
2005/09/19-21 Peter Andersen 1

Porting BETA to
ROTOR/sscli

ROTOR Capstone Workshop,
Sept 19 - 21 2005
by Peter Andersen

Peter Andersen 22005/09/19-21

ROTOR RFP II

1. “hello-world” up to complete compiler test suite
Almost OK at time of RFP II

2. Implement (some) missing features in language
mapping and libraries

3. Bootstrap the BETA compiler to ROTOR and .NET
4. Possibly develop a GUI framework on top of ROTOR

and .NET.
System.Windows.Forms and System.Drawing not available on
ROTOR (but Views available)

5. Investigate mechanisms for Simula/BETA-style
coroutines

Peter Andersen 32005/09/19-21

[Re 1-2] BETA.Net status
Most language features implemented
Patterns mapped to classes, nested patterns become
nested classes with explicit uplevel link
Enter-do-exit semantics implemented by generating
separate methods for Enter(), Do(), and Exit()
Use of patterns as methods supported by generated
convenience methods
Virtual classes – corresponding to generics (.NET 2.0)
implemented with virtual instantiation methods and a lot
of (unnecessary) casting.
INNER semantics implemented with multiple virtual
method chains

Go to BETA introduction and mapping appendix

Peter Andersen 42005/09/19-21

[Re 1-2] BETA.Net status
Pattern variables: Classes and methods as first-class
values implemented with reflection
Leave/restart out of nested method activations
implemented with exceptions (expensive!)
Multiple return values – implemented with extra fields
Interface to external classes - Rudimentary support for
overloading, constructors etc. Offline batch tool
dotnet2beta implemented using reflection
Coroutines and concurrency - More on this later…
Basic libraries (text, file, time etc.), implemented on top
of .NET BCL

Go to BETA introduction and mapping appendix

Peter Andersen 52005/09/19-21

[Re 3] Bootstrapped compiler
122.000 lines BETA source, including used libraries
Bootstrapped compiler up-n-running ☺

Download: http://www.daimi.au.dk/~beta/ooli/download/
Very slow!

Managed compiler running on .NET CLR:
Compiles small programs nicely
Crashes on larger programs with
System.OutOfMemoryException

Perfect case for debugging via ROTOR (SOS extension)
”what is the actual reason that the EE throws that exception?”

BUT: Managed compiler does not fail on ROTOR ☺ ?

http://www.daimi.au.dk/~beta/ooli/download/

Peter Andersen 62005/09/19-21

[Re 3] Compiler statistics
Some statistics: Compilation of complete test suite on 1.7GHz laptop:
About 12000 lines of BETA code, including parsing, semantic checking, code
generation and 75 calls of ilasm. 96000 lines of IL generated (!).
Native (win32) nbeta:

21 seconds
11Mb memory consumption

.NET CLR:
Fails about halfway with System.OutOfMemoryException
Memory consumption 110Mb (> 100Mb of physical memory free!?)
Number of threads created: 7872

sscli (win32) checked:
2 hours 3 minutes ~ slowdown 350 !!
160Mb max mem. consumption.
Number of threads created: 25502

sscli (win32) fastchecked:
54 minutes ~ slowdown 154

sscli (win32) free:
17 minutes ~ slowdown 48
145Mb max mem. consumption.

Peter Andersen 72005/09/19-21

[Re 3] Why compiler slow?

Nprof screenshot:

Peter Andersen 82005/09/19-21

[Re 3] Bootstrapped compiler

Indicates that current Coroutine
implementation is major bottleneck
Other measurements also indicate that
Coroutine switching contributes about a
factor 100 more than other BETA
constructs to slow down
So we need to look more at Coroutines!!

Peter Andersen 92005/09/19-21

[Re 5]: Coroutines in C#

Imagine:

Do() is action part of coroutine
First S.call() will invoke S.Do()
S.suspend() will return to the point of S.call() and resume
execution after S.call()
Subsequent S.call() will resume execution in S where it
was last suspended

abstract class Coroutine // Similar to Thread
{ ...
public void call() { ... } // a.k.a. attach/resume
public void suspend() { ... }
public abstract void Do(); // Similar to Run()

}
SpecificCoroutine: Coroutine{ … }
Coroutine S = new SpecificCoroutine();

Go to coroutine appendix

Peter Andersen 102005/09/19-21

[Re 5] Current impl. of class Coroutine
class Coroutine implemented by
means of System.Threading.Thread and
System.Threading.Monitor
public class Coroutine {
public static Coroutine current;
private Coroutine caller; // backlink; this when suspended
private System.Threading.Thread myThread; // notice private
public Coroutine ()
{ ... Constructor: allocate myThread starting in run; set up caller etc. }
private void run()
{ ... Thread entry point: call Do()and then terminate myThread … }
public void swap()
{ ... Main call() / suspend() handling; next slide … }
public abstract void Do();

}

Peter Andersen 112005/09/19-21

[Re 5] Current impl. of Coroutine.swap()

public void swap()
{

lock (this){
Coroutine old_current = current;
current = caller;
caller = old_current;
if (!myThread.IsAlive) {

myThread.Start();
} else {

System.Threading.Monitor.Pulse(this);
}
System.Threading.Monitor.Wait(this);
}

}

Currently executing
Component/Coroutine

Swap pointers

Start or resume
new current

Suspend old current

Used asymmetrically:
Call: this == to become current; this.caller == this
Suspend: this == current; this.caller to be resumed

Peter Andersen 122005/09/19-21

Measurements from JVM indicate that thread
allocation is the culprit – use of threadpool for
reusing threads gave significant speed up

.NET / ROTOR same problem?
Did not (yet) try this optimization for .NET

Otherwise unreferenced threads with unfinished
ThreadStart methods count as GC roots?

Lots of such coroutines in BETA execution

[Re 5] Coroutine problems?

Peter Andersen 132005/09/19-21

[Re 5] Coroutine support in .NET/ROTOR?

Direct light-weight user defined scheduling
desirable

C# 2.0 yield?
P/Invoke of WIN32 Fibers?
ROTOR extension?

Peter Andersen 142005/09/19-21

[Re 5] Comparison with C# 2.0 yield

C# 2.0 has new feature called yield return
Yield corresponds to suspend()

Used for implementing enumerator pattern
May be considered ”poor man’s coroutine”
Implemented as a simple state-machine
Can only ”save” one stack frame

Peter Andersen 152005/09/19-21

[Re 5] P/Invoke of WIN32 Fibers
Described in

Ajai Shankar: Implementing Coroutines for .NET by Wrapping the
Unmanaged Fiber API
http://msdn.microsoft.com/msdnmag/issues/03/09/CoroutinesinNET

Pretty ”hairy” code, inclusing use of undocumented APIs
http://blogs.msdn.com/greggm/archive/2004/06/07/150298.
aspx :

”DON’T USE FIBERS IN A MANAGED APPLICATION. The
1.1/1.0 runtime will deadlock if you try to managed debug a
managed application that used fibers. The CLR team did a lot of
work for fiber support in the 2.0 runtime, but it still won't support
debugging”

Sample (not?) available for .Net 2.0:
http://msdn2.microsoft.com/en-us/library/sdsb4a8k (CoopFiber)
(thank you Fabio)

Update - 9/16/2005: The solution described in
this article relies on undocumented functionality
that is not supported by Microsoft at this time

Update - 9/16/2005: The solution described in
this article relies on undocumented functionality
that is not supported by Microsoft at this time

http://msdn.microsoft.com/msdnmag/find/?type=Au&phrase=Ajai%20Shankar&words=exact
http://msdn.microsoft.com/msdnmag/issues/03/09/CoroutinesinNET
http://blogs.msdn.com/greggm/archive/2004/06/07/150298.aspx
http://blogs.msdn.com/greggm/archive/2004/06/07/150298.aspx
http://blogs.msdn.com/greggm/archive/2004/06/07/150298.aspx

Peter Andersen 162005/09/19-21

[Re 5] ROTOR extension?
ROTOR extension with e.g. coswap
bytecode?

Addition of bytecode presumably straight-forward
What about co-existence with managed threads,
PAL threads, native threads, thread
synchronization, exception handling etc.?

We read “Shared Source CLI Essentials” and
browsed the 5M lines of ROTOR source a lot.
A little overwhelmed with the challenge!
Needed pre-study with simpler architecture

The concurrency model
is quite complex...

As promised, this
[aborting a thread] is a
pretty hefty chunk of

code...

Peter Andersen 172005/09/19-21

[Re 5] pre-vm

Joined forces with another ongoing project:
PalCom (http://www.ist-palcom.org)
As part of PalCom Runtime Environment:
pre-vm virtual machine
Simple dynamically typed (a la Smalltalk)
interpreted runtime system, <20 bytecodes
Prototype implemented in Java, currently being
re-implemented in C++ for use in small devices
(Partial) language mappings for BETA, Java,
Smalltalk

http://www.ist-palcom.org/

Peter Andersen 182005/09/19-21

[Re 5] pre-vm: coroutines

Coroutine-based environment
Coroutines (not threads) are the basic scheduling unit
Coroutines scheduled by user-programmed schedulers

(Somewhat like Fibers in WIN32)
Default (replaceable) schedulers included in library
Different scheduling strategies can be used for
(disjunct) sets of coroutines, e.g. hierarchical
schedulers
Preemptively scheduled coroutines (i.e. threads)
programmed using interrupt/timer mechanism

Peter Andersen 192005/09/19-21

[Re 5] pre-vm: implementation

VM support for coroutines:
Coroutine VM-defined entity which includes a
stack, a current execution point and a backlink to
coroutine that attached it
Bytecode for coroutine swap:

Attach(x) → push x; coswap
Suspend(x) → push x; coswap
Notice: A coroutine may suspend another (which needs to be
active)

Primitives for setting an interrupt interval and an
interrupt handler

Peter Andersen 202005/09/19-21

[Re 5] pre-vm: preemptive scheduling

Preemptive scheduling:
Set an interrupt interval
Set an interrupt handler: Must include a
void handle(Object)

method
In the handler call Suspend() on the currently active
coroutine and Attach() on the next coroutine to run

Interrupts only detected at the so-called safe-
points (backward-branches, method entries, and
I/O calls)

Comparable with GC safe-points in Rotor

Peter Andersen 212005/09/19-21

[Re 5] pre-vm: synchronization and I/O

Synchronization:
Critical regions, mutexes, semaphores etc. built using a single
Lock() primitive
Currently no need for e.g. test-and-set bytecode, as interrupts
only occur at well-known safe-points
May be needed if more interrupt-places added to reduce latency;
simple to implement

Blocking I/O impl: Two approaches:
If an interrupt is detected at the I/O call, interpreter continues on
a fresh (native) thread, and blocking I/O thread stops after I/O
call completed (current strategy)
Programmer must distinguish between potentially blocking and
non-blocking I/O calls. Blocking calls automatically done by
another thread (considered)

Peter Andersen 222005/09/19-21

[Re 5] Coroutines: status

Pre-vm is still very much work-in-progress (project on
second year out of four)
Results so far look promising; i.e. the idea of using
coroutines as the sole scheduling entity seems realizable

Simple VM-level semantics
Simple implementation

Problem with unterminated coroutines staying alive can
be completely controlled by user-programmed scheduler
Potential problem:

Different user-programmed (preemptive) schedulers in separate
components may conflict – especially if the need to synchronize
between components

Peter Andersen 232005/09/19-21

[Re 5] Coroutines: status

Difficult (yet) to say how much of this can be applied to
ROTOR/.NET

Same ideas could probably be realized if coroutine systems
always reside within one managed thread and synchronization of
coroutines with managed threads is not considered

Interesting to see how far we can get in ROTOR.
Probably much better ”dressed” when we have the embedded
C++ implementation of pre-vm implemented and example
applications running on top of it

If a Fiber API actually gets into Whidbey, presumably
this will get much easier

Peter Andersen 242005/09/19-21

Future plans
Obvious optimizations in current C# implementation of
Coroutines (e.g. ThreadPool)
More lessons to learn from pre-vm work
Perhaps co-operation with Cambridge?

Previous contact to MSR Cambridge guys who patched a JVM to
include support for Coroutines

Perhaps co-operation with Redmond?
Contacts within C# team and CLR team. Coroutine co-operation
suggested.

Perhaps co-operation with PUC-Rio
Exciting to see what things look like after .Net 2.0 (and
later ROTOR 2.0)

Peter Andersen 252005/09/19-21

Contacts:

Peter Andersen (that’s me)
mailto:datpete@daimi.au.dk

Prof. Ole Lehrmann Madsen
mailto:olm@daimi.au.dk

Info & download:
http://www.daimi.au.dk/~beta/ooli

Questions?

mailto:datpete@daimi.au.dk
mailto:olm@daimi.au.dk
http://www.daimi.au.dk/~beta/ooli

Peter Andersen 262005/09/19-21

Appendices

The following slides not presented at
Capstone workshop
Added as backgound material
Appendix A describes a basic BETA
program and how it is mapped to .NET
Appendix B describes coroutines in
general, here expressed in C#

Peter Andersen 272005/09/19-21

App. A: BETA Language Mapping
Object-oriented programming language

Scandinavian school of OO, starting with the Simula
languages
Simple example:

Calculator:
(# R: @integer;

set:
(# V: @integer enter V do V → R #);
add:
(# V: @integer enter V do R+V → R exit R #);

#);

A pattern named
Calculator

Static instance
variable named R

Internal pattern
named set with
an input variable V

Internal pattern named add
with an input variable V and
a return value named R

Go back to BETA.Net status

Peter Andersen 282005/09/19-21

App. A: BETA example use
Calculator:
(# R: @integer;

set:
(# V: @integer enter V do V → R #);
add:
(# V: @integer enter V do R+V → R exit R #);

#);

C: @Calculator;
X: @integer;

5 → C.add → X

Use of add as a method:
C: @Calculator;
X: @integer;
A: ^C.add;
&C.add[] → A[];
5 → A → X

Use of add as a class: Creation of
an instance
of C.add

Execution of
the C.add
instance

Go back to BETA.Net status

Peter Andersen 292005/09/19-21

App. A: BETA vs. CLR/CLS
Class and method unified in pattern
General nesting of patterns, i.e. also of methods

Uplevel access to fields of outer patterns
INNER instead of super
Enter-Do-Exit semantics
Genericity in the form of virtual patterns
Multiple return values
Active objects in the form of Coroutines
No constructors, no overloading
No dynamic exceptions

Go back to BETA.Net status

Peter Andersen 302005/09/19-21

App. A: BETA.Net/Rotor Challenges
Mapping must be complete and semantically correct
BETA should be able to use classes from other
languages and visa versa
BETA should be able to inherit classes from other
languages and visa versa
In .NET terminology:

BETA compliant with Common Language Specification (CLS)
BETA should be a CLS Extender

The BETA mapping should be ’nice’ when seen from
other languages
Existing BETA source code should compile for .NET

Go back to BETA.Net status

Peter Andersen 312005/09/19-21

public class Calculator: System.Object {
public int R;
public int add(int V) { R = R + V; return R;}

…
}
…

}

Cannot be used as a class

App. A: Mapping patterns: nested classes
public class Calculator: System.Object {

public int R;
public class add: System.Object {

public int V;
…

}
…

}

public class Calculator: System.Object {
public int R;
public class add: System.Object {

public int V;
public void Enter(int a) { V = a; }
public void Do() { R = R + V; }
public int Exit() { return R; }

}
…

} Error: Outer R cannot be
accessed from
nested class!

public class Calculator: System.Object {
public int R;
public class add: System.Object {

public int V;
Calculator origin;
public add(Calculator outer) { origin = outer; }
public void Enter(int a) { V = a; }
public void Do() { origin.R = origin.R + V; }
public int Exit() { return origin.R; }

}
…

}

public class Calculator: System.Object {
public int R;
public class add: System.Object {

public int V;
Calculator origin;
public add(Calculator outer) { origin = outer; }
public void Enter(int a) { V = a; }
public void Do() { origin.R = origin.R + V; }
public int Exit() { return origin.R; }

}
public int call_add(int V){

add A = new add(this);
A.Enter(V);
A.Do();
return A.Exit();

}
…

} CLS does not allow for this
to be called just add()

Calculator:
(# R: @integer;

…
add:
(# V: @integer
enter V
do R+V → R
exit R
#);

#);

Go back to BETA.Net status

Peter Andersen 322005/09/19-21

App. A: Use of add as a class:
C: @Calculator;

X: @integer;
A: ^C.add;
&C.add[] → A[];
5 → A → X

Calculator C
= new Calculator()

int X;
Calculator.add A;
A = new Calculator.add(C);
A.Enter(5);
A.Do()
X = A.Exit();

Go back to BETA.Net status

Peter Andersen 332005/09/19-21

App. A: Use of add as a method

C: @Calculator;

X: @integer;
5 → C.add → X

Calculator C
= new Calculator()

int X;
X = C.call_add(5);

Go back to BETA.Net status

Peter Andersen 342005/09/19-21

App. A: Not described here…
Virtual classes – corresponding to generics (.NET 2.0)
– implemented with virtual instantiation methods and a
lot of (unnecessary) casting.
Coroutines and concurrency - More on this later…
Pattern variables: Classes and methods as first-class
values – implemented with reflection
Leave/restart out of nested method activations –
implemented with exceptions (expensive!)
Multiple return values – implemented with extra fields
Interface to external classes - Rudimentary support
for overloading, constructors etc. Offline batch tool
dotnet2beta implemented using reflection
Numerous minor details!

Go back to BETA.Net status

Peter Andersen 352005/09/19-21

App. B: Coroutines in C#

Given the C# Coroutine definition included
in the main part of these slides:

abstract class Coroutine // Similar to Thread
{ ...
public void call() { ... }
public void suspend() { ... }
public abstract void Do(); // Similar to Run()

}
SpecificCoroutine: Coroutine{ … }
Coroutine S = new SpecificCoroutine();

Go back to coroutine implementation

Peter Andersen 362005/09/19-21

App. B: Example: Adder

Produces sequence
start + start,
(start+1)+(start+1)
…
By using (infinite)
recursion
Suspends after
each computation

class Adder: Coroutine {
public int res;
int start;
public Adder(int s) {

start = s;
}
void compute(int V){

res = V+V;
suspend();
compute(V+1);

}
public override void Do() {

compute(start);
}

}

Go back to coroutine implementation

Peter Andersen 372005/09/19-21

App. B: Example: Multiplier

Produces sequence
start * start,
(start+1) * (start+1)
…
By using (infinite)
recursion
Suspends after
each computation

class Multiplier: Coroutine {
public int res;
int start;
public Multiplier(int s) {

start = s;
}
void compute(int V){

res = V*V;
suspend();
compute(V+1);

}
public override void Do() {

compute(start);
}

}

Go back to coroutine implementation

Peter Andersen 382005/09/19-21

App. B: Merger

Merge sequences
produced by
Adder instance
and Multiplier
instance
Sort in ascending
order
First 6 values

class Merger: Coroutine {
Adder A = new Adder(3);
Multiplier M = new Multiplier(2);
public override void Do() {

A.call(); M.call();
for (int i=0; i<6; i++){

if (A.res < M.res) {
Console.WriteLine("A: " + A.res);
A.call();

} else {
Console.WriteLine("M: " + M.res);
M.call();

}
}

}
public static void Main(String[] args) {

(new Merger()).call()
}

}

Go back to coroutine implementation

Peter Andersen 392005/09/19-21

class Merger: Coroutine {
Adder A = new Adder(3);
Multiplier M = new Multiplier(2);
public override void Do() {

A.call(); M.call();
for (int i=0; i<6; i++){

if (A.res < M.res) {
Console.WriteLine("A: " + A.res);
A.call();

} else {
Console.WriteLine("M: " + M.res);
M.call();

}
}

}
public static void Main(String[] args) {

(new Merger()).call()
}

}

Adder Multiplier Merger

MA

merger*

Do

Coroutine

Method
invocation

Caller link (back-link) –
initially self

current

Go back to coroutine implementation

Peter Andersen 402005/09/19-21

MA

merger*

Do

class Adder: Coroutine {
public int res;
int start;
public Adder(int s) {

start = s;
}
void compute(int V){

res = V+V;
suspend();
compute(V+1);

}
public override void Do() {

compute(start);
}

}

Adder Multiplier Merger

Do

Compute

Call() is basically
just a swap of two

pointers

current

Go back to coroutine implementation

Peter Andersen 412005/09/19-21

MA

merger*

Do

Do

Compute

class Merger: Coroutine {
Adder A = new Adder(3);
Multiplier M = new Multiplier(2);
public override void Do() {

A.call(); M.call();
for (int i=0; i<6; i++){

if (A.res < M.res) {
Console.WriteLine("A: " + A.res);
A.call();

} else {
Console.WriteLine("M: " + M.res);
M.call();

}
}

}
public static void Main(String[] args) {

(new Merger()).call()
}

}

Adder Multiplier Merger

suspend() is also
basically just a swap

of two pointers
current

Go back to coroutine implementation

Peter Andersen 422005/09/19-21

MA

merger*

Do

Do

Compute

class Multiplier: Coroutine {
public int res;
int start;
public Multiplier(int s) {

start = s;
}
void compute(int V){

res = V*V;
suspend();
compute(V+1);

}
public override void Do() {

compute(start);
}

}

Adder Multiplier Merger

Do

Compute

current

Go back to coroutine implementation

Peter Andersen 432005/09/19-21

MA

merger*

Do

Do

Compute

Do

Compute

class Merger: Coroutine {
Adder A = new Adder(3);
Multiplier M = new Multiplier(2);
public override void Do() {

A.call(); M.call();
for (int i=0; i<6; i++){

if (A.res < M.res) {
Console.WriteLine("A: " + A.res);
A.call();

} else {
Console.WriteLine("M: " + M.res);
M.call();

}
}

}
public static void Main(String[] args) {

(new Merger()).call()
}

}

Adder Multiplier Merger

current

Go back to coroutine implementation

Peter Andersen 442005/09/19-21

MA

merger*

Do

Do

Compute

Do

Compute

class Adder: Coroutine {
public int res;
int start;
public Adder(int s) {

start = s;
}
void compute(int V){

res = V+V;
suspend();
compute(V+1);

}
public override void Do() {

compute(start);
}

}

Adder Multiplier Merger

Compute

current

Go back to coroutine implementation

Peter Andersen 452005/09/19-21

MA

merger*

Do

Do

Compute

Do

Compute

Compute

class Merger: Coroutine {
Adder A = new Adder(3);
Multiplier M = new Multiplier(2);
public override void Do() {

A.call(); M.call();
for (int i=0; i<6; i++){

if (A.res < M.res) {
Console.WriteLine("A: " + A.res);
A.call();

} else {
Console.WriteLine("M: " + M.res);
M.call();

}
}

}
public static void Main(String[] args) {

(new Merger()).call()
}

}

Adder Multiplier Merger

… and so on

Go back to coroutine implementation

current

	Porting BETA to ROTOR/sscli
	ROTOR RFP II
	[Re 1-2] BETA.Net status
	[Re 1-2] BETA.Net status
	[Re 3] Bootstrapped compiler
	[Re 3] Compiler statistics
	[Re 3] Why compiler slow?
	[Re 3] Bootstrapped compiler
	[Re 5]: Coroutines in C#�
	[Re 5] Current impl. of class Coroutine
	[Re 5] Current impl. of Coroutine.swap()
	[Re 5] Coroutine problems?
	[Re 5] Coroutine support in .NET/ROTOR?
	[Re 5] Comparison with C# 2.0 yield
	[Re 5] P/Invoke of WIN32 Fibers
	[Re 5] ROTOR extension?
	[Re 5] pre-vm
	[Re 5] pre-vm: coroutines
	[Re 5] pre-vm: implementation
	[Re 5] pre-vm: preemptive scheduling
	[Re 5] pre-vm: synchronization and I/O
	[Re 5] Coroutines: status
	[Re 5] Coroutines: status
	Future plans
	Contacts:
	Appendices
	App. A: BETA Language Mapping
	App. A: BETA example use
	App. A: BETA vs. CLR/CLS
	App. A: BETA.Net/Rotor Challenges
	App. A: Mapping patterns: nested classes
	App. A: Use of add as a class:
	App. A: Use of add as a method
	App. A: Not described here…
	App. B: Coroutines in C#
	App. B: Example: Adder
	App. B: Example: Multiplier
	App. B: Merger

