framework [13] developed by JavaSoft, Intel, and Silicon Graphics is aimed at sup-
porting temporal media in Java. The framework supports a wide range of video and audio formats4,
and more CODECs can be added. The Mimicry player is a Java Bean encapsulating the Java Media
Framework player. It is basically interfaceless, but implements a rich API and event interface that
can be utilised by other components.

The Mimicry controller is, referring back to Figure 2, an applet that communicates with the Navette
tool through the Browser component; it thus acts as an intermediary between the Arakne Environ-
ment and the Mimicry player. The Mimicry controller provides the interface to the Mimicry player
as well as to Navette. The Mimicry controller acts as the interface of the Mimicry player to the user.
The controller has a control panel for the browsing and creation of anchors, which can be displayed
by right clicking on the player window.

4 Supported formats include AIFF, WAV, AVI, MIDI, MPEG-1, and QuickTime.

6.1 Web Page Modification by the DHMProxy
Multimedia files are normally presented in a Web browser using the appropriate plug-ins, according
to the MIME type of the file. This is done either by using a direct link to the file or by embedding it
into a Web page using <EMBED> or <OBJECT> tags. The Mimicry player is designed to mimic plug-
ins, and will appear (to the user) as an ordinary plug-in on a Web page.

Rather than depending on Web page designers to adopt the Mimicry player as the standard viewer
applet, the system utilises the DHMProxy [9] to modify Web pages, so that the Mimicry player is
used instead of plug-ins.

The DHMProxy is aware of the formats supported by the Mimicry player and changes the Web
pages accordingly. If a Web page embeds temporal media using <EMBED> or <OBJECT> tags, these
tags are replaced with a corresponding <APPLET> tag with the same layout dimensions. If a Web
page has a direct link to a temporal media file, the DHMProxy returns a Web page containing the
<APPLET> tag in the body of the page. Using this approach it is possible to translate plug-in invoca-
tions into applet invocations, without changing the layout of the Web pages.

The DHMProxy also takes care of inserting anchors from the chosen link collections on the structure
server into the Mimicry controllers. All the anchors residing in a media clip are passed on to the
applet in parameter tags consisting of name, id, and time span. When the Web page is loaded in the
Web browser and the Mimicry controller applet is launched, it is thus aware of the anchors in the
media clip. This modification or decoration is basically similar to the ordinary text decoration (that
is, insertion of links) done by the DHMProxy.

6.2 Mimicry in Action
In order to present Mimicry in action, we have started the Arakne Environment, which launches the
Web browser5, as presented in Figure 3. The Web browser has been configured to use the
DHMProxy. As we want to create links into Web pages and media files, we have started Navette in
the Arakne Environment.

The situation in Figure 3 is as following: another user has earlier created a link with the name ‘Link
10’ in the link collection ‘Hyperspace1’, which contains three anchors. The first anchor ‘Harrison
Ford’ originates in a Web page containing a description of the actor Harrison Ford. The second an-
chor ‘Quote’ originates in a Web page containing famous movie quotes, referring a specific quote.
The third anchor ‘Endpoint 14’ originates in a movie clip embedded in a Web page, referring to a 59
seconds long segment of the 2:02 minutes long clip, that features the quote.

Browsing the Web using the Arakne Environment, we encounter the Web page containing the movie
quotes. Since we have ‘Hyperspace1’ opened, the DHMProxy has decorated the page with the
‘Quote’ anchor. The anchor is presented, so that we can follow ‘Link 10’ either to the media segment
‘Endpoint 14’ or to the Web page containing the anchor ‘Harrison Ford’. We decide to follow the
link to the media anchor and the Web page containing the video clip is loaded, as shown in Figure 3.

The DHMProxy decorates the Web page by substituting the plug-in tag with an applet tag and an-
chors from the structure server. When the Mimicry controller applet is launched it retrieves its an-
chors from the parameter tags, alerts the Arakne Environment to its existence and asks the Mimicry
player to start downloading the media file. In Navette ‘Link 10’ is opened and the ‘Endpoint 14’ an-
chor is in focus.

5 The current version is integrated with the Microsoft Internet Explorer

Begin
Anchor

Play

Play
Anchor

Follow
Link

Create
Anchor

End
Anchor

Figure 3 - Playing the anchor endpoint "Endpoint 14"

Clicking on the Mimicry control applet, the 59 seconds segment ‘Endpoint 14’ will be played, start-
ing at 25.7 seconds and ending at 1:34.7. Interested in the movie clip we right-click on the applet and
a popup menu appear. In the popup menu it is possible to select other anchors in the clip or to open
the control panel. We choose “open control panel”, and the control panel, on top of the Web browser
and the Arakne Environment in Figure 3, is presented. The control panel consists of a slider, indi-
cating the length and current position of the media clip, buttons for creating/editing anchors and a
dropdown menu containing all the anchors in the media clip. The current anchor is drawn on the
slider.

Dragging the slider to the start position and pressing the “Play” button causes the Mimicry player to
start playing from the beginning. While watching the media clip, we notice the actor Gary Oldman,
and decide to find more information about him. In the dropdown menu containing all the anchors in
the media clip, we find another media anchor named ‘Endpoint 11’. Selecting ‘Endpoint 11’ and
playing it, we realise the anchor is covering the part of the clip depicting Gary Oldman. Wondering if
the link is about the actor, we click the “Follow Link” button on the control panel. The browser loads
another URL, which is a direct link to another movie clip, resulting in the situation shown in Figure
4.

Another Mimicry controller is launched and Navette has changed its focus to ‘Endpoint 12’ in ‘Link
5’. Clicking the Mimicry controller, the segment ranging from 1:04.8 to 1:33.7 of the movie file is
played. The ‘Endpoint 12’ segment does indeed refer to Gary Oldman appearing in another movie
trailer.

Watching the movie trailer from the beginning, we find yet another actor, Matt LeBlanc. Since we
have had the pleasure of following links created by others, we would like to add an additional link to
the current link collection. We know where to find further information about Matt LeBlanc and de-

cide to create this relation. In Navette we deselect the current link. In the control panel, we create a
new media anchor using the “Begin Anchor” and “End Anchor” buttons, editing a few times, re-
viewing the new anchor several times with “Play Anchor” and finally end up with exactly the portion
of the clip concerning Matt LeBlanc. We press “Create Anchor” in the control panel, and as no links
are selected in Navette, a new link ‘Link 25’ is created, initially containing the anchor ‘Endpoint 15’.
The Arakne Environment stores the new link and anchor on the structure server. We browse the Web
to a Web page containing more information about the actor as shown in Figure 5.

Figure 4 – Playing the anchor ‘Endpoint 12’

When the Web page is retrieved, we highlight the text ‘Matt LeBlanc’ in the Web browser, right
click and select “Add Anchor” in the popup menu6. This information is sent to Navette, which reacts
by creating the endpoint “Matt LeBlanc”. Pressing the refresh button in the Web browser forces the
DHMProxy to decorate the Web page with the newly created anchor. In the Web browser, the new
anchor is presented as a link in ‘[*]’ next to the Matt LeBlanc text. To test the link, we click it, and
the media clip from Figure 4 is loaded, ready to play ‘Endpoint 15’. If we open the control panel and
press the “Follow Link” button the Web page from Figure 4 is loaded. We have now created a link in
the link collection ‘Hyperspace1’. Next time another user is browsing the Web using the Arakne
Environment and the ‘Hyperspace1’ link collection, he or she will be able to see and follow these
links.

6 The essential commands for link creation with Navette are available through the use of right-click
menus on highlighted text in the Microsoft Internet Explorer.

Figure 5 – Creating a HTML anchor using Navette

We have now described how to follow a link to a media clip using Mimicry, how to follow links
between two media clips, and how to create anchors and links. In Figure 3 the Mimicry is used as
embedded on an HTML page, and in Figure 4 Mimicry is used standalone as a direct link to a media
clip.

7 DISCUSSION
The following will discuss the implication of the results in the context of plug-in developers.

7.1 The Problem with Current Plug-ins
Plug-ins are used to handle media types not supported natively by the Web browser. Plug-ins can be
controlled at runtime through LiveConnect [11] using JavaScript. In order to support linking in and
out of temporal media, we need to continuously be able to get and set the state of the plug-in. The
degree of openness to this kind of control varies tremendously. The most extreme example of an
open plug-in handling temporal media that the authors have been able to locate is the Beatnik plug-in
published by Headspace. Beatnik is a plug-in targeted at sound and music files, and has a very rich
API. The APIs supported by some popular plug-ins are shown in Table 1. Beatnik is sound only, and
is as such only used as a comparison to the other media players, as well as Microsoft Media Player
which cannot be controlled through JavaScript.

Apart from Beatnik, no plug-in allows for the playing of a designated but not in the media predefined
segment. This ability is fundamental to link following in temporal media, and it is thus not possible
to create a hypermedia system supporting links to and from media clips with these plug-ins. The rich
authoring environments of some media tools, especially QuickTime7, make the lack of support for
modifications at run-time more grating. The author should certainly have a very rich authoring tool

7 However, QuickTime offers another approach as mentioned in section 8.

at his or her disposal, but that does not eliminate the need to be able to dynamically alter the play-
back of a media clip, as it is shown on a Web page.

Plug-in/Content Handler Methods1 Callback Methods1

Real RealPlayer SetSource
DoPlayPause
DoNextItem2

DoPrevItem2

onClipOpened
onGoToURL

Apple QuickTime 3 3

HeadSpace Beatnik getPlayLength
getPosition
setPosition
setStartTime
setEndTime

onLoad
onReady
onStop

Microsoft Media Player4 GetCurrentPosition
SetCurrentPosition
GetSelectionStart
SetSelectionStart
GetSelectionEnd
SetSelectionEnd

1 This is not a comprehensive list, but merely methods relevant to linking.
2 These methods require that

the items are defined by the author of the media clip.
3
 QuickTime does only support arguments to the

<embed> tag.
 4
 The methods described are through the COM-interface, not JavaScript.

Table 1 - Supported APIs of various plug-ins

Integration with plug-ins requires some degree of openness on part of the plug-in API. In order to
support linking (and other kinds of integration) it must at least be possible to designate a segment of
a recording and to allow that segment to be played. Specifically we would suggest that the methods
outlined in Table 2 could the basic API of any plug-ins handling temporal media.

Methods Callback Methods
getSourceURL
setBeginClip
getBeginClip
setEndClip
getEndClip
getDuration
getCurrentTime
playPause
playClip

onLoad
callbackWhen

Table 2 - Basic API requirements for temporal media plug-ins

A plug-in would thus be able to play a designated clip or segment of a media clip and would report
its progress through the media clip. This API would allow a developer to support the kinds of inter-
actions supported by the Mimicry player through the use of JavaScript and LiveConnect [11]. This
API is simple and should be easy to implement for plug-in developers. The Beatnik plug-in clearly
demonstrates that this is indeed achievable.

Another solution investigated by the Coconut project is to make a specific integration with a media
player, in this case the Microsoft Media Player that through its COM-interface supports a rich API.
External applications would register events from the Media Player and through the COM-interface
control it. Being a COM-component the Media Player can be integrated into a user interface sup-
porting anchor and link creation. This approach does have some limitations. It is platform dependent,
and unless a proxy is used to modify the Web pages as described below, the supporting software is

forced to change content handler while the Web page containing the media clip is being displayed.
This is possible, but it is neither elegant nor seamless.

8 FUTURE DEVELOPMENT
Unless a media player emerges that satisfies the needs of temporal media linking, the authors will
continue to work on the Mimicry player. Some current development holds promise with regards to
future versions. Future versions of the Java Media Framework will support more media formats and
sport additional improvements. An interesting development would be Java Media Framework sup-
port for streaming, which is currently offered by Real Networks, but this version is so far limited to
Netscape Communicator.

As media players and Web browsers supporting SMIL and HTML+TIME become available, we will
investigate the possibilities of linking into the new structures supported by these standards, as well as
using the new generation of plug-ins and viewers supporting these formats.

Apple has created QuickTime for Java, featuring an API similar to the Java Media Framework, being
able to playback formats supported by the QuickTime plug-in 2.0 in an applet. This may be an area
worthy of future investigation.

The current Mimicry player is a Java applet, and a clear future direction would be to convert the
player into a plug-in. This would probably eliminate much of the need for the intervention by
DHMProxy, as the Mimicry plug-in would automatically launch on its registered MIME types.

9 CONCLUSION
We have described a system allowing users to dynamically create links to and from temporal media
on the Web regardless of the users’ ownership of the Web pages or media clips involved. The system
has not been created to compete with existing media players, but merely to allow for experimentation
and to highlight the lack of support for dynamic uses of temporal media currently found in most
plug-ins. As such it has been successful.

The future of temporal media on the Web is a bright one. Bandwidth will continue to rise and
emerging standards such as SMIL and HTML+TIME will support the use of temporal media in new
ways. Whether these standards will converge to support only presentation, or open for more dynamic
uses remains to be seen.

10 ACKNOWLEDGEMENT
The authors are members of the Coconut project (http://www.cit.dk/coconut/), a joint research proj-
ect consisting of Department of Computer Science, Aarhus University and Tele Danmark Internet.
The Coconut project is supported by the Danish National Centre for IT-Research
(http://www.cit.dk/).

The authors wish to thank Niels Husted and René Thomsen for adding to the code, Peter Ørbæk for
creating the DHMProxy, and the anonymous reviewers for good suggestions.

11 REFERENCES
[1] Anderson, K. M. (1997). Integrating Open Hypermedia Systems with the World Wide Web. In

Proceedings of the ACM Hypertext 97 Conference, pp. 157–166, Southampton, England.

[2] Auffret, G., Carrive, J., Chevet, O., Dechilly, T., Ronfard, R., and Bachimont, B. (1999). Audio-
visual-based hypermedia authoring: using structured representations for the efficient manipula-
tion, of AV documents. In Proceedings of the ACM Hypertext 99 Conference, pp. 169–178,
Darmstadt, Germany.

[3] Bouvin, N. O. (1998). Designing Open Hypermedia Applets: Experiences and Prospects. In Pro-
ceedings of the ACM Hypertext 98 Conference, pp. 281–282, Pittsburgh, USA.

[4] Bouvin, N. O. (1999). Unifying Strategies of Web Augmentation. In Proceedings of the ACM
Hypertext 99 Conference, pp. 91–100, Darmstadt, Germany.

[5] Carr, L. A., De Roure, D., Hall, W., and Hill, G. (1995). The distributed link service: A tool for
publishers, authors and readers. In Proceedings of the 4th International World Wide Web 95
Conference, Boston, USA.

[6] Carr, L. A., Hall, W., and Hitchcock, S. (1998). Link services or link agents? . In Proceedings of
the ACM Hypertext 98 Conference, pp.113–122, Pittsburgh, USA.

[7] DeRose, S. J., and Durand, D. G. (1994). Making HyTime Work. Kluwer Academic Publishers,
1994.

[8] Grønbæk, K., Bouvin, N. O., and Sloth, L. (1997). Designing Dexter-based hypermedia services
for the World Wide Web. In Proceedings of the ACM Hypertext 97 Conference, pp. 146–156,
Southampton, England.

[9] Grønbæk, K., Sloth, L., and Ørbæk, P. (1999). Webvise: Browser and Proxy Support for Open
Hypermedia Structuring Mechanisms on the WWW. In Proceedings of the 8th International
Conference on the World Wide Web, Toronto, Canada.

[10] Hirata, K., Hara, Y., Takano, H., and Kawasaki, S. (1996). Content-oriented Integration in Hy-
permedia Systems. In Proceedings of the ACM Hypertext 96 Conference, pp. 11–21, Washing-
ton D.C., USA.

[11] Hoque, R. Java, JavaScript and Plug-In Interaction Using Client-Side LiveConnect.
http://developer.netscape.com/docs/technote/javascript/liveconnect/liveconnect_rh.html

[12] HTML+TIME. http://www.w3.org/TR/NOTE-HTMLplusTIME

[13] Java Media Framework. http://www.javasoft.com/products/java-media/jmf/index.html

[14] Jühne, J., Jensen, A. T., and Grønbæk, K. (1998). Ariadne: A Java-based guided tour system for
the World Wide Web. In Proceedings of the 7th International World Wide Web 98 Conference,
Brisbane, Australia.

[15] Lewis, P. H., Davis, H. C., Griffiths, S. R., Hall, W., and Wilkins, R. J. (1996). Media-based
Navigation with Generic Links. In Proceedings of the ACM Hypertext 96 Conference, pp 215–
223, Washington D.C., USA.

[16] Maler, E., and DeRose, S.J. (Eds.). (1998). XML Linking Language (XLink) Design Principles.
http://www.w3.org/TR/NOTE-xlink-principles

[17] Maler, E., and DeRose, S.J. (Eds.). (1998). XML Pointer Language (XPointer).
http://www.w3.org/TR/WD-xptr

[18] Maurer, H. (Ed.) (1996). Hyper-G now, HyperWave: The next generation Web solution,
Addison-Wesley, Harlow, 1996.

[19] SMIL. http://www.w3.org/AudioVideo/

[20] Statsbiblioteket. Dansk Lydhistorie. http://www.sb.aau.dk/dlh/

[21] Whitehead Jr., E. J. (1997). An architectural model for application integration in open hyperme-
dia environments. In Proceedings of the ACM Hypertext 97 Conference, pp. 1–12, Southampton,
England.

12 VITAE

Niels Olof Bouvin is a Ph.D. student in Computer Science at University of
Aarhus, Denmark. His research interests include open hypermedia sys-
tems, Web augmentation, structural computing, and collaboration on the
Web. He is currently involved in the Coconut project, a co-project be-
tween the Department of Computer Science and Tele Danmark Internet.
Niels Olof Bouvin received his master’s degree in 1996 from Department
of Computer Science, University of Aarhus, Denmark.

René Schade is a system developer at Tele Danmark Internet, Denmark.
He is currently working at the Coconut project, a co-project with the De-
partment of Computer Science, University of Aarhus, Denmark. He fin-
ished his master degree in 1997 from the Department of Computer Sci-
ence, University of Aarhus. His research interests are: World Wide Web;
Hypermedia and Multimedia and Dynamic Programming Environments�

