The Mjglner System
The Bifrost Graphics System

Reference Manual

Mjglner Informatics Report
MIA 91-13(2.2)
October 1997

Copyright © 1991-97 Mjglner Informatics ApS.
All rights reserved.
No part of this document may be copied or distributed
without the prior written permission of Mjglner Informatics

Table of Contents

1. BIFROST REFERENCE MANUAL ... 1
2. INTRODUCTION . ..ttt e e e eae e 2
3. COORDINATE SYSTEMS AND TRANSFORMATIONS.........ccooiiviiinenns 4
1 00 0o o g === 4
3.2 C00rdiNAte SY Sl OIS . . ettt ettt e e e 4
B T aANS O ML ONS . ettt 5
A, THE SHA PE. ... e e e 7
o [0T 01 7
4.2 Orientation Of SEgMIENTS ... ottt 8

A B Il RUIES . ..ottt 8
4.4 Shape Definition PrimitiVeS.o e 9

A D T 0K . . e 11
451 Capand JOIN SEYIES ...t 12

G0 00T 12
4.7 ComMbIiNINg SaPESt 13

A 7.1 APPENASNADE. ...ttt 14
A.7.2 CONMNECESNAIE. ...ttt ettt ettt e et e et e e et e e e e e 15
4.7.3 CoNNECEShaPESMOOLN 15
A.7.4 COMDINESNADE ... ettt e et et e et e et e et e et e e e e e e aae 16

4.8 Segment Definition Primitivesoooiii e e 17
I I =S o 0= o 17
4.8.2 SPIINESEGIMENL. ... ettt et e e et e e et e e e et e e e e 17
4.8.3 Adding SEgMENESTO SNAPES cieeiii ettt ettt 18

D THE PAINT L e 21
LI o F= = T 21

LT 0 = L PP 22

LT 2 211 = o PR 22

LT I N o 1Y - SRR 23

LIS o | o ('] o] 23
5.2.1 DEfiNiNg SO COlOISuuuiiiiiiieeeii et eaeans 23

B 2.2 EXBMPIES. . e 23
5.2.3Name Color MOELieiiee e 25

Bifrost Graphics System

5.2.4 TIedSOlACOIONcciiieeiii et 25

B 3 RASEN PaiNt ..t 25

. THE GRAPHICAL OBJECT ..t et e 27
6.1 GraphiC CONEEXEttt ettt ettt 27
8.2 OB AL ONS . . ettt ettt ettt 27
6.2.1 GEOMELIC TranSfOrMBLIONS.uuu i eeeeiii ettt et e e e e e e enees 28
6.2.2 Query Qperations ... 28
B.2.3 INLEIBCHIONeevii i 28
6.2.4 Drawing GraphiCal ObJECES.ccuuiiiiiieei e e e e e e e eanas 29
6.2.5 Transforming Graphical ODJECES.........iviiviiiiiiii e 29
CTHE PICTURE. .. e e 30
7L TR P CIUr @ LISt et 30
7.2 SElECHION PiCtUI . . ettt et 31
7.3 Picture Coordinate SYStaIM e 31
7.4 0ther OperationSON PiCtUIES.ttt eeans 31
CTHE CANY A S o e 33
8.1Drawingand Visible Areao 33
8.2 The CanVasS PiCtUMttt e et 33
ST 1 O 110 o1 o 5 34
8.4 Updating Damaget AT EASottt 34
B INPUL CONLION ... ettt e 35

. PREDEFINED SHAPES AND GRAPHICAL OBJECTS..........ccovvvnen. 37
0. L LiNEONa e e 37
0.2 MU LINESNAPE. . . et 38
0. T XL NP, . ..t 38
0.4 RECE SNttt 39
O S Bl PSS e . ot e 39
0.8 P BN . . ot 39
LS 02 =T o= 40
0.8 DEfiNING NEW SNAPESttt ettt 40
9.8.1 Predefined Paint OPerationS...........iiuuiieieiii e e e e 41
10, INTERACTION Lo e e e e e 42

10,1 INteraction MOGE. e e e e e e 42

Table of Contents

10.2 FEEUDACK . . .o e 44
10.2.1 Canvas Primitivesfor Feedbackcouoviiiiiiiiiiiii e 44
10.2.2 Segment Primitives for Feedback............ooooiiiiiiii 45

10.3 Interaction Facilitiesinthe Shape.o e 45
10.3. 1 NEIGhBOINOOM. eees 46
10.3.2 Direct changing of Control POINES...........c.uiiiiiiiiii e 46
10.3.3 Shape Highlightingvvie e e e e e e eeans 46
10.3.4 QUENY FUNCLIONS. ...ceeett ettt et e et e et e e et eeeaba s 47

104 Modifiersand CONSraiNtS. i e e 47
10.4.1 Default constraintS in BiffOStc.uuieuiiiii e 48

11. SAVING PICTURES IN FILES ... e 50

111 SAVING @ CANVAS . ettt ettt et et e ettt et et e e e 50

I 072 To [T g o I O 1Y 50

11.3 Saving and Loading Specialized ObjectScovviiii i 50

T 50
1131 WIIING USEr-0BEALo eeve et ettt e e b 51
11.3.2 REAOING USEr-0aLA. eeeeeti ettt et e e 51
11.3.3 Creating NEW ODJECES.uu e e e e e e e e 51

12. BIFROST AND LIDSKJIALYV ..o et 52

12.1 BifrostCanvasand Lidskjalv Canvas.viuiieiiii i 52

12.2 OVEr1apPiNg Data TYPES. . .. ettt ettt ettt ettt 52

12.3 Lidskjalv Graphicsand Figureltems.ot 53

13. INTERFACE DESCRIPTIONS. ... e 54

13.1Various SIMpPle DeEfiNitioNSot e e s 54

13,2 MaAlNEMALICSt e et et e 55

G I - 11 17/ 01> T 57

S o 3T | 59

13.5Line-and SpliNe SEgmMENtS. . ..ot 61

13,6 SPlINESEgMENT. . e e 61

13,7 Circular SPliNESEgMENt\ttt e e e s 62

13.8 Noncircular SPliNESEgMENt oe it et 63

13,0 ADS I ACE SNAPE . . . ettt 63

I T 0 S =T T 66

1311 PredefinedShape. e 68

I I 1= g =T o = P 69

13 AB MUIIIINESNAPE . . . ettt et 70

Bifrost Graphics System

TN I =B T o = 71
L3 LS PIE A . . ettt ettt e 72
0 LG 02 =T o = 73
13.17 StrokeableShape. 73
13 8 RECE NG I . . ottt e e e 74
13 10 i PSE O, . . ettt ettt e e 74
L3 20 RaS Y S, . . ettt ettt et 75
G T2 I T | 77
RS 22728 o [o [o o 79
1323 Predefined GraytOneS.ttt e 80
1324 RaASIEr PaiNto 80
13.25 THedSOlIACOIOr.ttt e 8l
13.26 AbstractGraphiCalObJECtooe i e 82
13.27 GraphiCalODJECL.ot 86
13,28 PICtUI EONAPE . . . ettt e 86
L3 20 P CtUN . ettt ettt et e e 86
1330 BifrOStCANVAS . . oottt sttt e e 89
T o 2 0 96
L3 32 EP S IlE. ottt 96
13,33 COlOrNAMESttt et e 97
13 3 Pal B . oo 98
13.35 PredefinedGraphicalObjJeCto 99
G T T = P 99
S T A8 1 =S 100
T] =0 o = 101
G L o 102
130 P BTl . e vttt et e 102
G0 = 103
132 Bl PSR oot 103
e R Gl o = =] Y2 104

13,44 SElECt I ON P CLUN B . .ottt 105

Table of Contents

14. BIBLIOGRAPHY ..o

1S, IND X

List of Figures

Figure 1: lllustration of a canvas in a window system displayed on a graphics workstation............... 2
Figure 2: The graphical object isa composition of a shapeand apaint..............cccvevveiiiiinneriinnnnen. 3
Figure 3: A picture isa composition of graphical ODJECtS............viiiiiiiiiiiii e 3
Figure 4: The segment NEErarChyooee i e e 7
Figure 5: EXamples Of SEOMENTS.ttt et e e et e et e e e e eaaaaes 7
FIGUrE B: Fill RUIES... ... i e e e e e e e e e e e e aaas 8
Figure 7: Stroke operation applied to an 0pen ShapPe.........cvuuviviieiei e 11
Figure 8: The stroke operation applied to a closed SNAPEuuiiiiiiiiiei e 11
Figure 9: Cap and join styles for the Stroke Operationveeeeiiiiiieiiii e 12
Figure 10: The Paint HIErarChy.........couu it e e eees 21
Figure 11: The Raster HIerarChy oo 22
Figure 12: A Color Scale and it's COMPlEMENTArY..........covuuiiiiiei e e 24
Figure 13: A graphical object isa composition of ashapeand apaint............cccooeveviviiiiiiinennnnnns 27
Figure 14: Predefined Shape Inheritance HIerarchy.............ovveiiiiniiiiiin e 37

Vi

1. Bifrost Reference Manual

This report presents the library available in the Mjglner System for programming
applications in version 2.2 of the Bifrost Graphics System. Bifrost is an interactive
object oriented device independent graphics system, and is the result of a master
thesiswork as described in [Andersen 91].

The above mentioned report describes graphics in general using a taxonomy for
graphics systems, and explains why Bifrost is designed as it is. The report also in-
cludes documentation of the implementation.

This manual starts with an introduction in Chapter 2, followed by a chapter describing
necessary mathematical concepts.

Chapters 4 to 8 describe the basic concepts of the Bifrost imaging model—shape,
paint, graphical object, picture and canvas, respectively.

Chapter 9 introduces a series of objects defined as an assistance for the user of
Bifrost. The objects define various shapes and graphical objectsin common use. After
the basic concepts have been defined, chapter 10 describes how Bifrost implements
interaction on display devices that support interactive input and output.

Chapter 11 describes of how to save pictures in files, and later reloading them from
files.

Bifrost is currently implemented as a library for Lidskjalv; thisis further explained in
chapter 12. A fairly advanved drawing application, bdraw, is designed and imple-
mented using Bifrost — bdraw is not described in this manual, but the entire set of
source files are available in the bdr aw directory.

In chapter 13, a complete set of interface descriptions for al of Bifrost is presented.
Thisincludes all patterns available, and their enter and exit parameters.

This manual is primarily a reference manual, that is, it is not recommended to try to
learn how to use Bifrost from reading this manual from one end to another. Instead
the reader should consult the Bifrost Tutorial [MIA 91-19], which contains a stepwise
introduction to the most important parts of Bifrost.

The canvas
picture:

Graphical object:

Picture:

D.A

2. Introduction

This chapter describes the observations of a user running a typical session with a
Bifrost application. Using this strategy, we try to introduce the concepts of Bifrost, as
first seen by anew user.

Imagine a graphics workstation running a window system. One of the windows is a
canvas showing graphics. See Figure 1.

Graphics workstation display

Figure 1: lllustration of a canvasin awindow system displayed on a graphics
wor kstation

The canvas is a representation of a drawing surface, and is the connection between
the window system and Bifrost. The canvas contains a picture, and all graphics
shown in the canvas must be in the canvas picture. The picture is a collection of
graphical objects, and realize the concept of graphics modelling. The graphical object
is the smallest possible entity that can be drawn, and is complete in the sense, that it
contains all necessary information about how the graphical object appears on the
canvas, and is therefore independent of any other graphical objectsin apicture.

The graphical object concept is a composition of two concepts. shape and paint. The
shape describes the outline of the object, and the paint describes the color or raster to
be pushed through the object when is it displayed on the canvas. The shape of a
graphical object is described by segments. A segment is either a straight line segment
or a spline segment. Spline segments are used to describe curves. The shape is analo-
gousto the stencil in the Stencil & Paint imaging model.

The canvas picture in the margin consists of two objects: one graphical object and one
picture. The gray circle graphical object is composed of a circle shape and a gray
paint asillustrated in Figure 2.

Introduction

Graphical object

]
Shape Paint

OGN

Figure 2: The graphical object isa composition of a shape and a paint

The three other graphical objects in the example above are assembled in a picture
consisting of a black frame, a gray half circle, and a black triangle. The picture is
shown in Figure 3. The three graphical objects are also, of course, each defined by a
shape and a paint.

Picture

|]
Graphical object Graphical object Graphical object

[l w | A

Figure 3: A pictureisacomposition of graphical objects

The basic imaging model of Bifrost isthus very simple: define a shape that represents
the outline of the object you like to draw, select a paint as the color for the object,
construct a graphical object with the shape and paint just defined, and draw the object
in acanvas, i.e. insert the graphical object into the canvas picture. If the object must
have different colors the object must be split into more graphical objects and assem-
bled in a picture. The picture is itself a graphical object, and can thus be drawn in a
Canvas.

An application using Bifrost to render graphics, may use many canvases and win-
dows, but each window must have at least one associated canvas to draw graphics.
More than one canvas may be associated to the same window, and the canvases in the
same window may overlap.

J upperleft
I height
«—
width

S

3. Coordinate Systems and
Transformations

Before the concepts are considered in detail, a few mathematical concepts must be
defined. That is, coordinates, coordinate system, and transformation between coordi-
nate system. It is assumed that the reader is familiar with concepts like Cartesian co-
ordinate systems and matrix operations.

3.1 Coordinates

When a graphical object is to be drawn, the points that defines the outline of the
graphical object must be specified in some way, i.e. where is the shape supposed to
be. Bifrost uses standard Cartesian coordinates for this purpose. Standard Cartesian
coordinate subtraction and addition are supported. An axis parallel rectangle consists
of one point and a height and a width (or two diagonal points). The figure in the
margin illustrates the coordinate system used.

As shown in the margin, a rectangle is described by one point (upperleft) and two in-
tegers (width and height).

3.2 Coordinate Systems

Output devices vary greatly in the built-in coordinate systems they use to address ac-
tual pixels within their display area. Therefore, in a device independent imaging
model, there must exists at least two coordinate systems. One referring to the actual
device, caled the Device Coordinate System (DCS), and one coordinate system
completely independent of the device coordinate system, sometimes called the world
coordinate system but here called the Canvas Coordinate System (CCS) since it is re-
lated to the canvas (see chapter 7).

The implementation of Bifrost with respect to an actual device defines a transforma-
tion between these two coordinate systems. The user applications can thus draw in the
device independent coordinate system, while Bifrost is making sure that the picture
will be transformed into device coordinates, and that the picture can be drawn
(identically) on different devices.

The transformation between the CCS and the DCS coordinate systems is not an ordi-
nary geometric transformation. The DCS relates to the device and the device coordi-
nates are typically integers. Bifrost does not restrict the CCS coordinates to be integer
values. In cases where CCS is defined in, say, floating point coordinate values, the
transformation includes, beside the normal geometric transformation, a mapping from
real values to integer values. The default unit on the axes of the CCS coordinate sys-
tem is currently dertermined by the pixel size of the DCS, but can be changed as
needed.

In later chapters new coordinate systems will be introduced. The CCS is the world
coordinate system of Bifrost, implying that all coordinate systems are initially defined

4

Coordinate Systems

to be CCS. The next section explains how to obtain geometric transformations by
applying matrices to the coordinates.

3.3 Transformations

Transformation of coordinates from one two-dimensional coordinate system to an-
other can be specified by means of a 3x3 transformation matrix. The matrix specifies
how a point in one coordinate system is transformed into the corresponding point in
another coordinate system.

The subsequent definitions of the geometric transformations are illustrated with the
example polygon in the margin. ‘

A transformation matrix(TM) specifies atransformation of point (x,y) to point (X', y’)
in the following way:

ax+cy+ix g
Xy, 1)=(x,y,) *TM=¢bx+dy +ty +
e 1 7]

& b0g
whereTM =¢cC d 0 -
gtx tylg

The common transformations: scaling, moving (translation), and rotation can easily
be described by transformation matrices.

Scaling by factor s, in the x dimension and s, in the y dimension is accomplished by:

a5 0 O()
™ = ¢0 s 0°
T €00 15 ¥
Moving (translation) by a specified displacement (ty,ty) is obtained by X
2100,
TMmove = €010°7
€ty 15 .
i
Rotating counterclockwise, around the origin of the coordinate system, by an angle q i

Is described by the following matrix:

2C0Sq sing Oy
TMRQ’[ate = Q'Slnq COSq 0:
€ 0 0 1¢

The most powerful feature of the matrix application, is that composition of geometric
transformations can be expressed as multiplications of the corresponding matrices.
That is, a combination of a rotate, move, and scale transformation can be combined
into one matrix, and thus reduce the time of calculation of a complex transformation:

Bifrost Reference Manual

® SxC0S(s,sing 04
TMrotate* TMmove* TMscale = ¢ -SSIN q . SyCOS q 0 :
&tycosq- §sinqtsing+tcosq 1o

The user must be aware of the order of transformations, since matrix multiplication is

not commutative. For a more thorough explanation of matrix operations and trans-
formations, see e.g. [Newman 81].

4. The Shape

The shape of a graphical object expresses the outlines of the holes in the stencil where
paint can be pushed through. Shapes can be arbitrarily complicated within the Stencil

& Paint model. The basic building blocks of the shape are segments and these are the
subject of the following four sections. Subsequent to the segment sections the shape
concept is described. The most important properties of the shape are the shape con-
structing language and the ability to combine shapes and thereby e.g. making holesin
shapes. Another important property of the shape is the stroke operation, which trans-
forms the shape into a new shape.

4.1 Segments

One can think of a shape as the boundaries of the graphical object, where the bound-
aries are made of segments. Straight line boundaries are made of line segments and
curved boundaries by spline segments. It is possible to combine both line and spline
segments in the construction of a shape, as can be seen in in example in the margin
using four line segments and two spline segments.

As can be seen in Figure 4 there are three kinds of segments: line, non-circular spline
and circular spline segments.

Segment

AN

LineSegment SplineSegment

PR

NonCircularSplineSegment CircularSplineSegment
Figure 4: The segment hierarchy

A line segment is a straight line between two end points. A spline segment is spanned
by at least three control points. There are two kinds of spline segments. an non-circu-
lar spline that terminates in its two extreme control points and a circular spline that
does not touch any of its control points and does not have a start nor an ending point.
Except for the two end points of a non-circular spline, the control points of a spline
segment does not lie on the curve. Instead the control points are distant to the curve
and act like ‘magnets’ pulling the curve. See Figure 5, which shows examples of the
three segment types. The quadratic dots are the control points defining the segments.

/) " 8
N . .
line segment non-circular spline segment circular spline segment

Figure 5. Examples of Segments

Bifrost Reference Manual

It is possible to construct any kind of shape using the three segment types. Any kind
of shape with non-curved sides such as triangles, rectangles and polygons with an
unlimited number of edges can be constructed from line segments. Circles and el-
lipses can be represented with circular spline segments. Even objects consisting of a
combination of spline and line segments can be constructed. Since shapes represent
the outlines of graphical objects, it is possible to construct any kind of graphical ob-
ject aslong as the object has well defined boundaries.

4.2 Orientation of Segments

A segment defines two specia control points referencing the first and the last control
point of the segment. These points are called FirstPoint and LastPoint, respectively.
Line segments consist, of course, only of a FirstPoint and a LastPoint. Spline seg-
ments consists of at least three control points, where FirstPoint and LastPoint refersto
two of the points. In the case of acircular spline FirstPoint and L astPointare identical
and refers to an arbitrary control point of the circular spline. In the case of a non-
circular spline FirstPoint and LastPoint refers to the first and last point in the spline,
respectively. The result of this definition is that a segment is said to have a direction
from FirstPoint to LastPoint.

When segments are used in construction of a shape, the segments are connected in
such away that LastPoint of a segment is connected to FirstPoint of the next segment.
In this way the shape gets an orientation. The orientation of the shape is used to de-
termine what is inside and what is outside of the shape. It is the inside of a shape that
isfilled with paint when a graphical object isdrawn.

4.3 Fill Rules

Two different approaches can be used to specify what is inside a shape: even-odd fill
rule and (non-)zero winding fill rule. The following examples illustrate the two ap-
proaches.

Non—zero winding rule: Even-odd rule

*00 00

Figure6: Fill Rules

The non-zero winding rule determines whether a given point is inside a shape by
(conceptually) drawing aray from that point to infinity in any direction and then ex-
amine the places where a segment of the shape crosses the ray. Starting with a count
of zero, the count is incremented each time a segment crosses the ray from left to
right and decremented each time a segment crosses from right to left.2 After counting
al the crossings, if the result is zero then the point is outside the shape, otherwiseit is
inside. With this rule, a ssimple convex shape yields inside and outside as would be
expected.

1 The rule does not specify what to do if a segment coincides with or is tangent to the ray. Since any
ray will do, one may simply choose a different ray that does not encounter such problem
intersections.

Fill Rules

Now consider afive pointed star, drawn with five connected straight line segmentsin-
tersecting each other. The entire area enclosed by the star, including the pentagon in
the center, is considered inside by the non-zero winding rule. For a shape composed
of two concentric circles, if they are both drawn in the same direction, the areas en-
closed by both circles are inside according to the rule. If they are drawn in opposite
directions, only the area between the two circles is inside according to the rule; the
‘hole’ isoutside.

The even-odd rule determines whether a given point is inside by drawing aray from
that point in an arbitrary direction and counting the number of segments that the ray
crosses. If the number is odd the point is inside; if even, the point is outside. The
even-odd rule yields the same results as the non-zero winding rule for simple shapes,
but different results for more complex ones. For the five pointed star drawn with five
intersecting lines, the even-odd rule considers the triangular parts to be inside, but the
pentagon in the center to be outside. For the two concentric circles, only the area be-
tween the two circlesisinside, regardless of the directions of the circles.

The non-zero winding rule is more versatile than the even-odd rule and is the default
rule used by Bifrost to determine what is inside and outside of a shape. Since the
even-odd rule is occasionally useful for special effects or for compatibility with other
graphics systems, optionally, this rule may be used instead.

4.4 Shape Definition Primitives

Usually the application programmer does not have to use segments directly when
defining a shape. Instead there are a few operations in the shape that can be perceived
as alanguage for shape definition: Open, Close, LineTo, SplineTo, Stroke, in addition
to several operations for combining shapes. Combining shapes is not a straight-
forward task and is the subject of a subsequent section.

When using these operations, the concept of shape control points is used instead of
segment control points. When looking at control points of the shape, the two control
pointsin ajoining of two segments are seen as one control point of the shape.

The first four operations for shape definition are used for adding control points to the
shape. Depending on which operation is used, the curve between the previously
placed control point and the new control point can be either a line or a non-circular
spline. The Stroke operations is a powerful way of defining shapes illustrating out-
lines of graphical objects. It will be presented in the next section.

Open.

Open takes one argument (a point) and defines this as the first control point of
the shape. After opening the shape, it is prepared to be constructed by means of
a sequence of LineTo and SplineTo messages.

Close.

This places a control point at the same position as the first point hereby closing
the shape. close does not have to be invoked on a shape to make it a legal
shape, but it ensures that the shape is closed, which is necessary when it is used
with apaint in agraphical object. More on this later.

LineTo.

This operation adds a line segment to the shape, using the last control point of
the shape as the first control point of the line segment, and the specified point
asthe last control point of the line segment.

The following example illustrates the use of the LineTo and Close operations:

Bifrost Reference Manual

aTEi angl e: @hape Resulting triangle:
#
do (0, 0) -> Open;
(100, 100) -> LineTo;
(100, O0) -> LineTo;
d ose;
#)]

The triangle shape now consists of three line segments, is closed and could be used in
agraphical object.

SplineTo.

This operation adds a control point to the non-circular spline segment under
construction.

Two different cases must be considered: is there currently a non-circular spline under
construction or not. In the former case (the last operation was SplineTo) the specified
point isjust added as a spline control point to that spline segment.

In the latter case (the last operations was LineTo or Open) a spline segment will be
created with the ending point of the shape as the first spline control point and the
specified point as the second spline control point. The following example illustrates
the use of SplineTo:

aShape: @hape Resulting open shape:
(#
do (0, 0) -> Open; "
(100, 50) -> LineTo;
(150, 40) -> SplineTo;
(130, 0) -> SplineTo;
(100, 0) -> LineTo;
#)

If a LineTo message follows a spline construction, LastPoint of the spline segment
becomes FirstPoint of the new line segment. The shape in the example above consists
of two line segments and one spline segments with three control points. Notice that
the shape is not closed.

If a Close message follows a spline construction, the spline will be ended with a con-
trol point in the starting point of the shape:

ny(Shape: @hape Resulting closed shape:
#
do (0, 0) -> Open; .
(0, 50) -> LineTo; =
(25,100) -> SplineTo;
(100, 70) -> SplineTo;
(95, 0) -> SplineTo;
d ose; -
#)]

MyShape consists of two segments, one line segment and one spline segment with
five control points. Circular splines can not be constructed with the SplineTo primi-
tive. Circular splines have to be created as circular spline segments and then added to
the shape.

Stroke

11

4.5 Stroke

A very powerful way of defining shapes is by applying a stroke to a previously de-
fined shape. The metaphor for stroke is that a scalpel is moved paralle to the seg-
ments of the shape definition, at a specified distance perpendicular to the segments:

opensSt r oke:

(#

do (100,
(150,
(200,
(250,
(300,
(350,
(400,

@shape

100) -
50) -
100) -
50) -
100) -
50) -

100)

VVVYVYVVYV

(10, CapButt,

#);

Resulting Shape:
Start

open;
i neTo;

i neTo;

i neTo;

splineTo;

splineTo;

splineTo;

JoinMter) -> stroke;

Figure 7: Stroke operation applied to an open shape

In Figure 7 the dashed curve is the origina shape which consists of three line
segments and one spline segment with four control points (the control points are not
shown). The resulting shape is the outline made by the scalpel. The scalpel starts (and
ends) in the leftmost top corner. The orientation of the resulting shape is indicated
with arrows along the segments. Notice that the shape is closed after the operation has

been applied.

A closed shape is stroked likewise but with no need to make special ends:

cl osedSt r oke:

(#

(200, 100)

(200,
(50,
cl ose;

50) -
50) -

(10, CapButt,

#);

Resulting Shape:

@hape

do (50, 100) ->
->
>
>

open;
| i neTo;
| i neTo;
i neTo;

JoinMter) -> stroke;

A

Figure 8: Thestroke operation applied to a closed shape

12

Bifrost Reference Manual

Notice the different orientation of the outer and inner shapes, and that the resulting
shape consists of two shapes (or more precisely: the shape consists of four line seg-
ments and one shape—also consisting of four line segments)

When the stroke operation has been applied, the original shape is atered and cannot
be restored but only the new shape can be manipulated (i.e. the segments of the
original shape are irreversibly replaced with the segments that define the new stroked
shape). This is different from traditional graphics systems like PostScript, where the
original shape (or path in PostScript terms) is unchanged and the stroke only makes a
temporary outline which is discharged after having been used for filling an area of the
drawing surface. Notice particularly, that the stroke of a spline segment results in two
parallel spline segments. Thisis a completely new idea, since the traditional graphics
systems can avoid calculating new spline control points by approximating the spline
with a polygon before cal culating the temporary outline (the traditional models do not
need the new splines since the temporary outline is immediately discarded without
giving the user the possibility to transform or modify the stroked spline).

The advantage of altering the shape is that it then becomes possible to further mani-
pulate the shape, and that the shape can be used for other purposes than just drawing
it, e.g. clip to the shape, detect mouse clicks within the shape etc.

45.1 Cap and Join Styles

The Cap parameter to the Stroke operation determines how the resulting shape looks
in the part of it corresponding to the end point of the original shape. The Cap parame-
ter is only relevant for open shapes. The Join parameter determines how the line parts
of the shape are joined. In the example above for an open shape, the Cap parameter is
CapBuitt specifying a line perpendicular to the shape and the Join parameter in both
examplesis JoinMiter. The alternatives areillustrated in Figure 9.

CopBui S— A JoinDMirer
CapRoval (— A ToinRound

Copspur [— A sizBe

Figure 9: Cap and join stylesfor the Stroke operation

4.6 Hotspot

All shapes contain one specia point, called hotspot. The hotspot can be set to any
point in the coordinate system of the shape, but if not explicitly set, the hotspot equals
the last point added to the shape. The hotspot is especially useful when working with
closed splines, e.g. the hotspot could be set to the center of acircle instead of someir-
relevant control point outside the circle. See the next section for an application of
hotspot. Also, the hotspot is used when the shape isfilled with paint involving rasters,
see chapter 4.

Combining Shapes

13

4.7 Combining Shapes

When constructing complex shapes, it is often convenient to define the shape as sim-
pler shapes and then combining the simpler shapes into the complex shape.?2 Shapeis
a subclass of Segment. This makes it possible to combine simple shapes into more
complex ones in Bifrost: shapes can be treated as segments. Notice, that it was not
shown in the segment hierarchy figure (Figure 4) that Shape is a subclass of

Segment.3

The shape to be combined with another shape will be called the source shape, and the
shape that receives the source shape will be known as the destination shape. Shapes
inside another shape is referred to as subshapes. Four different semantics are possible
for combining two shapes:

AppendShape.

The source shape is automatically trandated in such a way that FirstPoint
comes to coincide with the LastPoint of the destination shape

ConnectShape.

A transformation matrix is supplied that defines how the source shape should
be transformed into the destination shape. LastPoint of the destination shape is
connected to FirstPoint of the source shape with aline segment

ConnectShapeSmooth.

Like ConnectShape except that the two shapes are connected with a spline
segment

CombineShape.

A supplied transformation matrix transforms the source shape into the coordi-
nate system of the destination shape. The two shapes do not become connected

All operations make a copy of the source shape, and use this copy in the operation. It
is important to notice that it is not all kinds of shapes that can be used as source
shapesin al of the above four ways of combining shapes: the first three cannot take
as argument a shape that only consist of circular spline segments. The reason is that a
circular spline segment does not have a well-defined FirstPoint or a LastPoint.
CombineShape cannot take an open shape as argument if it is open itself.

A shape is defined in its own coordinate system, that defaults to the CCS coordinate
system. A shape has only one coordinate system, implying that all subshapes of a
shape are defined in the same coordinate system as the shape itself. This is done by
transforming the control points of the source shape into destination shape coordinates
when shapes are combined.

The reason for only having one coordinate system for a shape is to limit the comput-
ing overhead and complication that would otherwise result by defining shapes with
many coordinate systems within the same shape. This restriction does not reduce the
power of the shape construction language, since nothing is gained by having more
than one coordinate system in the same shape. Shapes in different graphical objects
may each have different coordinate systems related to the graphical objects.

2 Thisimplements a limited form of graphics modelling. Later the concept of picture is defined as a
more powerful way of doing graphics modelling.

3 The discussion of the Shape inheritance hierarchy is deferred until the presentation of predefined
shapes, see Chapter 8.

14

Bifrost Reference Manual

For each combination operation, there are four cases to consider, depending on the
state of the source shape and of the destination shape:

* Open source shape and open destination shape

* Closed source shape and closed destination shape
* Open source shape and closed destination shape

* Closed source shape and open destination shape

Each case is illustrated with examples in the description of each combination opera-
tion below. The underlying philosophy of the four shape combination operationsis to
have consistent semantics in an operation. This can result in some combinations of
shapes that do not seem useful. The most useful combinations are:

* AppendShape with open shapes
* ConnectShape and ConnectShapeSmooth with any kind of shape
* Combine with closed shapes.

4.7.1 AppendShape

The source shape is automatically translated in such a way that FirstPoint comes to
coincide with the LastPoint of the destination shape. After the operation the following
two statements holds:

* FirstPoint of the source shapeis equal to LastPoint of the destination shape
» LastPoint of the resulting shape is the trandated L astPoint of the source shape

In the examples below, FirstPoint of the source shape, LastPoint of the destination
shape, and LastPoint of the resulting shape are marked with bullets (¢).

state of state of
source dest. source destination result

open open (\ ;' (\.

g
closed closed Q C i ;

z

.

closed open Q. ;’
open closed (\ C

Notice, that in the two cases where the source shape is closed, FirstPoint and Last-
Point coincide, which means that the LastPoint of the resulting shape remains un-
changed (i.e. the same as LastPoint of the destination shape).

Combining Shapes

15

4.7.2 ConnectShape

The supplied transformation matrix transforms the source shape into the coordinate
system of the destination shape. LastPoint of the source shape is connected to the
FirstPoint of the destination shape with aline segment. After the operation the follow-
ing statement holds:

* LastPoint of the resulting shape is the transformed LastPoint of the source
shape

In the examples below, FirstPoint of the source shape, LastPoint of the destination
shape, and LastPoint of the resulting shape are marked with bullets. In al four cases
the same transformation matrix is used. It performs rotation, scaling, and translation
of the source shape.

state of state of

source dest. source destination result
open open (\ ;' (.
<
closed closed Q‘ C &
closed open Q‘ ;‘ j
open closed (\ C (o

Notice, that in the two cases where the source shape is closed, FirstPoint and Last-
Point coincide, which means that LastPoint of the resulting shape remains unchanged
(i.e. the same as LastPoint of the destination shape). Notice also, that when both the
source and the destination shapes are closed the resulting shape is open (FirstPoint *
LastPoint).

4.7.3 ConnectShapeSmooth

The supplied transformation matrix transforms the source shape into the coordinate
system of the destination shape. LastPoint of the source shape is connected to the
FirstPoint of the destination shape with a spline segment. After the operation the fol-
lowing statement becomes true:

* LastPoint of the resulting shape is the transformed LastPoint of the source
shape

In the examples below, FirstPoint of the source shape, LastPoint of the destination
shape, and LastPoint of the resulting shape are marked with bullets. In all four cases
the same transformation matrix is used. It performs rotation, scaling, and translation
of the source shape.

16

Bifrost Reference Manual

state of state of
source dest. source destination result

E

/] @3
7

open closed (\ C q

open open

closed closed

closed open

IN NI

Notice, that in the cases where the destination shape is closed, two of the control
points defining the spline segment, that connects the two shapes, are from the desti-
nation shape: LastPoint, and the control point prior to LastPoint. The third and last
control point that defines the spline segment is FirstPoint of the source shape. Notice
also, that when both the source and the destination shapes are closed the resulting
shapeisopen (FirstPoint * LastPoint).

4.7.4 CombineShape

The supplied transformation matrix transforms the source shape into the coordinate
system of the destination shape. The two shapes do not become connected. Notice,
that it is an error if both source and destination shape are open, since the resulting
shape would otherwise not be connected. After the operation, only one of the follow-
ing statements holds:

» LastPoint of the destination shape is LastPoint of the resulting shape
» LastPoint of the source shapeis LastPoint of the resulting shape

The latter statement only holds if the source shape is open and the destination shapeis
closed. The reason for this seemingly strange behavior is that the resulting shape can
then be combined further in a consistent way. One can also think of this situation in
terms of which shape is open after the operation—in this particular situation it is the
source shape that is open.

In the examples below, FirstPoint of the source shape, LastPoint of the destination
shape, and LastPoint of the resulting shape are marked with bullets.

Combining Shapes

17

state of state of
source dest. source destination result

;‘ Error

[&
T

/] gy

open open

closed closed

closed open

open closed

BIAIINES

Notice the last situation that is commented on above.

4.8 Segment Definition Primitives

Segment primitives can be used directly to construct shapes. A shape is constructed in
this way by generating a number of segments, and adding these segments to the
shape. Segment definition primitives are only meant for internal use in Bifrost. It is
not recommended to use these primitives, except for defining circular spline seg-
ments, but instead to use the shape definition operations described in section 3.4.

4.8.1 LineSegment

A line segment is described by two control points. Begin (= FirstPoint) and End (=
LastPoint). A line segment is constructed by assigning values to the Begin and End
points:

aSeg: @i neSegment Resulting line segment
(#

do (100, 100) -> begin;
(200, 200) -> end;
#)

4.8.2 SplineSegment

As mentioned earlier there are two different kinds of spline segments: circular and
non-circular splines. A circular spline is aways considered closed, and a non-circular
spline is considered closed if the last operation performed is Close. Non-circular
splines are typically used in construction of shapes consisting of both line and spline
segments, and circular splines are useful for making circles and ellipses. Spline seg-
ments have three operations used for creating the spline:

Open.

Takes one point as argument. The point is the first control point of the spline,
and the spline is prepared to be constructed with further control points using
AddControl.

18 Bifrost Reference Manual

AddControl.
This operation just adds a specified control point to the spline.
Close.

Closes a non-circular spline by adding FirstPoint to the spline definition. The
operation has no effect on acircular spline. Notice, that it is still possible to add
further control pointsto the spline definition after the Close operation.

The following examples illustrate the use of AddControl and Close for a non-circular

spline:
aBow. @\onGircul ar Spl i neSegnent Open non-circular spline:
(#
do (0,100) -> Open:; -
(100, 100) -> AddControl ;
(100, O0) -> AddControl;
(0, 0) -> AddControl; - =
#)]
aDrop: @onGircul ar Spl i neSegnent Closed non-circular spline:
(#
do (0,100) -> Open; n
(100, 100) -> AddControl;
(100, O0) -> AddControl;
(0, 0) -> AddControl; _ -
cl ose;
#)

The next examples illustrate the use of AddControl for circular splines:

. . . Circular spline with three con-
I : I I .
aS[(J#l ne: @i rcul ar Spl i neSegnent trolpoints:

do (0,100) -> Open; L]]
(100, 100) -> AddControl;
(100, O0) -> AddControl;

#)

aCircle: @rcul arSpli neSegnent Circular spline with four con-

(# trolpoints:
do (0,100) -> Open; L]]
(100, 100) -> AddControl;
(100, O0) -> AddControl;
(0, 0) -> AddControl; o -
#);

Notice that acircular splineisinherently closed.

4.8.3 Adding Segments to Shapes

When the segment is defined it can be added to a shape with two shape primitives:
AddLine and AddSpline.

AddLine.

Adds a line segment to the shape. In case where FirstPoint of the line segment
does not coincide with LastPoint of the shape, the line segment is moved to the
appropriate position.

Segment Definition Primitives 19

AddSpline.

AddSpline adds a spline to the shape in construction. In case where FirstPoint
of the spline segment does not coincide with LastPoint of the shape, the spline
segment is moved to the appropriate position.

The following example illustrates the use of AddLine:

aLine: @.i neSegment Two line segments
(#
do (100, 100) -> begin;
(150, 150) -> end;
#); /

anot herLi ne: @.i neSegnent
(#
do (200, 200) -> begin;
(200, 100) -> end;

#);
aShape: @hape Resulting shape:
(#
do aLi ne -> AddLi ne; /
anot herLi ne -> AddLi ne;
#);

The following example illustrates the use of and AddSpline using the two splines de-
fined previoudly:

aShape: S@ape Resulting shape:
(#
do aCircle -> AddSpli ne;
aDr op -> AddSpl i ne;
#);

In the case where the spline is not closed, i.e. FirstPoint does not coincide with Last-
Point of the shape, the spline is moved to the appropriate position by AddSpline:

aLi ne: @i neSegment Two lines
(#

do (100, 100) -> begin;
(50,150) -> end;
#)

anot herLi ne: @i neSegnent
(#
do (50,150) -> begin;
(150, 200) -> end;
#);

aSpl i ne: @lonGircul ar Spl i neSegnent A Spline

(#

do (0,200) -> Open; =
(50,250) -> AddControl;
(100, 200) -> AddControl ;
(100, 100) -> AddControl;
(50, 50) -> AddControl;

#);

20 Bifrost Reference Manual

aShape: @hape Resulting shape:
(#
do alLi ne -> AddLi ne; -
anot her Li ne -> AddLi ne;
aSpline -> AddSpli ne;
#);

It should be clear from the examples that it is complicated to use the segment defini-
tion primitives for shape construction. Therefore, for purpose of convenience and to
make the graphics system more powerful, Bifrost aso includes the small shape con-

struction language presented earlier.

5. The Paint

The paint describes the color or raster to be pushed through the shape, when the
graphical object is displayed on a canvas. The paint concept in Bifrost supports any
kind of pure colors, as well as more sophisticated features such as hatching, tiling,
and sampled raster images. These various features of paint can be described in two
main paint concepts: solid color and raster paint.

A solid color fills out the entire shape with one particular color. This concept may be
specialized by allowing a repeated pattern, a tile, to be applied to the paint, concep-
tually by only allowing the paint to reach the canvas where this pattern allows it to.
Thisisaway of obtaining various hatching effects.

Raster paint uses a raster to fill the shape. The concept Raster is described in section
4.1. In order to use araster to fill the shape several things must be specified: first, the
raster itself must be specified; secondly, the raster position in the shape must be sup-
plied (by specifying the hotspot of the raster in shape coordinates); third and last, it
must be specified what to do if the raster is too small to fill out the entire shape.
Bifrost supports two approaches when the raster is too small to fill out the entire
shape: repeating the raster over and over again, thus tiling the interior of the shape
with it, or by using a solid color—called a padding color—to fill out any parts of the
shape not covered by the raster, and thus not filled by the raster image.

The paint hierarchy is illustrated in Figure 10. This hierarchy may, of course, be
extended if needed.

Paint
SolidColor RasterPaint
TiledSolidColor

Figure 10: The Paint Hierarchy

Two operations are defined for the general paint concept:
FillShape.
Takes a shape as argument and fills the shape with the paint on a canvas.
Copy.
Makes a (deep) copy of the paint

5.1 Rasters

As described in the previous paragraphs both tiled solid color and the raster paint
concepts use some kind of rasters describing either a tile, or a raster image in the
raster paint. Bifrost defines a class BitMap for using with tiling and a class PixMap to
be used in the RasterPaint. In Figure 11 the hierarchy isillustrated.

21

22

Bifrost Reference Manual

Raster
7 ™.
BitMap PixMap
Figure 11: The Raster Hierarchy
The implementation of bit and pixel maps are inspired by ‘ portable bitmap file format
(PBM)’" and ‘portable pixmap file format (PPM)’ [Poskanzer] available on many
Unix and MS/DOS ingstallations. Since the format of the Bifrost rasters are very close

to this ‘standard’, Bifrost can read and write PBM and PPM files, and thereby get ac-
cessto a huge set of rastersin alot of different formats.

5.1.1 Raster
The Raster class generalizes the raster concept defining the following attributes
* MagicNumber for identifying the type of the raster.

* Hotspot is a point used when the raster is used in afill operation: the raster in
positioned so that hotspot coincides with the hotspot of the shape being filled.

e Width and Height of the raster.

* Pixel isvirtualy declared as an Object, and must be further bound in special-
izations of Raster.

* Width* Height Values specifying the raster itself, starting at the top-left corner
of the raster, proceeding in normal reading order.

In BETA codeit could look like:
Rast er:
(#
Magi cNurrber: @ nt eger;
W dt h, Hei ght: @ nt eger;
Pi xel : < Obj ect;
Val ues: [Wdth*Hei ght] @i xel;
#)

Two operations are supported by al rasters:
PutPixel.

Takes an index (i,j) and a pixel value as argument and sets the pixel value into
the specified position of the Values.

GetPixdl.

Takes an index (i,j) as argument and returns the pixel value in the specified
position of the Values.

5.1.2 BitMap
Bifrost defines a bit map in the following way:
. sPeit)'('eI is bound to a Boolean where TRUE means "set" and FALSE means "not
Two operations are defined to read and write BitM aps:
ReadFromPBMFile.
Read a bit map from a PBM fileinto the BitMap.
WriteToPBMFile.
Write the BitMap out on a PBM file.

Rasters

23

5.1.3 PixMap
Bifrost defines a pixel map in the following way:
e The maximum color component value, M axVal.

* Pixd is bound to three decimal values between 0 and the specified maximum
value. The three values for each pixel represent red, green, and blue, respec-
tively. If it is desired to specify the pixel value relative to some other color
space, e.g. HSV (cf. section 4.2), the easiest way is to instantiate a SolidColor
(section 4.2), specify the HSV values to this, and then get the RGB values from
the SolidColor, and use these in the Pixel.

5.2 SolidColor

A solid color is specified relative to some color space. In Bifrost, three color spaces
are supported, namely RGB, CMY and HSV. These are the color spaces that seems to
have the most widespread use in computer graphics (cf., e.g. [Andersen 91], [Foley
90]). The HSV color space is probably the most intuitive of these, since defining a
color in it resembles the way an artist do it. In order to ease the job of the program-
mer, colors can aso be specified using a ssmple naming model. Of course, it will be
possible to extend the color support in Bifrost for other color spaces too, if needed.

The number of colors available at the same time depends on the device used. If no
more colors are available, a default color is used.

5.2.1 Defining Solid Colors

The following three operations are used to manipulate the attributes of a SolidColor.
All three operations can be used to both set and get the values of the solid color in the
respective color models:

RGBvalues.

Enters three integers representing red, green, and blue values, and changes the
SolidColor accordingly. Exits the current red, green, and blue values. Red,
green, and blue values ranges from zero to the value determined by the con-
stant MaxRGB.

HSVvalues.

Like RGBvalues this operation enters three integers. These are interpreted as
hue, saturation and value of the solid color. HSVvalues exits the hue, satura-
tion, and value of the SolidColor. HSVvaues has three attributes MaxHue,
MaxSat and MaxVa determining the ranges of hue, saturation and vaue.
MaxHue, MaxSat and MaxVal is DefaultMaxHue, DefaultMaxSat, and De-
faultMaxVal, respectively, by default, but may be changed by the application
programmer.

CMYvalues

This is like RGBvalues except that the three values entered and exited
constitute the cyan-magenta-yellow representation of the SolidColor.

5.2.2 Examples

The following example illustrates how a column with the complete color spectrum,
can be drawn using the HSV color model. This is done by stacking thin lines upon
each other, having hues 1, 2, ..., MaxHue respectively (that is MaxHue number of
linesin all). Full saturation and values are used.

24

Bifrost Reference Manual

A Color Scale:

(for h:Default MaxHue repeat

for);

&Line[] -> aLine[];

aLine.init;

1 -> aline.w dth;

((0,h), (100,h)) -> aLine. Coordi nates;

&Sol i dCol or[] -> aSolidColor[] -> aLine. Set Paint;
(h, MaxSat, MaxVal) -> aSolidCol or. HSWal ues;

aLi ne[] -> aCanvas. draw,

Notice that it would not suffice to instantiate just one line object and change the color
of this one object, because in Bifrost each part of an image must correspond to some
graphical object that is inserted into the canvas picture (by the canvas operation
Draw). Changing the color of one line object would result in one line with changing
colors being shown. Also notice that an instance of the predefined graphical object
class Lineisused. Predefined graphical objects are defined in chapter 8.

By combining the different color spaces interesting effects can be achieved. The fol-
lowing example is an elaboration of the previous one. The example draws the com-
plementary color spectrum in a column adjacent to the column described in the previ-
ous example.

(for

for);

h: Def aul t MaxHue repeat

&Line[] -> aLine[];

aLine.init;

1 -> aline.w dth;

((0,h), (100,h)) -> aLine. Coordi nates;

&Sol i dCol or[] -> aSolidColor[] -> aLine. Set Paint;
(h, MaxSat, MaxVal) -> aSolidCol or. HSWal ues;

aLi ne[] -> aCanvas. draw,

(* draw the line with conmpl enentary col or *)

&Line[] -> aLine[];

aLine.init;

1 -> aline.w dth;

((2110,h), (210,h)) -> aLine. Coordi nat es;

&Sol i dCol or[] -> anot her Sol i dCol or -> alLi ne. Set Pai nt ;
aSol i dCol or. RGBval ues -> anot her Sol i dCol or. CMyval ues;
aLi ne[] -> aCanvas. draw,

Theresult of the last program isillustrated in Figure 12.

Figure 12: A Color Scale and it's Complementary

SolidColor

25

5.2.3 Name Color Model

An even more intuitive ‘color space’ than RGB, HSV and CMY s the one used in
everyday life: defining the colors simply by naming them. Bifrost support the possi-
bility of specifying a solid color by nhame by means of alarge number of patterns exit-
ing RGB values corresponding to different color names. These patterns are located in
thefile ~bet a/ bi f rost / current/ Col or Nanes.

Name.

Enters the new RGB values, and is hence just an alias for setting the color us-
ing RGBvalues. Useful when evaluating one of the color defining patterns,
which exits RGB values corresponding to a given color name.

The following example illustrates how to draw a circle with center in (10,10) and
radius 25 and filled with solid pink color, using the simple naming color model.

&El i pse[] -> anEllipse[];

anEl | i pse.init;

((10,10), 25,25) -> anElli pse. geonetry;

&Sol idCol or[] -> aSolidColor[] -> anEllipse. Set Pai nt;
pi nk -> aSol i dCol or. Nare;

anEl | i pse[] -> aCanvas. draw,

5.2.4 TiledSolidColor

A tiled solid color is a solid color extended with a BitMap. The BitMap will be tiled
in the shape before the SolidColor is applied, and only where the pixel values of the
BitMap is true the SolidColor will be visible. This is the normal tiling approach. As
mentioned in section 4.1.1 the hotspots of the BitMap and of the shape being filled,
determine the position of the BitMap within the shape.

Example:

A Shape: The Shape filled
with a TiledSolid-
Color using the
BitMap astile:

A Bitmap: .

5.3 RasterPaint

In aRasterPaint a PixMap is used to describe an image, and this PixMap is positioned
in the shape to be filled. Thisis done by positioning the hotspot of the PixMap at the
hotspot of the shape. Instead of using the PixMap as weights, the pixel values of the
map are used directly, and the shape to be filled determines which parts of the image
in the PixMap will be shown. 4

4 Notice the difference between RasterPaint and TiledSolidColor: In a RasterPaint, thePixMap is
used directly as Paint, in a TiledSolidColor, the BitMap determines where the SolidColor should

26

Bifrost Reference Manual

The application programmer should specify what to do if the PixMap given is not big
enough to fill the shape: either the PixMap should just be repeated (tiled) as needed,
or a solid color to use in the uncovered places of the interior of the shape should be
specified. The RasterPaint has the following additional properties compared to Paint:

ThePixMap.
Refersto the PixMap.
PaddingSolidColor.

If PaddingSolidColor is none then the PixMap will be tiled, otherwise the
PaddingSolidColor will be used where the PixMap does not cover.

be applied. Possibly "PixmapPaint" or "ImagePaint" would be a better name than "RasterPaint”.

6. The Graphical Object

The graphical object is the central concept of the Bifrost imaging model. The graphi-
cal object is central for two reasons. The first reason is that the graphical object is the
smallest unit that can be drawn. The second reason is that the graphical object con-
tains all necessary information to draw itself. The information necessary to draw a
graphical object, is contained in the description of the shape and the paint, presented
in the previous chapters. Notice, that in traditional systems the smallest unit that can
be drawn does not always contain all necessary information needed to draw itself.
The next section elaborates on the concept of local graphic context.

Graphical object

Shape Paint
Figure 13: A graphical object isa composition of a shape and a paint

6.1 Graphic Context

With the graphical object containing enough information to render itself independent
of its surroundings, Bifrost support local graphic context. Local context is defined as
the ability of graphical objects to draw themselves, [Andersen 91] p. 4. Thiscan very
easily and elegantly be designed in an object oriented imaging model. Using local
graphic context can, however, give rise to overhead if many objects with the same
context are drawn successively: time is wasted by setting the (same) graphics context
each time one of the graphical objects are drawn. The contrary to local context,
global graphic context is not supported in Bifrost. Instead an intermediate approach
between local and global context, called shared graphic context, is designed but not
yet implemented [Andersen 91] p. 80.

6.2 Operations

Most of the operations in the graphical object manipulate, or use operations imple-
mented in the shape or the paint. The only exceptions to this fact is manipulation of
the transformation matrix and some administration (init and copy) operations.

Init.

Initializes the GraphicalObject by instantiating a shape and a transformation
matrix. Init must be called as the first operation on the graphical object. If the
graphical object is evaluated, init is called automatically.

To manipulate the shape and the paint of the graphical object four operations are
given:

27

28 Bifrost Reference Manual

Set Shape and Get Shape.

Operations to set and get the shape.
SetPaint and GetPaint.

Operations to set and get the paint.

6.2.1 Geometric Transformations
Six operations support geometric transformations on graphical objects:>
Move.

Enters two displacements (ty,ty) and moves the graphical object relative to its
current position.

MoveTo.
Enters point and moves the hotspot of the graphical object to the point.
Scale.

Enters two scaling factors (sy,sy) and scales the graphical object relative from
its current size.

Rotate.

Enters an angle (in degrees) and rotates the graphical object relative from its
current position.

6.2.2 Query Operations
HitControl.

Takes a point (in CCS) as argument and returns a reference to the exact point
(in Graphical Object coordinates), if it isin the neighborhood® of a control point
of the shape of the graphical object. Otherwise returns NONE.

ContainsPoint:

Takes a point (in CCS) as argument and returns true if it is inside the shape of
the graphical object.

6.2.3 Interaction
I nter activeCreateShape.
Calls InteractiveCreate of the shape, see chapter 9.
I nter activeReshape.
Calls InteractiveReshape of the shape, see chapter 9.
I nter activeCombineShape.
Calls InteractiveCombine of the shape, see chapter 9.
I nteractiveM ove.

Takes a canvas, a starting point and a modifier description as argument and
interactively moves the graphical object using the interaction handler of the
canvas, see chapter 9. Calls Move to do the transformation after the interaction
has ended.

5 Geometric transformations are described in Chapter 2.
6 Seesection 9.3 for adefinition of the concept neighborhood.

Operations

29

Hilite.

Makes the graphical object appear highlighted by using the highlighting opera-
tion of the shape. When the graphical object is redrawn by canvas updating the
graphical object will be drawn highlighted.

UnHilite.
Unhighlights the graphical object.

The Hilite and UnHilite operations changes the Canvas drawing mode to be XOR, to
alow for immediate feedback, and invoke an instance of a virtual drawHilite at-
tribute. Thus the feedback may be augmented by further binding this attribute, see
chapter 9 for more details.

6.2.4 Drawing Graphical Objects

A graphical object is drawn on a canvas by calling the Draw operation of the canvas,
see chapter 7. The graphical objects then becomes part of the list of graphical objects
in the canvas, and the canvas asks the graphical object to draw itself on the canvas.
The graphical objects uses its Draw operation to do the actual drawing in the Canvas.

When a canvas must be redrawn, the Canvas knows which graphical objects are
drawn in the canvas, and can therefore ask the graphical objects in question to redraw
themselves on the canvas. Likewise a graphical object is erased by calling the Erase
operation of the canvas. See chapter 7 for a complete description of the Canvas and
when it must be redrawn.

6.2.5 Transforming Graphical Objects

A graphical object can be transformed by manipulating the transformation matrix TM
of the graphical object. Such a transformation will affect the appearance of the
graphical object, if it is drawn in a Canvas. To simplify transformation of graphical
object, the Transform attribute is present:

Transform.

Applies aa matrix to the transformation mantrix of the graphical object. To be
precise,

aMatri x[] -> anAbstract Graphi cal Obj ect.transform
is equivalent with

(anAbstract G- aphi cal Obj ect. TM aMatrix[])
-> MatrixMil -> anAbstract G aphi cal Obj ect. T™M

Notice, that in general, only instances of Shape are guarantied to be transformable, in
particular some of the Predefined Graphical Objects (see later) will not respond cor-
rectly to al transformations. Tranglations, i.e. linear moving, however, will work for
al kinds of graphical objects. Pictures (see below) may aso be transformed, but if
they contain Predefined Graphical Objects, the restrictions mentioned above apply to
the Picture itself too.

7. The Picture

The picture concept is designed to supports graphics modelling. A picture is a collec-
tion of graphical objects and pictures. It is therefore possible to make hierarchies of
graphical objects and pictures, leading to the required capability of doing graphics
modelling.

7.1 The Picture List

The concept Picture is a specialization of the concept Graphical Object. The reason for
this specialization is that the picture defines a list attribute consisting of graphical
objects. Due to the specialization, the picture is also a graphical object, and can be
added to the list of graphical objectsin another Picure. The effect of this design is that
every object in the list can be treated in an uniform way, without consideration to the
actual type of the object. Thisis avery elegant foundation for Graphics Modelling.

The graphical objects are stacked (the hexagon being the front most graphical object):
Stacking graphical objects: Resulting image:
A Q
>
When the graphical objectsin the list are drawn in a canvas, each object is put on top
of the other objects already drawn. Hence the graphical objectsin the list are stacked
relative to each other on the canvas with respect to their positions in the list. In other
words, the last object in the list is the front most object on the canvas and the first
object is the lowest object on the canvas. Objects in the end of the list may therefore
cover other objects earlier in the list, depending of the positions of the objects. The

position in the list is therefore important when a graphical object is manipulated in-
teractively. The subject of interaction is discussed separately to chapter 9.

There are severa operations to manipulate the list of graphics objects and pictures.
Two operations are used to add and delete objectsin the list:

Add.

Takes agraphical object as argument and adds it to the end of the picture list.
Delete.

Takes agraphical object as argument and deletes it from the picture list.

Two operations support moving the graphical objects relative to the other objects in
the list:

BringForward.
Accomplished by moving the object to the last position in the list.

30

The Picture List

31

SendBehind.

Takes a graphical object as argument and draws the object at the bottom of the
canvas. Accomplished by moving the object to the first position in the list.

Two operations support queries to the graphical objectsin thelist.
FirstContaining and L astContaining.

Takes a point (in CCS) as argument, and reports the first or last object contain-
ing the point or none.

Finally, two operations support scanning through the graphical objects of the picture.
ScanGOs

Scans through al the graphical objects in the picture, in the order they were
added.

ScanGOsRever se

Scans through all graphical objects of the picture in the opposite order than
they were added, i.e. from "top" to "bottom" of the picture.

7.2 Selection Picture

In [Andersen 91] pp. 78, a detailed description of how the picture is supposed to sup-
port graphics modelling can be found. Currently only one form of the graphics mod-
elling properties are implemented, that is, a constraining picture called SelectionPic-
ture.

The SelectionPicture specializes the Add and Delete operations. When two or more
graphical objects are selected the Hilite and UnHilite operations of the graphical ob-
jects are changed from HiliteControls to HiliteOutline. Graphical objects then become
highlighted by drawing the outlines of the shapes instead of highlighted control
points. This effect is similar to many graphical editors, e.g. MacDraw.

7.3 Picture Coordinate System

When graphical objects are composed into a picture, it is necessary to have mappings
between the coordinate system of the graphical object and the coordinate system of
the picture, since each graphical object is defined in its own coordinate system and is
placed somewhere in the coordinate system of the picture. The graphical object de-
fines a transformation from its own coordinate system to the coordinate system of the
picture. Since the coordinate system of the shape is identical to the coordinate system
of the graphical object it is part of, the transformation actually defines how to position
the shape of the graphical object in the picture. This transformation is described in a
matrix called TM, inherited from the superpattern AbstractGraphical Object. See also
the description of the Transform attribute of graphical objects above.

7.4 Other Operations on Pictures

The picture defines several other operations to query and manipulate the graphical ob-
jects in the picture and the picture itself. The most important ones are listed below,
see the interface description for the rest.

32

Bifrost Reference Manual

NoOfGOs.

Returns the number of graphical objectsin thelist.
I SEmpty.

Returnstrueif the list is empty.
IsMember.

Takes a graphical object as argument and returns true if the graphical object is
inthelist.

The Canvas Picture

8. The Canvas

The canvas’ is the drawing surface of the Bifrost graphics system and the connection
between Bifrost and the display device. The display device is typically a screen or a
window in awindow system. In awindow system the canvas is a drawing surface in-
side a window. How the canvas is made a part of a window (borders, scroll bars,
close box, etc.) depends on the specific system.

The canvas is very similar to the canvas of an artist, but has properties not compara-
ble to the canvas of an artists, described in the next sections.

8.1 Drawing and Visible Area

The canvas is a potentially infinitely large drawing area. Hence everything in the
canvas is not necessarily immediately visible on the display device. The canvas there-
fore defines a visible area, defined by means of a shape called the visible shape. The
visible shape is not fixed and can be reshaped even after graphical objects have been
drawn in the canvas. The visible shape is a view to the canvas. By moving the visible
shape it is possible to view other parts of the canvas, hence the visible shape can be
used to implement scrolling. Notice that the visible shape is not effected by the sur-
roundings of the canvas, e.g. by overlapping windows.

In typical drawing applications where the user chooses a part of the canvas to actually
see on the display device, the application programmer should not consider which part
of the canvas is visible, but should regard all the graphical objects in the canvas as
being visible. The canvas will only draw those graphical objects that are visible on
the device. Thisis accomplished by clipping and updating as described in section 7.3
and 7.4.

8.2 The Canvas Picture

As mentioned in chapter 5, the graphical objects drawn on the canvas are stored in a
picture. When a graphical object isto be shown in acanvas, it is done by invoking the
Draw operation of the canvas, whereby the graphical object is added to the picture of
the canvas and displayed using the draw operation of the graphical object. It is not
allowed, in the current version of Bifrost, to draw objects in the canvas that is not part
of the canvas picture.8

The following two attributes operate directly on the canvas picture:

7 As explained in chapter 11, in the current implementation of Bifrost — based on Lidskjalv — the
pattern Canvas is actually named Bi f r ost Canvas, since there is another pattern in Lidskjalv with
the name Canvas.

8 For purposes of interaction, it is possible to draw simple objects (lines, rectangles etc) immediately
on the canvas without using the canvas picture, see Chapter 9.

34

Bifrost Reference Manual

scanThePicture.

Invokes the scanGOs on the Canvas picture.
scanThePictureReverse.

Invokes the scanGOsReverse on the Canvas picture.

8.3 Clipping

Clipping is used in graphics system to restrict the area in which graphics operations
have effect. For instance, when some part of a window is damaged, the application
can clip to the damaged part and then draw the whole window. The result of the
clipping is that the system ignores the drawing request outside the clipping area, and
the speed of updating isincreased significantly.

The canvas supports clipping in the situation where some of the graphical objects are
totally or partly outside the visible shape of the canvas. The canvas always clips to the
visible shape. In addition to this clipping area it is possible to set another clipping
area, also defined by a shape—the clip shape. SetClip and GetClip can be used to set
and get the clip shape. The clip shape is especially useful when damaged areas must
be updated, see the next section.

8.4 Updating Damaged Areas

When an area inside the visible area of the canvas has been obscured, e.g. by an
overlapping window, and again becomes visible, parts of the canvas must be redrawn.
The canvas supports redrawing by updating areas that have been damaged. The dam-
aged areais handled by a damaged list in the canvas.

Update events originating from the window system, say, a window overlapping the
canvas is moved, are handled automatically by Bifrost. When Bifrost receives an up-
date event from the window system, the damaged area is in many cases reported
along with the update event. The canvas redraws the damaged area transparently to
the application. In cases where the damaged areas is not reported, the whole visible
area of the canvasis redrawn.

The process of updating damaged areas originating from application dependent ac-
tions, say, removing of a graphical object, is a partly application responsible process,
it is not entirely automatic. In this situation the application is responsible of adding
damaged areas to the damage list. Adding a rectangle to the list is accomplished by
the operation damaged. After the application has called the operation repair, the can-
vas redraws the visible area using an advanced algorithm to determine which objects
must be redrawn.

The traditional way of redrawing is to draw all objects and turn the responsibility of
selecting the objects inside the clipping area to the display device (or basic graphics
library). Although clipping is a very efficient way of reducing the overhead of the
display device in redrawing, it is still necessary to redraw all graphical objects in the
canvas.

A better idea is to limit the number of graphical objects and pictures that has to be
considered in the redrawing process. When applications use graphics modelling, each
picture typically consists of a small set of proximate and related objects, expected to
be updated collectively, e.g. by moving the picture. This means, that if a picture is
completely outside the region that should be updated, then it is not necessary to
further consider the graphical objects inside the picture. The following example
illustrates the situation:

Updating Damaged Areas

35

O ... e
0o, 1 O O o T
Lo o O
N
\O ! |
5 o i olé d:
0O Lo 0o S
| O ! ! O
O\ ,,,,,,,,,,,,, ! OL ,,,,,

Given aclipping rectangle T and some pictures (illustrated by dashed rectangles) and
graphical objects (illustrated by small circles) all the graphical objects in pictures that
are completely outside T are never considered.

This approach depends on the assumption that the application is using graphics mod-
elling, and that the graphical objects in each picture are close to each other. Consider
for example two graphical objects in a picture, that are very distant from each other,
the picture becomes very large and it isamore likely that the picture intersects T even
though the graphical objects may be outside T. On the other hand, this update
approach encourage the application programmer or user to apply graphics modelling
to the drawing.

The advanced updating approach in Bifrost does not exclude the possibility to use
other updating mechanisms. In cases where graphics modelling can not be used or
does not make sense, the application programmer can implement a different ap-
proach, e.g. the very advanced method described by Edelsbrunner called ‘dynamic
rectangle intersection search’ [Edelsbrunner 80].

8.5 Input Control

The canvas models the input in two handlers. the event handler and the interaction
handler. The canvas uses the event handler to receive general events such as window
resizing and updates. Each canvas has exactly one event handler. The interaction
handler is started by request, e.g., when a new graphical objectsisto be created. The
interaction handler is special-purpose event handler, designed for fast interaction with
the user.

The typical situation is that the event handler polls for input from the user, and when
the user e.g. starts creating a new ellipse by clicking on a mouse button, the applica-
tion calls InteractiveCreate for an ellipse graphical object. Interactive create is im-
plemented using an interactionhander.

The event handler is described in this section and the interaction handler is described
in chapter 9.

The event handler models the events originating from the basic graphics system or
from user actions by six virtual operations. The application programmer may then
further bind these operationsin an application that uses the Bifrost graphics system.

OnOpen.

Called when the canvas is shown for the first time on the display device.
OnButtonDown.

Called when the user presses a button on the pointing device.
OnKeyDown.

Called when the user hits a key on the keyboard.

36 Bifrost Reference Manual

OnRefresh.

Called when the canvas must be redrawn, e.g. when it is exposed after is has

been obscured. The refresh event is typically generated by the basic graphics
system (or by the window manager).

OnActivate and OnDeactivate.

Called when the canvas is (de)activated. The exact definition of activation may
vary with the device. In a window system, the active window will normally

have its title bar highlighted. The activation occurs when the window becomes
the active window.

9. Predefined Shapes and
Graphical Objects

A number of Predefined shapes and corresponding graphical objects are designed to
assist the user of Bifrost. With objects such as lines, circles and text available, the
user can create graphics easier and faster than from scratch. Furthermore, the prede-
fined shapes and graphical objects may utilize the underlying graphics system and
hardware/firmware operations more efficiently.

The predefined shapes currently implemented in Bifrost are described in the first
seven sections of this chapter. In the last section it is outlined how the shapes are
defined in Bifrost, and how to define new “predefined” shapes. The purpose of
defining new “predefined” shapes, is mainly to utilize the underlying graphics
hardware/software. Figure 14 illustrates the predefined shape inheritance hierarchy.

AbstractShape
Shape PredefinedShape

| / T\ rextShape
PieShape MultiLineShape

ArcShape StokeableShape LineShape

7N

RectShape EllipseShape

Figure 14: Predefined Shape Inheritance Hierarchy
As can be seen in Figure 14, some of the predefined shapes can be stroked. The shape
will be stroked with StrokeWidth as the line width in case the attribute Stroked is

true. If StrokeWidth is 0 the line width of the shape will be the smallest possible on
the actual output device.

9.1 LineShape

The line shape is defined by five attributes: A Line composed
. of aLineShape
Begin and End. and a Paint:
The beginning and ending points of the line. Bedin '/End
Width.
\/

The width of theline. If the width is O, the line will be drawn with the smallest
possible line width of the output device.

Dashes.

List of tuples of integers. The first integer defines the length of the first dash,
the next integer defines the length of the space to the next dash and so on.

(1,2) makes aline dashed like: EEEEEENENEGRN
37

38

Bifrost Reference Manual

A MultiLine
composed by a
MultiLineShape
and a Paint:

YA

A GraphicText
composed by a
TextShape and a
Paint:

Helvetica 12
point italic

(4,1,1,1) makes aline dashed like; mmm u m—m u = u =
Cap.
Specifies how the end of the line looks. See section 3.5.1.

A corresponding Line graphical object is defined with LineShape as the shape. Line
uses FillLine of the Paint to draw itself (see section 8.8.1).

9.2 MultiLineShape

The multi line shape is defined by five attributes:
Points.

PointArray defining the line. A PointArray, like the name indicates, is an ar-
ray/list of Points. See the interface-description for details.

Width and Dashes.

Same asfor Line above.
Cap.

Specifies how the ends of the line looks. See section 3.5.1.
Join.

Specifies how the lines are joined. See section 3.5.1.

A corresponding MultiLine graphical object is defined with MultiLineShape as the
shape. MultiLine uses FillMultiLine of the Paint to draw itself (see section 8.8.1).

9.3 TextShape

The text shape can show one line of text. No formatting (carriage returns, line feeds,
etc.) is supported. The text shape is defined by the following attributes:

Begin.

Specifies where to place the baseline of the text.
TheFontName.

The name of the font used: Times, Couri er, Or Helvetica.
TheStyle.

The style of the text: bold, italic, or plain.
UnderLine.

Trueif the text is drawn underlined.
Size.

The size of thetext in points (1/72 inch).
TheText.

Holds the characters of the text shape.

A corresponding text graphical object (GraphicText) is defined with TextShape as the
shape. GraphicText uses Fill Text of the Paint to draw itself (see section 8.8.1).

RectShape

39

9.4 RectShape

The rectangle shape is defined by the following three attributes:
Upper L eft.
Point specifying the upper left corner of the rectangle.
Width and Height.
The width and height of the rectangle.

A corresponding Rect graphical object is defined with RectShape as the shape. Rect
uses FillRect of the Paint to draw itself (see section 8.8.1).

9.5 EllipseShape

The ellipse shape is defined by the following attributes:
Center.
Point specifying the center of the ellipse.
HorizontalRadius and VerticalRadius.
The horizontal and vertical radius of the ellipse, respectively.

A corresponding Ellipse graphical object is defined with EllipseShape as the shape.
Ellipse uses FillEllipse of the Paint to draw itself (see section 8.8.1).

9.6 PieShape

The pie shape has the following attributes:
Center.
A Point specifying the center of the PieSlice shape.
HorizontalRadius and VerticalRadius.
The width and height of the PieSlice shape.
Anglel and Angle2.
The two angles (in degrees).

A corresponding PieSlice graphical object is defined with PieShape as the shape.
PieSlice uses FillPie of the Paint to draw itself (see section 8.8.1).

A Rect composed
of a RectShape
and a Paint:

L

-
v
D —

UpperLeft

An Ellipse
composed by an
EllipseShape and
a Paint:

VerticalRadius
Center

Horizontal Radiu

A PieSlice
composed by a
PieShape and a
Paint:

VerticalRadiu
Angl¢
o
V\
Center

Horizontal Radius

40

Bifrost Reference Manual

An Arc composed
by an ArcShape
and a Paint:

Vertica Radius
A

%
.\

Angle2
I HorizontalRadius

e
ArcWidtr

9.7 ArcShape

The arc shape has the following attributes:
Center.
A Point specifying the center of the arc shape.
HorizontalRadius and VerticalRadius.
The width and height of the arc shape.
Anglel and Angle2.
The two angles (in degrees).
ArcWidth.
The stroke width of the arc.

A corresponding Arc graphical object is defined with ArcShape as the shape. Arc
uses FillArc of the Paint to draw itself (see section 8.8.1).

9.8 Defining New Shapes

Predefined graphical objects are defined by describing a shape that defines the outline
of the object. This is done in two steps. First, the additional attributes that specifies
the shape are defined, e.g to define a line shape, the shape defines three attributes:
two end points and a line width. Secondly, the operation GetShape, that calculates the
actual shape in terms of line and spline segments, is defined.

In practice it could be very difficult or impossible to define the GetShape operation,
e.g. for text. In case the application programmer wants to utilize specia hard-
ware/firmware operations, the Draw and Erase operations of the graphical object must
be specialized together with a corresponding fill operation of the Paint (cf. section
8.8.1).

In case GetShape is not written for a particular predefined graphical object, the fol-
lowing operations must be further bound in the predefined shape:

GetBounds.

Return the enclosing rectangle of the shape.
ContainsPoint.

Determine whether the entered point isinside the shape.
I nter sects.

Determine whether the shape of the entered graphical object intersects the
shape

Within.

Determine whether the shape of the entered graphical object is totally inside
the shape

Transform.
Transform all points of the shape by the transformation matrix.

Defining New Shapes

41

HitControl.

Determine whether the entered point is in the neighborhood of one of the con-
trol points of the shape. See section 9.3 for a definition of neighborhood.

InteractiveCreate and | nter activeReshape.
Specify how to interactively create and reshape the shape. See also chapter 9.
HiliteControls, HiliteOutline, HiliteBound

Specify how to highlight the shape by using control points, the outline, or the
bounding box, respectively, of the shape. See also chapter 9.

9.8.1 Predefined Paint Operations

When a graphical object is rendered on a drawing surface, it is the responsibility of
the paint of the graphical object to do the actual displaying. As stated in chapter 4, the
rendering is accomplished by filling out a shape. Thus any paint has an operation
Fill Shape that enters the shape to be filled.

To utilize the capacity of the basic graphics system the shape should be drawn using a
different approach. The shapes in question here could be lines with the minimal line
width the output device can display, ellipses, arcs, and text.

To alow an efficient implementation of the fill operations Bifrost therefore supplies
some additional filling operations for these special cases. These additional operations
are only a supplement, the basic filling operation FillShape, must be able to handle all
shapes. Bifrost supply the following additional fill operations:

FillLine and FillMultiLine.

Draws the entered shape using a line drawing primitive of the basic graphics
system.

Fill Text.

Draws the entered TextShape using the character generator of the basic graph-
ics system.

FillPie, FillArc, FillRect, and FillEllipse.

Draws the entered shape using corresponding drawing primitives of the basic
graphics system.

Canvas
InteractionHandler
Pattern

10. Interaction

The reader migth prefer to skip this chapter at first reading, in case the user only uses
the basic graphical object, and the predefined graphical objects, and later return to the
chapter when familiar with the basic usage of the Bifrost graphics system.

This chapter explains the design and some implementation details of the interactive
part of Bifrost. The chapter is mainly for the advanced user, who migth be interested
in designing new interaction. As an example of designing special interaction, is when
a new graphical object with a special shape is defined, as described in the previous
chapter.

10.1 Interaction Model

Bifrost abstracts input devices used in interaction in a general interaction model. The
input device is typicaly a pointing device like a mouse. The model is defined in pat-
tern InteractionHandler of the canvas. InteractionHandler defines a series of virtual
attributes and a general interaction loop. The usage of the interaction handler is to
execute an instance of a specialization of InteractionHandler with some of the virtual
attributes further bound. The attributes are:

Initialize.

Specify what to do before the interaction loop starts. Also changes the canvas
drawing mode to be XOR, to allow for immediate feedback, see below.

Motion.
Specify what to do when the user moves the pointer.
ButtonPress.

Specify what to do when the user presses a button of the pointer. Buttoninfo is
a local attribute in ButtonPress that may contain device specific information,
e.g. which button was pressed.

ButtonRelease.

Specify what to do when the user releases a button of the pointer.
KeyPress.

Specify what to do when the user presses a key on the keyboard.
KeyRelease.

Specify what to do when the user releases a key on the keyboard.
TerminateCondition.

Specify a condition for ending the interaction handler. Default is when the
rightmost button on the pointer is released.

Terminated.

Specify what to do when the user has terminated the interaction loop. Also
changes the canvas drawing mode back to normal — see Initialize.

42

Interaction Model

In addition to these attributes the handler provides three support functions:
GetPointer L ocation.
Returns the current position of the pointer.
IsModifier On.

Returns True if the modifier entered was ON in last user action (Motion, But-
tonPress, ButtonRelease, KeyPress or KeyRelease).

DoubleClick.
Returns Trueif the last button press was a double click.

The action part of an instance of the pattern InteractionHandler performs the follow-
ing sequence of code:

(#
do Initialize;
Loop and call Mdtion, ButtonPress, ButtonRel ease, KeyPress or
KeyRel ease, depending on user action, until
Termi nateCondi ti on returns True;
Ter mi nat ed;
#)

As the reader migth have noticed, the interaction handler, when excuted, temporarily
replaces the event handler of the canvas and processes all events until terminated.

The InteractionHandler pattern is used to implement the interaction operations of the
shapes. The following is an example of how the feedback for InteractiveCreate might
be implemented for the predefined shape LineShape, using an InteractionHandler:

Rubber Li ne: Interacti onHandl er
(# nmousePoi nt, anchorPoint: @oint; (* Device coords *)
thenodifier: @uodifier; (* the nodifier used for constrains *)
stopi nteracti on: @ool ean; (* stop when true *)
X,y: @nteger; (* tenporary variables *)

Initialize::

(# do (anchorpoint, nousePoint) -> inmedi ateLine #);
Mot i on:

(#

do (anchorpoint, nousePoint) -> inmredi at eLi ne;
Get Poi nt er Locati on -> nousePoi nt;
(if thenodifier -> isMdifierOn then
(* constrain the angles *)
(nmousepoi nt. x-anchorpoint.x) -> abs -> x;
(mousepoi nt.y-anchorpoint.y) -> abs -> vy;
(if y >x then (* constrain to vertical *)
anchor poi nt. x -> nousepoi nt. x
el se (* constrain to horizontal *)
anchor point.y -> nousepoint.y
if)
if);
(anchor poi nt, nmousePoi nt) -> i mredi at eLi ne;
#)
ButtonPress:: (# do true -> stopinteraction #);
Term nateCondition:: (# do stopinteraction -> res #);
Term nat ed: :
(# do (anchorpoint, nousePoint) -> inmedi atelLine #);
enter (anchorpoint, mnousepoint, thenodifier)
exit rmousepoi nt
#);

The interaction obtained by the above handler works as follows: a rubberband line is
spanned between the anchor poi nt point and the pointer location, following the
pointer movements. In case the modifier is on (e.g. Shift is down) then the angle of

InteractionHandle
outline

InteractionHandle
example

44

Bifrost Reference Manual

the line is constrained to multiples of 90 degrees. The interaction terminates when the
pointer button is pressed again.

10.2 Feedback

Bifrost supports two different forms of feedback. One is the feedback generated when
the user is creating or modifying a graphical object. The primives in Bifrost for this
kind of feedback is presented in section 9.1 and 9.2 below.

The second kind is the feedback used, e.g., to identify a of selection of graphical
objects, e.g. by highlighting of the control points or outlining the shape. This is
elaborated upon in section 9.3, which also presents other interaction facilities of the
Shape pattern.

Finally section 9.4 deals with the notion of modifiers, i.e. pseudo-buttons used to
modify the meaning of another key or a mouse button being pressed.

10.2.1 Canvas Primitives for Feedback

Feedback drawing is done in immediate mode, that is, the feedback is not a graphical
object with a shape and a paint defined. Immediate drawings are not inserted into the
canvas picture.

Immediate mode drawing is supported in the Canvas by the following operations,
which should typically be performed in XOR mode to allow easy erasing (by simply
redrawiingthe feedback a second time). Notice, that the Hilite and Unhilite patterns of
graphical objects, as well as Initialize of the InteractionHandler pattern of Canvas
automatically puts the Canvasinto XOR mode.

SetlmmediateL ineéWidth.

Set the line width for subsequent immediate drawings.
ImmediateL ine.

Draw aline between the two points specified as arguments.
ImmediateDot.

Takes one point as argument and draws a dot of the size of one device pixel at
the point.

ImmediateSpot.
Takes one point as argument and draws a small filled square (approx. 2° 2mm)
around the point.
ImmediateM ultiLine.
Draw aline between the points in the PointArray specified as arguments.
ImmediateRect.

Takes one point, awidth, and a height as arguments and draws a rectangle with
upper left at the point.

ImmediateT ext.

Enters a text, a position, and the text attributes FontName, Style, Size, and
UnderLine, and draws the text at the position in the specified way.

Feedback

45

10.2.2 Segment Primitives for Feedback

The building blocks of the shape, LineSegment and SplineSegment, defines an opera-
tion DrawRubberBand, constructed by the immediate primitives above, to draw
feedback:

DrawRubber Band.

Enters a point (NewPoint), an index into spline control points (ignored if the
segment is a line segment), and a reference to the next segment (NextSeg) and
draws arubber linein either of the following two ways:

LineShape THIS(LineSegment)
This LineShape example has four line segments 7 NewPoint

where two participate in the interaction. ;/
NextSeg
SplineSegment Control index
] .
Draws a local spline rubberband around the NewPoint

control point specified at control index. NextSeg is
used when the control index isthe last index of the

spline.

10.3 Interaction Facilities in the Shape

Since the shape of a graphical object defines the outline of the object, the shape must
define how to, interactively, create and modify itself. This is accomplished in the
operations InteractiveCreate, InteractiveReshape and interactiveCombine. The
operations use the general InteractionHandler and feedback primitives described
above.

I nter activeCr eate.

Takes a beginning point and a modifier as arguments and starts an interaction
loop letting the user define the outline of a shape. When the loop is terminated
the control points of the shape are set accordingly. The operation is most
commonly used from InteractiveCreateShape of a graphical object.

I nter activeReshape.

Takes a point as argument and starts an interaction loop letting the user reshape
the shape at the control point in the neighborhood of the point (obtained by us-
ing, say, HitControl). The operation is most commonly used from Interac-
tiveReshape of a graphical object.

I nter activeCombine.

Takes a beginning point and a modifier as argument and starts an interaction
loop letting the user create a shape. When the loop is terminated the new shape
is combined with the original shape by using the CombineShape operation. The
operation is most commonly used from InteractiveCombineShape of a graphi-
cal object.

46

Bifrost Reference Manual

An ellipse with
highlighted
control points:

10.3.1 Neighborhood

The concept of neighborhood is used in some of the operations presented. Neigh-
borhood is defined as follows: a point P is said to be in the neighborhood of another
point Q if Pisinside a square with Q as center and a given side length. The length of
the sides defaults to 2 mm, but may be changed by the programmer.

10.3.2 Direct changing of Control Points

A shape can aso be manipulated by adding a new control point to the shape, or by
deleting a control point from the shape. The following two operations supports ma-
nipulation of control points. They are especially useful in interaction.

Insert.

Takes two points as parameter. If the first point is in the neighborhood of an
existing control point, the second point is added as a new control point between
the neighbor point and the next control point of the neighbor point.

Delete.

Takes a point as parameter and, if there is one, deletes a control point in the
neighborhood of the parameter point.

10.3.3 Shape Highlighting

Highlighting a graphical object is aso part of interaction and interaction feedback,
and is handled by the shape of the graphical object by instances of specializations of a
special HiliteDesc pattern. The HiliteDesc pattern enters three parameters. The
canvas to present the feedback in, a boolean indicating whether the feedback is to be
drawn or erased?, and a transformation matrix, which will be applied to the feedback
before it is drawn in the canvas. The following three predefined specializations of
HiliteDesc define how to highlight and unhighlight the shape in three standard ways.
The actual way of highlighting the shape is determined by the variable DrawHilite. It
references one of the Hilite operations. The application programmer can easily extend
the highlighting scheme by adding new operations.

HiliteControls.

Draws small squares at the locations of the control points. The concept of
control points can in this context be a bit different than used earlier. For
example, the control points of an ellipse are the four corners of the bounding
box of the ellipse. These corners can naturally be manipulated interactively to
modify the ellipse, in contrast to the control points that are used to generate the
ellipse shape in the earlier sense.

HiliteOutline.

Highlights the shape by drawing a curve along the shape. Draws by default the
thinnest possible line, but another line width may be specified in the parameter
HiliteWidth.

HiliteBound.

Highlights the shape by drawing rectangle along the bounding box. Draws by
default the thinnest possible line, but another line width may be specified in the
parameter HiliteWidth.

9 You may have noticed some lack of consequence in defining how to draw and erase feedback: The
Graphical Object defines both Hilite and UnHilite patterns, whereas the Shape uses a boolean to
control this. Also the Canvas defines primitives that allow for XOR drawing, which means, that
there is no need for distinguishing between drawing and erasing of feedback. Besides the fact, that
the Graphical Object needs to know the "state” of the feedback (drawn or ereased), the reasons for
these different views on drawing versus erasing are purely historic.

Interaction Facilities in the Shape

47

DrawHilite.

Refers to one of the above Hilite operations, and is the attribute of the shape,
which isinvoked by the Hilite and Unhilite patterns of Graphical Objects.

10.3.4 Query Functions
Four operations are defined as query functions of the shape.
HitControl.

Enters a point and if this point is in the neighborhood of a control point, the
control point is exited. Otherwise NONE is exited.

ContainsPoint.

Takes a point as argument and reports whether the point is inside the shape or
not.

I nter sects and Within.

Takes a shape as argument, and reports whether it intersects or is totally inside
this shape, respectively.

10.4 Modifiers and constraints

Several of the interaction methods previously presented take a modifier as one of their
arguments. This section elaborates on modifiers, and presents the constraints they
impose on the interactions.

A keyboard modifier is a "pseudo-key "on the keyboard, that when kept down during
anormal key press, will modify the meaning of the action. Usually there are at least
three modifiers on a keyboard: The Shift key, the Control key, and the Metakey. The
Meta key is often labelled something else than Meta. On some Hewlett Packard
keyboards it is labelled Extend Char, on some Sun workstation keyboards there are
two Metakeys, labelled Left and Right, respectively, on some Sun SPARC keyboards
itislabelled Alt, on most Macintosh keyboardsit islabelled Alt, etc...

As mentioned a modifier key is not a normal key, e.g. it will not invoke the onKey-
Down virtual of a Canvas eventhandler, if the modifier key is pressed alone. Instead
the modifier changes (modifies) the meaning of the normal keys, if the modifier is
held down when the normal key is pressed.

Shift

makes the character typed become upper case. Technically 32 is added to the
numerical value of the character, i.e., the 5'th bit of the 7 or 8 bit a character is
represented by, is set.

Control

subtracts 64 from the numerical value of the character, i.e., clears the 7'th bit.
M eta

adds 128 to the numerical value of the character, i.e. sets the 8'th bit.

Modifiers can also be used during interaction with the mouse. This does not change
anything directly, but is usually used to modify the feedback during the interaction.
This is why the onButtonDown virtual of a Canvas eventhandler contains some
booleans, indicating if the corresponding modifier was ON when the mouse button
was pressed. E.g., if shiftnmodi fi ed istrue, it means that the shift modifier was ON
when the mouse button was pressed.

48

Bifrost Reference Manual

bdraw

InteractiveCreateShape, InteractiveReshape, and InteractiveMove in the Canvas pat-
tern, and the corresponding methods of graphical objects and shapes al have an enter
parameter called t heModi fi er, that is used to specify what modifier to use to make
the interaction constrained. Thus if ShiftModifier is used, it means that if holding
down the Shift key during the interaction, the interaction will be constrained in some
way, see below. A pseudo modifier called NoModifier has been defined to specify
that all modifiers should be ignored, i.e., the interaction should not be constrainable.

10.4.1 Default constraints in Bifrost

Bifrost contains a small graphical editor, bdr aw, residing in the directory ~bet a/
bi frost/current/bdraw. Thus the interaction forms of the different graphical
objects, and the constraints the modifiers impose on them can be tried in practice. In
bdr aw, Shift is used as the modifier.

Here is a short overview of the interaction forms when creating, moving and reshap-
ing the different graphical objects:

I nter activeCr eate
Rect:

The feedback is a "rubber rectangle”, defined by the start point and the
position of the mouse. If theModifier is ON, the Rect is constrained to be
asguare. The interaction stops when the mouse is clicked.

Ellipse:

The feedback isa"rubber ellipse" defined by the start point and the mouse
position. If theModifier is ON, the Ellipse is constrained to be a circle.
The interaction stops when the mouse is clicked.

Graphical Object:

Control points are added by clicking the left mouse button. The feedback
is a"rubber line" from the previous control point added to the mouse po-
sition, and another line from the start point to the mouse position. If the-
Modifier is ON, SplineSegment control points are added, otherwise Line-
Segment. The interaction stops when the right mouse button is clicked.
On machines with only one mouse button the interaction is stopped by
double-clicking the mouse button.

PieSlice:
The interaction has two phases. First a rectangle with an inscribed ellipse
is laid out, to define what €ellipse the PieSlice should be a dice of. This
phase is much like InteractiveCreate of an Ellipse. The second phase is
determining the two angles defining the dlice. This is done using "rubber
lines' from the center to the periphery of the ellipse, in direction towards
the mouse position. Each of the two angles are set when the mouse is
clicked. When the last angle is determined, the interaction stops. If the-

Modifier is ON, in the first phase, the ellipse is constrained to be a circle.
In the second phase, angles are constrained to be multiples of 45 degrees.

GraphicsText:

The interaction is done via the keyboard. Characters are typed in the nor-
mal way, and typing Return will end the interaction. A mouse click will
also stop the interaction. During the interaction, the end of the text being
typed is marked with a vertical bar ("insertion point").

Line

The feedback is a"rubber line" from the start point to the mouse position.
If theModifier is ON, the angles of the rubber line is constrained to mul-
tiples of 45 degrees. Theinteraction is stopped by clicking the mouse.

Modifiers and constraints

49

MultiLine:

Control points are set using the left mouse button. During this phase, the
interaction is a "rubber line" from the previous control point to the mouse
position. The interaction is stopped by clicking the right mouse button. If
theModifier is ON, the angles of the rubber line is constrained to multi-
ples of 45 degrees. On machines with only one mouse button the interac-
tion is stopped by double-clicking the mouse button.

Arc

The interaction is like InteractiveCreate for PieSlice, except that "moving
points’ on the periphery is used instead of "rubber lines" from the centre
to the periphery during specification of angles in the second phase.

I nter activeM ove

The outline of the graphical object follows the movements of the mouse. If
theModifier is held down, the movement is constrained to horizontal and verti-
cal directions. The interaction stops when the mouse button is released.

I nter activeReshape

For all kinds of graphical objects'© InteractiveReshape is initiated by grabbing
a control point and dragging it around, thus causing the shape to be altered. In
Graphical Object, the theModifier argument of InteractiveReshape is currently
ignored, but for the other object kinds, if theModifier is ON, the interaction is
constrained in the same way as during InteractiveCreate. When reshaping a
PieSlice or an Arc, grabbing one of the "corners" will change either the hori-
zontal radius or the vertical radius of the object, whereas grabbing one of the
two control points on the periphery defining the angles will change the corre-
sponding angle.

8

Except for GraphicText, for which InteractiveReshape is not yet implemented

50

Bifrost Reference Manual

11. Saving Pictures in Files

To be able to save and load graphical objects, Bifrost uses Encapsulated PostScript
files with special comments. This means that a Bifrost application is able to read a
PostScript file generated by it self or another Bifrost application.

Ideally we would like to be able to save a number of pictures each as a new page in
the PostScript file. Thisis currently not possible, but the user will be able to save one
Bifrost canvas per file.

11.1 Saving a Canvas

To save acanvasto afile al you need to do is print it to that file:

PSfile. openWite;

PSfile.start EPSfil e;

((0,0,595,822),true, 1,PSfile[]) -> nyCanvas.witeEPS;
PSfil e.endEPSfil e;

PSfile.cl ose;

For afull-fledged example, refer to st or epi ct ur e. bet inthedeno directory.

11.2 Loading a Canvas

Loading a canvas is as easy as writing it (as long as you do not create any
specializations of the standard graphical objects - see below):

PSfil e. openRead;

PSfil e. ski pHeaders;

PSfile[] -> nyCanvas.|oadPicture -> sonePicture[];
PSfil e.cl ose;

myCanvas[] -> somePicture. draw,

Refer to | oadpi ct ur e. bet inthedeno directory for a complete example.

11.3 Saving and Loading Specialized
Objects

It can often be useful to define specializations of the predefined graphical objects,
often with additional attributes. To be able to save these kind of objects you have to
tell Bifrost three things:

Summary

51

1. How to save the user-defined attributes
2. How to load the user-defined attributes
3. How toinstantiate new objects

11.3.1 Writing user-data

A very crude method, far from the more sophisticated persistent store method, is used
for storing user-defined attributes or user-data. Bifrost smply expects the user to
encode the user-data in a one line text string (note: it is important that only onelineis
used). Furthermore the one line string should start with the PostScript comment
character %if you want to be able to print the file as a regular PostScript file. Further
bind the wri t eUser Dat a virtual to write user-data. See squarel i b. bet in the deno
directory for an example.

11.3.2 Reading user-data

Reading user-data is simply done by further binding the readUser Data virtual.
Reading user-datais the inverse of writing user-data.

11.3.3 Creating New Objects

To be able to instantiate objects of the proper type, Bifrost uses the name of the
pattern as identification. This means that the user should keep the following in mind
when defining specialized graphical objects:

Do not use anonymous patterns for your graphical objects. |.e. avoid
&Rect (# ... init::(# do ... #) ... #)[] -> draw

Use distinct names for al patterns you want to savein agiven file.

Keep it simple: If you plan to save avery complex data structure along with your
graphical objects, you should probably consider splitting your objectsin to two
parts. one for the graphics (some specialization of AbstractGraphical Object) and
one for your datastructure, which you then can save using a persistent store.

12. Bifrost and Lidskjalv

As has been mentioned in the previous chapters, the current implementation of
Bifrost is based on the Lidskjalv User Interface Toolkit, also known as gui env, see
[MIA94-27]. As it was aso mentioned in a footnote in the Canvas description, the
Canvas pattern is in the current implementation named Bi f r ost Canvas. This chapter
tries to give an overview of the current situation with respect to such overlaps and
inconsistencies between Lidskjalv and Bifrost.

The Lidskjalv library and the Bifrost library has been designed independently. Thisis
the reason that here is some overlap in functionality, in the implementation of Bifrost
under Lidskjalv.

12.1 BifrostCanvas and Lidskjalv
Canvas

Both Lidskjalv and Bifrost have a Canvas concept. The Lidskjalv Canvas is designed
as a sort of "container" for W ndow t ems. In this respect it resembles the Bifrost
Canvas, which can be thought of as a sort of "container" for graphical objects.

The current implementation of Canvasin Bifrost isnamed Bi f r ost Canvas, anditisa
gpecialization of the Canvas pattern in Lidskjalv. This means that you can combine
Bifrost graphics and Lidskjalv window itemsin aBi f r ost Canvas.

It is being discussed to rename the Lidskjalv Canvas pattern to another name with a
dightly less "graphical” flavor, and to re-rename the BifrostCanvas to Canvas as in
the previous non-Lidskjalv based Bifrost implementations.

12.2 Overlapping Data Types

The Lidskjalv fragment group gr aphmat h defines, among other things the following
patterns:

i poi nt
which isanalog to the Bifrost Poi nt pattern
i rectangl e
which is analog to the Bifrost Rect angl e pattern
. matri x, | Dmatri x, noveNMatri x, scal eMatri x,rotateMatri x

which are amost identical to the correspondingly named patterns in Bifrost
(they originate from Bifrost)

e oval Angleandcircl eAngl e

which are identical to the El I i pseAngl e and Gi r cl eAngl e patterns of Bifrost
(also originating from Bifrost).

52

Bifrost and Lidskjalv

53

These overlaps in names may sometimes lead to "lllegal Assignment” errorsin com-
pilations, and "Qualification Error" at runtime, if you mix Lidskjalv and Bifrost code.
These kind of errors may most times be solved by qualifying the references with
either THI S(Gui env) or THI S(Bi frost).

In a future implementation, these attributes will have been replaced by one common
set of patterns.

12.3 Lidskjalv Graphics and
Figureltems

The Lidskjalv fragment groups gr aphi cs and fi gurei t ens contain a simple set of
graphics routines to allow for some graphics in Lidskjalv. Both fragments are based
on the notation of a Pen, and whereas gr aphi cs defines a procedural graphics library
with "draw" and "fill" operation (but with no automatic refresh-handling like imme-
diate drawings in the Bifrost Canvas), the fi gur ei t ens resemble Bifrost predefined
graphical objects somewhat. They can be thought of as a smplified "light-weight"
graphical library to use as an aternative to Bifrost in Lidskjalv.

Notice, however, that the figureitems in Lidskjalv are present mostly for historical
reasons, and that it is being discussed to replace them with the Bifrost equivalents.

54

Bifrost Reference Manual

13. Interface Descriptions

ORI G N ' ~bet a/ gui env/ vl. 6/ gui env';
BODY 'private/lnpl/Bifrostlnpl';

| NCLUDE ' ~bet a/ contai ners/v1.6/list';
| NCLUDE ' ~beta/basiclib/vl. 6/ math';

(* Bifrost - An Interactive Ohject Oiented Device
* | ndependent Graphics System

COPYRI GHT
Copyright M ol ner

* 0% X Xk X X kX

Refer to DAIM | R-100 - Internal Re
Conput er Sci ence Depart nment
Aar hus University, Denmark

I nformatics,

Al'l rights reserved.

port

1990-94

13.1 Various Simple Definitions

-- BifrostAttributes: attributes --

(* Specifications used to test for

Modi fi er:

(# m @nteger; enter mdo | NNER exit

NoModi fier: Modifier

(# ... #);

ShiftMdifier: Mdifier
(# ... #);

Control Modifier: Modifier
(# ... #);

LockModi fier: Nodifier
(# ... #);

Met aMbdi fier: Modifier
(# ... #);

CommandModi fier: Modifier
(# ... #);

(* Constants used to specify fill

EvenOddRul e: (# exit 0 #);
Wndi ngRul e: (# exit 1 #);

(* Cap styles *)

CapStyl eDesc: (# s: @ nteger;

CapButt: CapStyl eDesc(# ...
CapRounded: CapStyl eDesc(# ...
CapSquare: CapStyl eDesc(# ...

(* Join styles *)

Joi nStyl eDesc: (# s: @nteger;
JoinMter: JoinStyleDesc(# ...
Joi nRound: Joi nStyl eDesc(# ...

#),
#),
#),

#)
#);

key and/ or
m #) ;
rules *)

poi nter nodification *)

enter s do INNER exit s #);

enter s do INNER exit s #);

Bibliography

55

Joi nBevel : Joi nStyl eDesc(# ... #);

(* Fontnames to use in TextShape and G aphi cText *)

font Nane: integerQbject(# do | NNER #);
Courier: fontname(# ... #);

Tines: fontnanme(# ... #);

Hel vetica: fontname(# ... #);

(* Styles to use in Text Shape and G aphi cText *)

Style: integerQbject(# do | NNER #);

Plain: Style(# ... #);
Italic: Style(# ... #);
Bold: Style(# ... #);

MaxRGB: (* The upper limit for the range of RGB val ues *)

(# max: @ nteger

... (* Device dependent *)
exit max
#)

(* Constants specifying the range for hue,
Def aul t MaxHue: (# exit 360 #);

saturation and val ue *)

Def aul t MaxSat: (# exit 32768 #); (* (2715) *)
Def aul t MaxVal : (# exit 32768 #); (* (2715) *)

Unl npl erment ed:
(* Used to notify the user on features,
* inplenmented in Bifrost.
*
(# feature: “text
enter feature[]

#)

13.2 Mathematics

Poi nt :
(# X, y: @nteger;
enter (X,y)

exit (x,y)
#)]

Vector:
(# x,y: @Real;
enter (X,Y)
exit (x,y)
#);

Rect angl e:

(# x,y,w dt h, height: @ nteger
enter (X,y,w dth, hei ght)
exit (x,y,w dth, hei ght)
#)
Equal Poi nt :
(# pl, p2: @Point;
enter (pil,p2)
exit (pl.x=p2.x) and (pl.y=p2.y)
#);
AddPoi nt s:
(# pl, p2: @P0int;
enter (pil,p2)
exit (pl.x+p2.x, pl.y+p2.y)
#);

that are not vyet

56 Bifrost Reference Manual

SubPoi nt s:
(# pl, p2: @oint;
enter (pl, p2)
exit (pl.x-p2.x,pl.y-p2.y)
#);
ExpandRect angl e:
(# r: @ectangl e;
e: @nteger;
enter (r,e)
exit (r.x-e, r.y+e, r.wdth+2*e, r.height+2*e)

#);
Poi nt | nRect :
(# p: @Point;

r. @ectangl e;

enter (p,r)

exit ((r.x <= p.x) and (p.x <= r.x+r.wi dth) and
(r.y >=p.y) and (p.y >=r.y-r.height))

#);

Matri x:

(# a,b,c,d, tx,ty: @real

i nverse: “Matrix;

(* a b 0
* c d O
* tx ty 1
*)

set:

(# enter (a,b,c,d, tx,ty) #);
transformPoint: @

(# p,result: @oint;

enter p

exit result
#);

i nverseTransformPoint: @
(# pl, p2: @oint;

enter pl
é%it p2
#)

transfornmRectangle: @
(# r,result: @Rectangl e;

enter r

do ...

exit result
#);

i nver seTr ansf or nRect angl e:
(# r,result: @Rectangl e;
enter r

exit result
#)
getl nverse: @
(# get: @..;
do get;
exit inverse[]
#)
do | NNER
exit (a,b,c,d, tx, ty)
#)
| DMVatri x:
(* Exit an identity matrix *)
(# 1D "“Matrix

exit 1D[]
#)

MoveMatri x: Matrix (* Amatrix specifying a translation *)

Bibliography

(# itx,ity: @nteger;
enter (itx,ity)
#):
ScaleMatrix: Matrix (* A matrix specifying a scaling *)
(#
enter (a,d)
#)
RotateMatrix: Matrix (* A matrix specifying a rotation *)
(# theta: @weal;
enter theta
#)
MatrixMul: (* Multiply two matrices *)
(# A /B, res: "Matrix;
enter (A[],B[])

exit res[]
#)]
El i pseAngl e:
(* Returns the angle a (in radians) and cos(a), sin(a),
* assuming that (x,y) is a point on the ellipse with center in
* (cx,cy) and horizontal radius hr and vertical radius vr,
*ji.e. (x,y) = (cx,cy) + (hr*cos(a),vr*sin(a))
(# cx, cy, hr, vr, x, y: @nteger;
a, cos_a, sin_a: @eal;

angle: @..;
enter (cx, cy, hr, vr, x, y)
do angle
exit (a, cos_a, sin_a)
#) ;
G rcl eAngl e:

(* Returns the angle a (in radians) and cos(a), sin(a),
* assunming that (x,y) is a point on the circle with center in
* (cx,cy) and radius r, for some r
*j.e. (x,y) = (cx,cy) + (r*cos(a),r*sin(a))
*
(# cx, cy, X, y: @nteger;
a, cos_a, sin_a: @eal;

angle: @..;
enter (cx, cy, X, Y)
do angl e
exit (a, cos_a, sin_a)

#);

13.3 Datatypes

Point Array: (* Array of points, extended when needed *)
(# <<SLOT PointArrayAttributes: Attributes >>;

npoi nts: @ nteger
(* Number of points currently in TH S(PointArray) *);

initPoints: (* Must be called first *)
(# initialsize: @nteger;
enter initialsize
do ...;
#)]
copy: (* Return a deep copy of THI S(Point Array) *)
(# p: ~PointArray;

58 Bifrost Reference Manual

exit p[]
#)
scanPoi nt s:
(* scan the points in TH S(PointArray). Inx will be the index
* of current

*

(# current: "Point; inx: @nteger

#) ;
addPoint: @* Add p as the last point in TH S(PointArray) *)
(# p: @Point;
enter p
do ...;
#)
deletePoint: @* delete the i'th point in TH S(PointArray) *)
(# 1: @nteger;
enter i
do ...;
#);
insertPoint: @* insert p between the i'th and i+1'th point in
THI S(Poi nt Array) *)
(#1: @nteger; p: @oint;
enter (p, i)
do ...;
#) ;
getPoint: @
(* Return point noi in TH S(PointArray); 1<=i<=npoints *)
(# 1: @nteger;
p: @oint;
enter i
exit p
#) ;
setPoint: @
(* Change the value of point noi to p; 1<=i<=npoints *)
(# 1: @nteger;

p: @oint;
enter (p,i)
do ...;

#);

firstPoint: @* Return first point of TH S(PointArray) *)
(# exitPoint: @proint;

exit exitPoint
#)

lastPoint: @* Return |last point of THI S(PointArray) *)
(# exitPoint: @Point;

exit exitPoint

#);
private: @..;
#)
IntegerList: (* List of integers *)
(#
private: @..;
i,inx: @nteger;
init: (# ... #);
| engt h:
(#1: @nteger ... exit | #);
append: (* Append i at the end of THI S(IntegerlList) *)
(# enter i ... #);

renove: (* Renove integer at index inx in TH S(IntegerList) *)
(# enter inx ... #);

Bibliography

insert: (* Insert i at index inx in TH S(IntegerlList) *)

(# enter (i,inx) ... #);
copy: (* Return a deep copy of THI S(IntegerList) *)
(# 1: ™ ntegerlList ... exit i[] #);
#)
Poi nt ArrayList: (* List of PointArrays, used internally *)
(#
private: @..;

appendPoi nt Arr ay:
(# p: ~PointArray;
enter p[]
#) ;
scanPoi nt Arr ays:
(# p: ~PointArray;

#):
enpty: bool eanVal ue
(# ... #);

#);

13.4 Segment

Segnent :
(# <<SLOT Segment Attributes: attributes>>;

firstPoint:< (# p: @%oint do INNER exit p #);
lastPoint:< (# p: @oint do I NNER exit p#);
setFirstPoint:< (# p: @oint enter p do | NNER #);
setlLastPoint:< (# p: @oint enter p do | NNER #);
next ToFirstPoint:< (# p: @oint do INNER exit p #);
next ToLastPoint: < (# p: @oint do INNER exit p #);
copy: < (* Returns a deep copy of THI S(Segnent) *)
(# aCopy: "Segnent;

exit aCopy[]
#),
transform<
(* Transformall control points in TH S(Segrment) by M *)

(# M ~watrix enter M] do I NNER #);
reverseOrientation: < object;

(* | NTERACTI ON *)
dr awRubber Band: <
(* Draw an thin curve along TH S(Segnent). Useful when
* drawi ng rubber feedback
*
(# theCanvas: ~BifrostCanvas
(* The BifrostCanvas to draw the rubberband on *);
newPoi nt: @poi nt;
t heGOToDevi ce: ~Matri x;
control I ndex: @ nteger;
next Seg: "Segnent;
enter
(theCanvas|[], t heGOToDevi ce[],
newPoi nt, contr ol | ndex, next Seg[])
do | NNER
#)
get Control s: <

(* Add all the defining points in TH S(Segnent) to spots.

60 Bifrost Reference Manual

* spots[] is NONE, a PointArray is instantiated. canvasTMis
* applied to all controls before they are appended to spots.
* |f canvasTM] is NONE, IDmatrix is used.
*
(# spots: "“PointArray;

canvasTM ~Matri x;
enter (spots[], canvasTM])

.e;<i.t spot s[]
#);

(* PRIVATE, but virtual and hence cannot be in slots *)
prepar eReshape: < (* private *)
(# theGOToDevi ce: ~Matri x;
control I ndex: @ nteger;
next Seg: "Segnent;
novi ngp: @oi nt;
t heCanvas: “Bifrost Canvas;
enter (theCanvas[],theGOroDevice[], control | ndex, next Seg[])
do | NNER;
#) ;
endReshape: < (* private *)
(# theGOToDevi ce: ~Matrix;
final Point: @Point;
control I ndex: @ nteger;
next Seg: "Segnent;
t heCanvas: 7Bifrost Canvas;
ent er
(theCanvas|[],t heGOToDevi ce[],
fi nal Poi nt, control | ndex, next Seg[])

do | NNER;
#) ;

findSegments: < (* private *)
(# p: @oint;

sl,s2: ~Segment;

control I ndex: @ nteger;
enter p
do | NNER
exit (sl[],s2[],controllndex)

cal cul atePoints: < (* private *)
(# thePoints: ~PointArray;
t hePoi nt Li st: “Poi nt ArraylLi st;
enter (thePoints[],thePointList[])

do | NNER;
exit thePointlList[]
#)

makeCf fset: < (* private *)
(# nextPoint: @pPoint;
of fsets: ~PointArray;
wi dt h: @nteger;
enter (offsets[], nextPoint)
do | NNER;
#);
nmakeSecondOF fset: < (* private *)
(# theShape: ~Shape;
i ndex: @ nteger;
of fsets: ~PointArray;
enter (theShape[],offsets[],index)
do | NNER;
exit index
#)
witePS: <(# out: “streamenter out[] do INNER #);
do | NNER;
exit THI S(Segment)[]
#);

Bibliography

13.5 Line- and Spline Segments

Li neSegnment: Segnent
(#

begi n, end: @oi nt;
firstPoint::< (# do begin -> p #);
lastPoint::< (# do end -> p #);
setFirstPoint::< (# do p -> begin #);
setlLastPoint::< (# do p -> end #);
next ToFirstPoint::< (# do end -> p; #);
next ToLastPoint::< (# do begin -> p #);

copy::< (# do INNER;, ... #);
transform:< (# ... #);
reverseOrientation::< (# ... #);

(* | NTERACTI ON *)
drawRubberBand: : < (# ... #);
getControl s::<(# ... #);

(* PRIVATE, but virtual and hence cannot be in slots *)

witePS::<(# do ... #);

pr epar eReshape: : < (* private *)
(# ... #);

endReshape: : < (* private *)
(# ... #);

findSegnents::< (* private *)
(# ... #);

calcul atePoints::< (* private *)
(# ... #);

makeOffset::< (* private *)
(# do ... #);

makeSecondO fset:: < (* private *)
(# do ... #);

#)]

13.6 Splinesegment

Spl i neSegnent: Segment (* abstract pattern *)
(# <<SLOT SplineAttributes: Attributes >>;

controls: ~PointArray;

snmoot hness: @Rrea
(* default 1.0 decrease to get a snmoother spline increase to
* get a coarser spline

*);
firstPoint::< (# ... #);
lastPoint::< (# ... #);
setFirstPoint::< (# ... #);
setlLastPoint::< (# ... #);
next ToFirstPoint::<(# ... #);
open: <

(* Prepare THI S(SplineSegnment) for adding control points *)
(# startPoint: @Point;

Bifrost Reference Manual

enter startPoint
#):
addControl : <
(* Add p as a control point in TH S(SplineSegment) *)

(# p: @Point;
enter p ...
#);

insert:<

(* Insert p as a control point after the control point at
* position index
*
(# p: @oint;
i ndex: @ nteger;
enter (p,index)

do | NNER
#);
del ete: <

(* Delete the control point at position index *)
(# index: @ nteger;
enter index

do | NNER

#);
copy::< (# do INNER;, ... #);
transform:< (# ... #);
reverseOrientation::< (# do ... #);

(* PRI VATE *)

witePS::<(# do ... #);

pr epar eReshape: : < (* private *)
(# ... #);

endReshape: : < (* private *)
(# ... #);

Dr awRubber Spl i neDesc: < (* private *)
(# track: @oint;

control I ndex: @ nteger;

t heCanvas: ~BifrostCanvas;
enter (theCanvas[],track, control | ndex)
do | NNER
#)

cal cul atePoints::< (* private *)
(# splinePoints: "“PointArray;
#)
splineprivate: @..;
do | NNER
#); (* SplineSegnent *)

13.7 CircularSplineSegment

Circul ar Spl i neSegnent: Spl i neSegrent
(# nextToLastPoint::< (# ... #);
copy::<(# do ... #);
drawRubberBand: : < (# ... #);

(* PRI VATE *)

witePS::<(# do ... #);

Dr awRubber Spl i neDesc:: < (* private *)
(# do ... #);

findSegnents::< (* private *)

Bibliography

(# ... #);

calcul atePoints::< (* private *)
(# ... #);

getControls::< (* private *)
(# ... #);

makeOf fset::< (* private *)
(# do ... #);

makeSecondO fset::< (* private *)
(# do ... #);

do | NNER;

#);

13.8 NoncircularSplineSegment

NonCi r cul ar Spl i neSegnent: Spl i neSegnent

(# nextToLastPoint::< (# ... #);
copy::< (# do ... #);
cl ose:
(# ... #);
i sCl osed: bool eanVal ue
(# ... #);
open: : <
(#
#) ;
addControl :: <
(#
#) ;
drawRubberBand: : < (# ... #);
(* PRIVATE *)
witePS::<(# do ... #);
private: @..;
Dr awRubber Spl i neDesc: : < (* private *)
(# do ... #);
findSegnents::< (* private *)
(# ... #);
calcul atePoints::< (* private *)
(# ... #);
getControls::< (* private *)
(# ... #);
makeOr fset::< (* private *)
(# do ... #);
makeSecondOfset:: < (* private *)
(# do ...#);
do | NNER;

#);

13.9 AbstractShape

Abstract Shape: Segnent
(# <<SLOT AShapeAttributes: attributes >>;

copy::< (# do INNER;, ... #);
fillRule: @
(* Rule to deternmine what is inside and what is outside

Bifrost Reference Manual

* THI S(Abstract Shape). Used, e.g. when filling

* THI S(Abst ract Shape) with sone Paint. Defaults to
* W ndi ngRul e.

*

(# r: @nteger;

changed: @Bool ean; (* initialized as fal se *)
changeRul e: (# enter r do True -> changed #);
enter changeRul e
do (if not changed then WndingRule ->r1 if);

exit r
#);
i nval i date: <
(* invalidate TH S(Abstract Shape), so it will be recal cul ated
* next tinme used in fill or clip operation.
*
(# ... #);
i nvalid:

(* Answer true if THI S(Abstract Shape) has been invalidated *)
(# b: @Bool ean;
exit b
#) ;
get Bounds: <

(* Return the boundi ng box of THI S(Abstract Shape) *)
(# bound: @ectangl e;

.e;<i.t bound
#);

(* QUERY *)
cont ai nsPoi nt: < bool eanVal ue
(* Answer whether thePoint is inside TH S(Abstract Shape),
* thePoint is assunmed to be in coordinates relative to
* theCanvas.
*
(# theCanvas: 7BifrostCanvas;
t hePoi nt: @pPoi nt;
enter (theCanvas[],thePoint)
#)
hotspot: @
(* The default value of hotspot is firstpoint *)
(# p: @Point;
changed: @Bool ean; (* initialized as fal se *)
changeHot spot: (# enter p do True -> changed #);
ent er changeHot spot
do (if not changed then firstPoint -> p if);
exit p
#);

(* H GHLI GHTI NG *)
hiliteDesc: (* Qualification for highlighting patterns *)
(# donel nl nner: @ool ean;
t heCanvas: ~Bifrost Canvas
(* The BifrostCanvas to do the highlighting on *);
draw. @ool ean
(* Should the feedback be drawn or erased ? *);
™ ~Matrix
(* TMis applied before the feedback is drawn *);
copy: < (* Return a deep copy of THI S(HiliteDesc) *)
(# aCopy: “hiliteDesc;

éi(i.t aCopy[]
#);
enter (theCanvas[], draw, TM])

Bibliography

65

#)
(* PREDEFI NED HI GHLI GHTI NG PATTERNS *)

hiliteControls:< hiliteDesc
(* Highlight control points *)
(# copy::< (# do INNER, ... #);
do INNER, ... #);
hiliteQutline:< hiliteDesc
(* Highlight outline of THI S(Abstract Shape). To be further
* bound
(# hilitewdth: @nteger
(* The width of the Iines used when highlighting outline.
* 0 means as thin as possible (default). Should be the
* same as the corresponding hilitew dth.
*);
copy::< (# do ... #);
do | NNER
#) ;
hiliteBound: < hiliteDesc
(* Highlight bounding box *)
(# Wdth: @ nteger;
copy::< (# ... #);
do INNER, ...;
#)]

(* The actual highlight patterns used. drawhilite points to one
* of hc, ho, hb or sone user supplied specialization of

* hilitedesc

hc, ho, hb: ~hiliteDesc;

drawHi lite: ~hiliteDesc

(* DEFINITI ON LANGUAGE *)
open: < (* Must be called first *)
(# p: @oint enter p ... #);

(* | NTERACTI ON *)
I nteraction:
(* Prefix for interaction patterns *)
(# theCanvas: ~BifrostCanvas;
theModi fier: @bdifier;
start Poi nt: @Point;
enter (theCanvas[], startPoint, theMdifier)
do | NNER;
#);
InteractiveCreate: < Interaction
(* Provide feedback for creating THI S(Abst ract Shape)
* interactively. WMake the feedback constrained if
* theMbdifier is on. Start the interaction in startpoint.
*);
I nteractiveConbi ne: < Interaction
(* Create a Shape interactively and conbi ne that Shape with
* THI S(Abstract Shape). Mke the feedback constrained if
* theMbdifier is on. Start the interaction in startpoint.
*),
I nteractiveReshape: < Interaction
(* Provide feedback for reshaping TH S(Abstract Shape)
* interactively. WMake the feedback constrained if
* theMbdifier is on. Start the interaction in startpoint.

*);

transform:< (# ... #);
getcontrols::< (# ... #);

Bifrost Reference Manual

(* PRIVATE *)

privatePart: @..;

calcul atePoints::< (* private *)
(# do ... #);

do | NNER
#); (* Abstract Shape *)

13.10 Shape

Shape: Abstract Shape
(* For making user defined objects *)
(# <<SLOT ShapeAttributes: attributes >>;

copy::< (# do INNER;, ... #);
getBounds::< (# ... #);
containsPoint::< (# do ...; INNER #);
currentPoint:< (* The last control point added *)
(# p: @oint;
do ...; INNER
exit p
#);
firstPoint::< (# do ...; INNER #);
lastPoint::< (# ... #);
next ToFirstPoint::<(# ... #);
next ToLastPoint::< (# ... #);
open:: < (# ... #);

(* DEFINI'TI ON LANGUAGE *)
addSpl i ne:
(* Add Spline beginning at currentpoint. Spline.lastpoint
* becones new current poi nt
*
(# Spline: ~SplineSegnent;
enter spline[]
do ...;
#) ;
i neTo:
(* If currentPoint is a control point in a spline being
* defined with splineTo, that spline is ended. Add a
* Li neSegnent begi nning at currentPoint and ending at p. p
* becones new current Point.
*
(# p: @oint;
enter p
do ...;
#);
splineTo:
(* If currentPoint is the end point in a line segnent, a new
* spline segnent is opened. That spline segnent becones the

* "current spline segrment”. Add currenPoint as the first
* control point of the current spline segnment. Add p as a
* control point to the current spline segnment. p beconmes new
* current Point.
*
(# p: @oint;
enter p
#);

close: < (* Should be called after the definition is finished *)
(# ... #);

Bibliography

67

(* QUERY FUNCTI ONS *)
i sCl osed: bool eanVal ue
(* NOTICE: an enpty shape is considered closed!!*)

(# ... #);
i sSEnpty: bool eanVal ue
(# ... #);

i sFl at: bool eanval ue
(* THI S(Abstract Shape) is flat iff it contains no splines *)
(# ... #);

(* MANI PULATI NG THE SHAPE *)

reverseOrientation::< (# do ...; INNER #);

stroke:
(* Change THI S(Shape) to be the shape obtai ned by stroking a
* "pen" with the witdh Walong TH S(Shape). When stroking an
* open Shape, the look of the "ends" of the resulting shape
* is specified with capStyle. At joining points the joining
* style is specified by joinStyle.

(# W @nteger;
capstyle: @apstyl edesc;
joinstyle: @ oinstyl edesc;
enter (W capstyle, joinstyle)
do ...;
#);
insert: (* Not Yet I|nplenented *)
(* I'f pl is in the neighborhood of an existing control point,
* P2 is added as a new control point is between the nei ghbor
* point and the next point.
(# pl, p2: @oint;
enter (pil,p2)
#) ;
delete: (* Not Yet Inplenented *)
(* If pis in the neighborhood of an existing control point,
* this control point is deleted

*

(# p: @oint;
enter p
#):

(* COMBI NI NG SHAPES *)
appendShape: (* Not Yet |nplenmented *)

(* Add sourceShape to THI S(Shape). Pl ace

* sourceShape. firstPoint in TH S(Shape). | ast Poi nt by
translating the entire sourceShape. This is the only
transformation involved. After the operation
THI S(Shape) .l ast Point is the translated
sour ceShape. | ast Poi nt. sourceShape cannot consi st of
circul ar Splines only.

L

*

(# sourceShape: “Shape;
ent er sourceShape][]
#)]
connect Shape: (* Not Yet I|Inplenented *)
(* Add sourceShape to THI S(Shape). TMis applied to
* sourceShape before the addition. THI S(Shape).lastpoint is
* connected to sourceShape.firstPoint with a |ine segnent.
* After the operation, TH S(Shape).lastPoint is the
* transl ated sourceShape. | ast Point.
* sour ceShape cannot consist of circularSplines only.

*

(# TM ~Matri x;

68

Bifrost Reference Manual

do
#);

13

sour ceShape: ”Shape;
enter (TM], sourceShape[])
#);
connect ShapeSmoot h: (* Not Yet |nplemented *)
(* Add sourceShape to THI S(Shape). TMis applied to
* sourceShape before the addition. TH S(Shape).lastpoint is
* connected to sourceShape.firstPoint with a spline segnment
* constructed fromthe last two points in TH S(Shape) and
* sourceShape.firstPoint. After the operation
* THI S(Shape).lastPoint is the translated
* sourceShape. | astPoint. sourceShape cannot consist of
* circul arSplines only.
(# TM ~Matrix;
sour ceShape: ~Shape;
enter (TM], sourceShape[])
#),
conbi neShape:
(* Add sourceShape to THI S(Shape). TMis applied to
* sourceShape before the addition. sourceShape and

* THI S(Shape) do *not* becone connected. At |east one of

* THI S(Shape) and sourceShape nust be closed. |f sourceShape
* is closed, THH S(Shape).lastPoint is unchanged. |If

* sourceShape is open, TH S(Shape).lastPoint is

*

sour ceshape. | ast Point after the operation
*
(# TM ~Matrix;

sour ceShape: ”Shape;
enter (TM], sourceShape[])

do ...;

#)
(* H GHLI GHTI NG *)
hiliteQutline::< (# ... #);
(* | NTERACTI ON *)
InteractiveCreate::< (# do ...; INNER #);
InteractiveConbine::< (# do ...; INNER #);
InteractiveReshape::< (# do ...; INNER #);
transform:< (# do ...; INNER #);
getControls::<(# do ... #);

(* PRI VATE *)
findSegments::< (* private *)

(# do ... #);
witePS::<(# do ... #);
| NNER;

(* Shape *)

.11 PredefinedShape

Pr edef i nedShape: Abstract Shape

(#

Cal cul at eShape: <
(* Return (approximating) Shape, if possible *)
(# s: ~Shape
do | NNER

Bibliography

68

exit (# ... exit s[] #)

#) ;
invalidate::<(# ... #);
containsPoint::<(# ... #);
transform:<(# do ...; INNER #);

(* Patterns behaving |ike standard "types", but that have the
* side-effect of invalidating TH S(Predefi nedShape) when
* changed.
*

nval i dat ePoi nt :

(# p: @oint; enter (# enter p do Invalidate #) exit p #);
nval i dat el nt eger: i ntegerVal ue

(# enter (# enter value do Invalidate #) #);

nval i dat eReal

(# r: @Real; enter (# enter r do Invalidate #) exit r #);
nval i dat eDash:

(* For instance 1,2,4,2 yields '= ==== = ==== =' etc. *)
(# d: ~Integerlist;

enter (# enter d[] do invalidate #)

exit d[]

#) ;

nval i dat eCapStyl e:

(# c: @apStyl eDesc

enter (# enter ¢ do invalidate #)

exit c

#) ;
nval i dat eJoi nStyl e:

(# j: @oinStyl eDesc

enter (# enter j do invalidate #)

exit j
#)]
witePS: :<(# do ... #);
prePrivate: @..;
do | NNER;

#);

13.12 LineShape

Li neShape: Predefi nedShape
(# <<SLOT LineShapeAttributes: attributes>>;

firstPoint::<(# do begin -> p #);

begi n: @nval i dat ePoi nt ;

end: @nval i dat ePoi nt ;

wi dt h: @ nval i dat el nt eger;

dashes: @nvalidateDash; (* Not Yet I|nplenented *)
cap: @nvalidateCapStyl e;

coor di nat es
(# enter (begin, end) exit (begin, end) #);

open::<(# ... #);

getBounds::< (# do ...; INNER #);
containsPoint::<(# ... #);
getControl s::<(# ... #);

copy::< (# do INNER, ... #);

(* HI GHLI GHTI NG *)
hiliteQutline::< (# do INNER, ... #);

70

Bifrost Reference Manual

(* | NTERACTI ON *)

interactiveCreate::<(# do ...; |
i nteractiveReshape::<(# do ...;
witePS::<(# do ... #);
transform:<(# ... #);
Cal cul at eShape: : < (* private *)
(# ... #);
do | NNER;

#);

13.13 MultilineShape

Mul ti Li neShape: Predefi nedShape
(# <<SLOT Mul tiLineShapeAttri butes:

firstPoint::< (# ... #);
lastPoint::< (# ... #);
points: @

(# p: "PointArray;

NNER #) ;
| NNER #) ;

attri but es>>;

enter (# enter p[] do invalidate #)

exit p[]
#);
wi dt h: @nval i dat el nt eger;

dashes: @nvalidatebDash; (* Not Yet Inplenented *)

cap: @nvalidateCapStyl e;
join: @nvalidateJoinStyl e;

poi nts *)

open:: < (# ... #);
addPoint: (* Add p at the end of
(# p: @oint;
enter p
#)
del etePoint: (* Delete p at from points *)
(# p: @oint;
enter p
#);
insertPoint: (* Insert pin points at position i *)
(# p: @oint;
i: @nteger
enter (p,i)
#);
get Poi nt :

(* Return point no i in TH S(MiltiLineShape); 1<=i<=npoints *)

(# 1: @nteger;
p: @oint;
enter i
exit p
#) ;
set Poi nt :
(* Change the value of point n
(# 1: @nteger;
p: @oint;
enter (p,i)

#);

0i to p; 1l<=i<=npoints *)

Bibliography

71

do
#);

13

cl osest Li neSegnent :

(# p: @oint; i: @nteger

enter p

do ...

exit i

#);
get Bounds: : <(# do ...; INNER #);
containsPoint::<(# ... #);
getControl s::<(# ... #);
copy::< (# do INNER;, ... #);

(* H GHLI GHTI NG *)
hiliteQutline::< (# do INNER, ... #);

(* | NTERACTI ON *)

interactiveCreate::<(# do ...; INNER #);
i nteractiveReshape::<(# do ...; INNER #);
witePS::<(# do ... #);

transform:<(# ... #);

cal cul at eShape:: < (* private *)
(# ... #);
I NNER;

.14 TextShape

Text Shape: Predefi nedShape

(#

<<SLOT Text ShapeAttributes: attributes>>;

firstPoint::< (# do position -> p #);
initText: (* Specify several attributes simnultaneously *)
(#
enter
(position, theFontnane, theStyle, size, underline, theText)
#)
position:
(* Where to place the baseline of the first line of theText *)
(# p: @Point;
enter (# enter p ... #)
exit p
#)
t heFont Name: (* one of Courier, Tines, Helvetica *)
(# nam @ ont nane;

enter (# enter nam... #)
exit nam
#) ;

theStyle: (* Either Plain, Italic or Bold *)
(# sty: @Btyle;

enter (# enter sty ... #)
exit sty
#);

size: (* The size in points (1/72 inch) of the text drawn *)
(# siz: @nteger;
enter (# enter siz ... #)

.e;<i.t siz
#);

Bifrost Reference Manual

underline: (* Specifies if the text is to be underlined *)
(# ul: @Bool ean;

enter (# enter ul ... #)

exit ul

#);
theText: (* Holds the characters of THI S(Text Shape) *)

(# t: "Text;

enter (# enter t[] ... #)

exit t

#);
get Bounds: : <(# do ...; INNER #);
containsPoint::<(# ... #);
getControls::<(# do ...; INNER #);
copy::< (# do INNER;, ... #);

(* HI GHLI GHTI NG *)
hiliteQutline::< (# do INNER;, ... #);

(* 1 NTERACTI ON *)
i nteractiveCreate:: <
(# lastCh: @har; (* Last character typed in interaction *)

do ...; INNER
exit |astCh
#);

i nteractiveReshape: : <
(# lastCh: @har; (* Last character typed in interaction *)

exit | astCh

#)
witePS::<(# do ... #);
transform:<(# ... #);

TextPrivate: @...;
cal cul at eShape: : < (* private *)
(# ... #);

do | NNER;
#);

13.15 PieShape

Pi eShape: Predefi nedShape
(# <<SLOT Pi eShapeAttributes: attributes>>;

firstPoint::<(# do center -> p #);

center: @nvali datePoint;

hori zont al Radi us: @ nval i dat el nt eger;

verti cal Radi us: @ nval i datel nt eger;

(* Use: 0 <= anglel <= 360 al <= angl e2 <= 360+angl el *)
angl el: @nvalidateReal ;

angl e2: @nval i dat eReal ;

open: :<(# do ...; INNER #);

get Bounds: :<(# do ...; INNER #);
contai nsPoint::<(# do ...; INNER #);
getControls::< (# do ...; INNER #);

copy::< (# do INNER, ... #);

Bibliography

73

do
#);

13

(* H GHLI GHTI NG *)

hiliteQutline::< (# do INNER, ... #);
(* | NTERACTI ON *)
interactiveCreate::<(# do ...; INNER #);
i nteractiveReshape::<(# do ...; INNER #);
witePS::<(# do ... #);
transform:<(# ... #);
cal cul at eShape: : < (* private *)
(# ... #);
| NNER

.16 ArcShape

ArcShape: Predefi nedShape

(#

do
#);

13

<<SLOT ArcShapeAttributes: attributes>>;
firstPoint::<(# do center -> p #);

center: @nvalidatePoint;

hori zont al Radi us: @ nval i dat el nt eger;

vertical Radi us: @nvali dat el nt eger;

(* Use: 0 <= anglel <= 360 al <= angle2 <= 360+angl el
angl el: @nvali dat eReal ;

angl e2: @nvali dat eReal ;

arcWdth: @nvalidatel nteger;

open: :<(# ... #);
get Bounds: : <(# do ...; INNER #);
containsPoint::<(# do ...; INNER #);
getControls::<(# do ...; INNER #);
copy::< (# do INNER;, ... #);
(* H GHLI GHTI NG *)
hiliteQutline::< (# do INNER, ... #);
(* | NTERACTI ON *)
interactiveCreate::<(# do ...; INNER #);
i nteractiveReshape::<(# do ...; INNER #);
witePS::<(# do ... #);
transform:<(# ... #);
cal cul at eShape: : < (* private *)

(# ... #);
| NNER

.17 StrokeableShape

St r okeabl eShape: Predefi nedShape

(#

stroked: @Bool ean;
strokew dth: @nteger;

witePS: :<(# do ... #);

*)

74

Bifrost Reference Manual

get Bounds: : <(# ... #);
copy ::<(# do INNER, ... #);
do | NNER

#);

13.18 RectShape

Rect Shape: Strokeabl eShape
(# <<SLOT Rect ShapeAttributes: attributes>>;

firstPoint::<(# do upperleft -> p #);

upperl eft: @nvalidatePoint;
wi dt h: @nval i dat el nt eger;
hei ght: @ nval i dat el nt eger;

corners:
(# lowerright: @oint;
changeCor ner s:
(# enter (upperleft,!|owerright)
#),
enter changeCorners
exit
(upperleft,
((upperleft.p.x+w dth),
(upperl eft.p.y+height)))
#);
open:: <(# ... #);
getBounds:: <(# ... #);
containsPoint::<(# ... #);
getControl s::<(# ... #);
copy::<(# do INNER, ... #);

(* HI GHLI GHTI NG *)
hiliteQutline::< (# do INNER;, ... #);

(* | NTERACTI ON *)
interactiveCreate::<(# do ...; INNER #);
i nteractiveReshape::<(# do ...; INNER #);

witePS::<(# do ... #);

transform:<(# ... #);

cal cul at eShape: : < (* Private *)
(# ... #);

do | NNER;
#),

13.19 EllipseShape

El | i pseShape: Strokeabl eShape
(# <<SLOT EllipseShapeAttributes: attributes>>;

firstPoint::< (# do center -> p #);

center: @nvalidatePoint;

Bibliography

75

hori zont al radi us: @ nval i dat el nt eger
vertical radius: @nvali datel nteger;

geonetry:
(#
enter (center, verticalradius, horizontalradius)
exit (center, verticalradius, horizontalradius)
#)]

open: :<(# ... #);

get Bounds: :<(# ... #);

containsPoint::<(# ... #);

getControls::<(# do ...; INNER #);

copy::< (# do INNER;, ... #);

(* HI GHLI GHTI NG *)
hiliteQutline::< (# do INNER, ... #);

(* | NTERACTI ON *)
interactiveCreate:::<(# ... #);
i nteractiveReshape::<(# do ...; INNER #);

witePS::<(# do ... #);

transform:<(# ... #);

cal cul at eShape: : < (* private *)
(# do ... #);

do | NNER;
#)

13.20 Rasters

Rast er:
(* An abstract superpattern for all Rasters. Araster is a
* rectangul ar grid of pixels.

*

(# <<SLOT RasterAttributes: attributes>>;

hot spot :
(* When used in a filling operation hotspot is placed in
* hotspot of the shape being filled. Defaults to (0,0).

*

(# p: @oint;

enter (# enter p ... #)
exit (# ... exit p #)
#);

pi xel : < oj ect;

init:<
(# width, height: @nteger;
enter (w dth, height)
#);
copy: < (* Return a deep copy of THI S(Raster) *)
(# aCopy: "Raster;

ékit aCopy[]
#)
wi dt h: integerVal ue
(* returns the width set by init or by read operations *)
(# ... #);
hei ght: i nt egerVal ue

76

Bifrost Reference Manual

do
exi
#);

(* returns the height set by init or

(# ... #);

put Pi xel : <
(#1, j: @nteger; p: "pixel;
enter (i,j,p[])

#)
get Pi xel : <
(#1, j: @nteger; p: "pixel;
enter (i,])
exit p[]
#);

(* Private *)
calculate:< (# ... #);
RasterPrivatePart: @...;

I NNER; cal cul at e;
t THI S(Raster)[]

Bi t Map: Raster
Raster in which the pixels are bool eans *)

(*
(#

do
#);

GrayMap: Raster (* Not Yet
<<SLOT GraymapAttributes: attributes>>;

(#

<<SLOT BitmapAttributes: attributes>>;
pi xel :: < (# b: @ool ean enter b exit
init::< (# do ...; INNER #);

put Pixel ::< (# do ...; INNER #);
getPixel::< (# ... #);

copy::< (# do INNER, ... #);

by read operations *)

b #);

witeToPBMile: (* Not Yet I|nplemented *)

(# pbnfil enane: ~text;
rawbits: @ool ean

(* If true, the RAVBI TS for mat
enter (pbnfilenane[], rawdits)

#);

readFronPBM i | e:
(# pbnfil enane: ~text;
enter pbnfilenange[]

do ...;

#)
(* Private *)
calculate::< (# ... #);
Bi t MapPrivatePart: @...;
I NNER;

| mpl emrent ed *)

is used *);

pi xel ::<(# g: @nteger enter g exit g #);

init::< (# ... #);
putPixel ::< (# ... #);
getPixel ::<(# ... #);
copy::<(# do INNER, ... #);
witeToPGMVil e:
(# pgnfil enane: ~text;
rawbits: @ool ean

(* If true, the RAWBI TS f or mat
enter (pgnfil enanme[], rawbits)

#):

is used *);

Bibliography

readFronPGVfi | e:
(# pgnfil ename: ~text;
enter pgnfil ename[]

#);
(* Private *)
calculate::< (# ... #);
G ayMapPrivatePart: @...;
do | NNER;

#);

Pi xMap: Raster
(* Raster in which the pixels are RGB val ues *)
(# <<SLOT Pi xmapAttributes: attributes>>;

pixel::< (# r,g,b: @nteger enter (r,g,b) exit (r,qg,b) #);
init::<

(# maxVal : @nteger; (* Maxi num RGB val ue *)

enter nmaxVal

do ...; INNER

#) ;

put Pixel ::< (# do ...; INNER #);
getPixel::< (# ... #);

copy::< (# do INNER;, ... #);

witeToPPMile: (* Not Yet |nplenented *)
(# ppnfil ename: ~text;
rawbits: @ool ean
(* If true, the RAVMBITS format is used *);
enter (ppnfilenane[], rawoits)
#) ;
readFronPPMile: (* Not Yet Inplenented *)
(# ppnfil enane: “text;
enter ppnfil ename[]

#);
(* Private *)

calculate::< (# ... #);
Pi xMapPrivatePart: @...;

do | NNER;
#);

13.21 Paint

Paint: (* An abstract superpattern for all paint *)
(# <<SLOT PaintAttributes: attributes>>;

init:< object;

copy: < (* Return a deep copy of THI S(Paint) *)
(# aCopy: "Paint;

exit aCopy[]

#);
fill:

(* Prefix for fill operations *)

(# theCanvas: ~BifrostCanvas enter theCanvas[] do | NNER #);
fill Shape:< fill

78

Bifrost Reference Manual

(* Fill theShape with TH S(Paint) in theCanvas. *)
(# theShape: ~Shape;

enter (theShape[])

#)

[ILine:< fill

(* Fill theLine with THI S(Paint) in theCanvas. *)
(# theLine: ~Li neShape;

enter (theLine[])

f

#):

[IMiltiLine:< fill

(* Fill theMultiLine with THI S(Paint) in theCanvas.
*

f

(# theMul tiLine: ~MiltilLineShape;

enter (theMultilLine[])

#)

[l Text:< fill

(* Fill the specified text with TH S(Paint) in theCanvas *)

(# theText: ~Text Shape;
enter (theText[])

f

#),

[TPie:< fill

(* Fill thePie with THI S(Paint) in theCanvas. *)
(# thePie: ~pieShape;

enter (thePie[])

f

#);

[TArc:< fill

(* Fill theArc with THI S(Paint) in theCanvas. *)
(# theArc: "arcShape;

enter (theArc[])

f

#),

Il Rect:< fill

(* Fill theRect with THI S(Paint) in theCanvas. *)
(# theRect: "Rect Shape;

enter (theRect[])

f

#),

I[TElipse:< fill

(* Fill the theEllipse with TH S(Paint) in theCanvas *)
(# theEllipse: "EllipseShape;

enter (theEllipse[])

f

#);

1 Cther:< fill

(* Used to fill other, e.g. user defined, shapes *)
(# theShape: ~Abstract Shape;

ent er theShape[]

do | NNER;

#);

f

(* PRI VATE *)
witePS: <(# out: “streamenter out[] do INNER #);
pai ntprivate: @...;
set Speci al Paint: (* Private *)

(# theCanvas: ”BifrostCanvas;

donel nl nner: @ool ean;

enter theCanvas|]

do | NNER

#) ;
set CanvasPaint: < (* Private *) set Speci al Pai nt;
setBorderPaint:< (* Private *) set Speci al Paint;

Bibliography 79

Set BackgroundPaint: < (* Private *) set Speci al Pai nt;

do | NNER;
exit THI S(Paint)[]
#)

13.22 SolidColor

Sol i dCol or: Pai nt
(* A solid color specified relative to the RG, HSV, or CW col or
* spaces, or by naming the color, using one of the nane patterns
* in the fragnent Col or Nanes.
*

(# <<SLOT SolidColorAttributes: attributes>>;

init::<(# ... #);
copy::< (# do INNER;, ... #);
Name:

(* Change THI S(Sol i dColor) to the color specified. The color
* names are define as descriptors in the fragnent
* "ColorNanes'. NOTICE This is different fromearlier
* versions of Bifrost.
*
(# enter RGBval ues #);
RGBval ues:
(* Set or query the Red-G een-Blue values of TH S(SolidCol or)
*r, gand b all ranges fromO to MaxRGB.
*
(# r,g9,b: @nteger;
changeRGB:
(# enter (r,g,b) ... #);
get RGB:
(# ... exit (r,g,b) #);
ent er changeRGCB
exit Cet RGB
#) |
HSWal ues:
(* Set or query the Hue-Saturation-Value val ues of
* TH S(SolidColor). h, s and v are taken to range fromO to
* MaxHue, MaxSat and MaxVal respectively. Specializations may
* alter the default bindings of these.

*

(# h,s,v: @nteger;

changeHSV:

(# enter (h,s,v) do ... #);
get HSV.

(# do ... exit (h,s,v) #);

MaxHue: < i nt eger Val ue
(# do Defaul t MaxHue -> val ue; | NNER #);
MaxSat : < i nt eger Val ue
(# do Defaul t MaxSat -> val ue; I NNER #);
MaxVal : < i nt eger Val ue
(# do Defaul t MaxVal -> value; |INNER #);
enter changeHSV
exit get HSV
#) ;
CWval ues: (* RGB conplenmentaries *)
(* Set or query the Cyan- Magent a- Yel | ow val ues of
* THI S(SolidColor). ¢, mand y all ranges fromO to MaxRGB.
*
(# c,my: @ nteger;
changeCMWy:

80

Bifrost Reference Manual

do
#);

(# enter (c,my) do ... #);
get CMY:
(# do ...; exit (c,my) #);

ent er changeCwy
exit get QW
#);
fillShape::<(# ... #);
fillLine::<(# do INNER, ... #);
fillMiltiLine::<(# ... #);
fillText::<(# do INNER, ... #);
fillPie::<(# do INNER, ... #);
fillArc::<(# do INNER, ... #);
fill Rect::<(# do INNER, ... #);
fillEllipse::<(# do INNER, ... #);
(* PRIVATE *)
witePS::<(# do ... #);
setBorderPaint::< (* Private *)

(# ...#);
set BackgroundPaint::< (* Private *)

(# ...#);

set CanvasPaint::< (* Private *)
(# ...#);

privatePart: @...;

I NNER,

13.23 Predefined Graytones

Sol i dGray:

(#

g: ”~SolidCol or;
per cent age: @ nteger;

enter percentage

exi
#);

t g[]

SolidGey: SolidGay (# do I NNER #);

13

.24 RasterPaint

Rast er Pai nt: Pai nt
(* Use thePixmap and optionally paddi ngSolidColor to fill out the

*
*

(#

shape

(* If paddi ngSolidCol or[]=NONE thePi xmap wi ||l be repeated when

* filling out the shape. If not, paddi ngSolidColor wll

be used

* to fill out any parts of the shape the pixmap doesn't cover.

*

paddi ngSol i dCol or: ~Sol i dCol or

t hePi xMap:
(# p: "Pi xMap;
enter (# enter p[] ... #)
exit (# ... exit p[] #)

Bibliography

81

do
#);

13.25 TiledSolidColor

#);

init::<(# ... #);

copy::<(# do INNER;, ... #);

fill Shape::<(# do INNER, ...; #);

fillLine::<(# ... #);

fillMiltiLine::<(# ... #);

fillText::<(# ... #);

fillArc::<(# ... #);

fillPier:<(# ... #);

fillRect::<(# ... #);

fillEllipse::<(# ... #);

(* PRIVATE *)

witePS::<(# do ... #);

private: @..;

setBorderPaint::< (* Private *)
(# do INNER, ... #);

set BackgroundPaint::< (* Private *)
(# do INNER, ... #);

set CanvasPaint::< (* Private *)
(# do INNER, ... #);

| NNER;

Til edSol i dCol or: Sol i dCol or
(* A SolidColor extended with a BitMap. The BitMap will be tiled in
* the Shape before the SolidColor is applied, and only where the

*
*

(#

do
#);

bits of the BitMap are true, the SolidColor wll

t heTi | e:
(# t: ~BitMp;
enter (# enter t[] ... #)
exit (# ... exit t[] #)
#)
init::<(# ... #);
copy::<(# do INNER, ... #);
fill Shape::<(# ... #);
fillLine::<(# ... #);
fillMltiLine::<(# ..
fillText::<(# ... #);
fillArc::<(# ... #);
fillPie:r:<(# ... #);
fill Rect::<(# ... #);
fillEllipse::<(# ... #);

#);

(* PRIVATE *)

witePS::<(# do ... #);
tiledPrivate: @...;
setBorderPaint::< (* Private *)

(# do INNER, ... #);

set BackgroundPai nt::< (* Private *)
(# do INNER, ... #);

set CanvasPaint::< (* Private *)
(# do INNER;, ... #);

I NNER;

be vi si bl e.

Bifrost Reference Manual

13.26 AbstractGraphicalObject

Abst ract Graphi cal Ghject: (* To be further specialized *)
(* The graphical object is the smallest entity that can be drawn
* in a BifrostCanvas. It is a aggregation of a Paint and a Shape.
* ANY graphi cal object MJST be initialized before used (init).
* After a paint and a shape has been specified, it can be drawn by
* giving the reference of it as enter paraneter to the nethod
* "draw' in a BifrostCanvas. G aphical objects nay al so be
* created by using InteractiveCreateShape.

(# <<SLOT Abstract G aphical ObjectAttributes: attributes>>;
shapeDesc: < Abstract Shape
(* Specify actual shape in specializations *);
TMDesc: <
(# m ~Matrix;
transfornpoint: @
(# p: @oint enter p do p->mtransfornmpoint->p exit p #);
Cal cCanvasTM <
(# theTM ~Matrix
enter theTM]
#)
enterTM< (# enter ni] ... #);

enterlt: @nterTM
enter enterlt

do | NNER;
exit ni]
#)

(* TM describes the transformation fromthe coordi nate system of
* theShape (al so known as GO coordinates) to the the Picture it
* is part of, if any.

*

TM @NMDesc;

init:< (* MIST be called first *)
(# ... #);
readUser Dat a: <
(#
userdata: “text;
enter userdata[]

do | NNER

#);
writeUserDat a: <

(#

userdata: ~text
do & ext[] -> userdata[]; |NNER
exit userdatal]
#) ;
set Paint: <
(* Specify the paint to use for THI S(Abstract Graphi cal Obj ect) *)
(# enter thePaint[] do I NNER #);
get Pai nt: <
(* Qpbtain the paint to use *)
(# do INNER exit thePaint[] #);
get Shape: <
(* Qbtain the shape to use. The specialization
* Predefi nedG aphi cal Obj ect returns an approxi mati ng Shape.

* Only the specialization Shape has a correspondi ng Set Shape.
*

(# s: ~Shape

do | NNER
exit s[]
#);

draw. <

Bibliography

83

(* Draw THI S(Abstract Graphi cal Obj ect) in theCanvas.
* Normally this is not used by the user directly. Instead
* THI S(Abstract Graphi cal Gbject)[] should be given to the draw
* met hod of a Bifrost Canvas.
*
(# donel nl nner: @ool ean;
t heCanvas: ~Bifrost Canvas
(* BifrostCanvas to draw THI S(Abstract G aphi cal Gbj ect) on
*),

ent er theCanvas|]

#)]
erase: <
(* Erase THI S(Abstract Graphi cal Object) fromtheCanvas.
* Normally this is not used by the user directly. Instead

* THI S(Abstract Graphi cal Gbject)[] should be given to the erase

* method of a BifrostCanvas.

(# donel nl nner: @ool ean;

t heCanvas: "BifrostCanvas

(* BifrostCanvas to erase THI S(Abstract Graphi cal Gbj ect) from
*);

ent er theCanvas|]

#):;

copy: < (* Return a deep copy of THI S(Abstract G aphi cal Gbject) *)
(# aCopy: ~"Abstract G aphi cal Obj ect;

exit aCopy[]
#);
get Bounds: <
(* Exit a Rectangle containing the bounding box of
* THI S(Abst ract Graphi cal Cbj ect) in BifrostCanvas coordi nates.
*
(# r: @ectangl e;
donel nl nner: @ool ean;
exit r
#) ;
hilite:< (* Hi ghlight TH S(Abstract G aphi cal Obj ect) *)
(# donel nl nner: @ool ean;
t heCanvas: ~Bifrost Canvas
(* The BifrostCanvas to do the highlighting on *)
enter theCanvas|]
#) ;
unHi lite: < (* Unhighlight TH S(Abstract G aphi cal Object) *)
(# donel nl nner: @ool ean;
t heCanvas: ~Bifrost Canvas
(* The BifrostCanvas to do the unhighlighting on *)
ent er theCanvas|]

#)
(* | NTERACTI ON *)
hitControl: <
(* Answer whether thePoint is inside a 2x2mm box around a
* control point of THI S(Abstract G aphical Gbject). thePoint is
* in BifrostCanvas coordinates. Exits reference to exact point
* if hit, NONE otherwi se.
*
(# thePoint: @oint;
res: “Point;
ent er thePoi nt

do ...;
I NNER;

84

Bifrost Reference Manual

exi
#);

t res[]

i nt eracti on:

(*
(#

Prefix for interactive operations *)
t heCanvas: ”"Bifrost Canvas
(* The BifrostCanvas to show feedback in *);
start Point: @Point;
theMobdi fier: @bdifier;
donel nl nner: @ool ean;

enter (theCanvas[], startPoint, theModifier)

do
#)

I NNER;

i nteractiveCreateShape: < interaction

(*

*

*
*
*
*

(# ...

Initialize the shape of THI S(Abstract Graphi cal Cbj ect) by
providing feedback in a BifrostCanvas. Normally this is not
used by the user directly. Instead

THI S(Abstract G aphi cal Gbj ect)[] should be given to the

i nteractiveCreat eShape nethod of a BifrostCanvas.

#)

i nteractiveConbi neShape: < i nteraction

(*

*

EIE
~

(# ...

Conbi ne a shape with the shape of

THI S(Abstract G aphi cal Obj ect) by providi ng feedback for
creating the new shape in a BifrostCanvas, and then conbini ng
t he shape of THI S(Abstract Graphi cal Object) with the obtained
shape. Nornally this is not used by the user directly.

I nst ead THI S(Abst ract Graphi cal Ghject)[] should be given to

t he interactiveConbi neShape met hod of a Bifrost Canvas.

#),

i nteractiveReshape: < interaction

(*

*
*
*
*
*

(#

Change t he shape of THI S(Abstract Graphi cal Cbj ect) by

provi ding feedback in a BifrostCanvas. Normally this is not
used by the user directly. Instead

THI S(Abstract G aphi cal Gbj ect)[] should be given to the

i nteractiveReShape nethod of a BifrostCanvas.

do ... #);

i nteracti veMove: < i nteraction

(*

*

* % X X F
~—

(#
do
#);

Move t he shape of THI S(Abstract Graphi cal bject) using

t heshape. (un)hiliteoutline for feedback in the BifrostCanvas
THI S(Abstract Graphi cal Gbject) is drawmn in. Calls "nove" to
do the transfornation. Normally this is not used by the user
directly. Instead TH S(Abstract G aphi cal Object)[] shoul d be
given to the interactiveMove nethod of a BifrostCanvas.

INNER;, ...;

i nteractiveScal e:< interaction (* Not Yet |nplenented *)

(*

*

* 0%k X X F
~—

(# ...

Scal e the shape of TH S(Abstract G aphi cal Cbj ect) using

t heshape. (un)hiliteoutline for feedback in the BifrostCanvas
THI S(Abstract G aphi cal Gbject) is drawmn in. Calls "scale" to
do the transfornmation. Normally this is not used by the user
directly. Instead TH S(Abstract G aphi cal Object)[] shoul d be
given to the interactiveScal e nethod of a BifrostCanvas.

#)

interactiveRotate:< interaction (* Not Yet |nplenmented *)

“

* % X X *

Rotate the shape of TH S(Abstract Graphi cal Obj ect) using

t heshape. (un)hiliteoutline for feedback in the BifrostCanvas
THI S(Abstract Graphical Gbject) is drawmn in. Calls "rotate" to
do the transformation. Normally this is not used by the user
directly. Instead TH S(Abstract G aphi cal Object)[] shoul d be
given to the interactiveRotate nmethod of a BifrostCanvas.

Bibliography

85

(# ... #);

(* TRANSFORMATI ONS *)
transform <
(* Transform THI S(Abst ract G aphi cal Cbject) by M by nultiplying
* THI S(Abstract Graphical Gbject). TMwith M
(# M ~Matrix;
enter M]
#)
nove: < (* Translate THI S(Abstract G aphi cal Object) by offset *)
(# offset: @oint;
enter offset
do ...; INNER
#) ;
nmoveTo: <
(* Move THI S(Abstract Graphi cal Obj ect) . t heShape. hot Spot to pos *)
(# pos: @oint;
enter pos
do ...; INNER
#)
scale:< (* Scal e THI S(Abstract G aphi cal Ohject) by factor *)
(# factor: @ector; (* Real point *)
enter factor
do ...; INNER
#) ;
rotate: <
(* Rotate THI S(Abstract Graphi cal Object) by angl e (degrees) *)
(# angle: @real
enter angle
do ...; INNER
#)]

(* QUERY *)
cont ai nsPoi nt: < bool eanVal ue
(* Answer if thePoint is inside the shape of
* THI S(Abst ract Graphi cal Cbject). thePoint is assumed to be in
* coordinates relative to theCanvas.
*
(# theCanvas: ~BifrostCanvas;
t hePoi nt: @poi nt;
donel nl nner: @ool ean;
enter (theCanvas[], thePoint)

#):;
(* The aggregation parts *)

t heShape: ~ShapeDesc;
t hePai nt: ~Paint;

(* PRI VATE *)

witePS: <(# out: ~streamenter out[] do ... #);

private: @...;

recal cul at eShape: < (* private *)

(# theCanvas: ~BifrostCanvas enter theCanvas[] do | NNER #);

do | NNER,
exit THI S(Abstract Graphi cal Gbj ect)[]
#)

86

Bifrost Reference Manual

13.27 GraphicalObject

Graphi cal Obj ect: Abstract Graphi cal bj ect

(#

do
#);

13

shapeDesc::< (* The real shape with lines and splines *)
Shape;

set Shape: (* Set the Shape of THI S(G aphical Cbject) *)
(# enter theShape[] #);

get Shape: : < (* Get the Shape of THI S(G aphi cal Obj ect) *)
(# do theShape[] -> s[] #);

copy::< (# ... #);

draw : < (# ... #);

witePS::<(# do ... #);

hilite::< (# ... #);

unHi lite::< (# ... #);

recal cul ateShape::< (* private *)
(# ... #);

| NNER

.28 PictureShape

Pi ct ur eShape: Abstract Shape (* To be further specialized *)

(#

do
#);

<<SLOT PictureShapeAttributes: attributes>>;

firstpoint::< (# ... #);
copy::< (# do INNER, ... #);
getBounds::< (# do ... #);
contai nsPoint::<(# ... #);
getControl s::<(# ... #);
hiliteControls::< (# ... #);
hiliteQutline::< (# ... #);
transform:<(# do ...; INNER #);

(* Private *)
witePS::<(# do ... #);
pictureprivate: @..;
I NNER

13.29 Picture

Picture: Abstract G aphical Obj ect

(*
(#

A coll ection of graphical objects *)
<<SLOT PictureAttributes: attributes >>;

shapeDesc: : < Pi ctureShape;

TMDesc: : <(# Cal cCanvasTM : <(# do ...; |INNER #);
enterTM:< (# do ...; INNER #);
do | NNER;
#);
init::< (# ... #);
add: <

(* Add go to THI S(Picture) *)
(# go: "Abstract Graphi cal Obj ect;
enter go[]

Bibliography

87

#);
del ete: <
(* Delete go from THI S(Pi cture) *)
(# go: "Abstract Graphi cal Obj ect;
enter go[]
#);
drawOnPi xmap: (* Not Yet |nplenented *)
(* Draw THI S(Picture) on pm*)
(# pm ~Pi xmap;

enter pni]

do ...;

#);

draw : < (# ... #);
erase::< (# ... #);

copy::< (# do INNER;, ... #);

setPaint::<
(* Specify the paint to use for all Abstract G aphical bjects
* in TH S(Picture). If they are shown on the Canvas, their
* visual appearance is changed instantly.
*
(# theCanvas: ~BifrostCanvas;
ent er theCanvas|]

#);
getBounds::< (# ... #);
hilite::< (# ... #);
unHilite::< (# ... #);

bri ngFor war d:
(* Make aGD the | ast Abstract Graphi cal Object of THI S(Picture)
* aG0 nust already be a nenmber of THI S(Picture)

*

(# aGO ~Abstract G aphi cal oj ect ;
enter aG]|]
#):
sendBehi nd:
(* Make aGD the first Abstract G aphical Object of THI S(Picture)
* a@ nust already be a menber of THI S(Picture)
*
(# aGO "Abstract G aphi cal oj ect ;
enter aG®]J]
#);
scanGCs:
(* Scan through each Abstract Graphi cal Gbject in TH S(Picture)
* in order fromthe bottomost to the frontnost one.

*
(# go: "Abstract Graphi cal Obj ect;
#):;
scan@sRever se:

(* Scan through each Abstract Graphi cal Gbject in TH S(Picture)
* in order fromthe frontnost to the bottonmost one.

*

(# go: "Abstract Graphi cal oj ect;

#);
(* 1 NTERACTI ON *)
i nteractiveCreateShape::<(# ... #);
i nteractiveConbi neShape: : <(# ... #);
interactiveReshape:: <(# ... #);
(* QUERY *)

| ast GO,

88 Bifrost Reference Manual

(* Exit reference to |last Abstract Graphical Gbject in
* THI S(Pi cture)

*

(# aGO ~Abstract G aphi cal Qbj ect ;

exit aGd]
#)
firstGO
(* Exit reference to last Abstract Gaphical Gbject in
* THI S(Pi cture)
*

(# aGO ~Abstract Gaphi cal bj ect ;

exit aGd]
#);
noOf GCs: i nt eger Val ue
(* Exit nunmber of Abstract G aphical Gbjects in TH S(Picture) *)
(# ... #);
i sSEnpty: bool eanVal ue
(* True iff no graphical objects has been added to
* THI S(Pi cture)
*

(# ... #);
i sMenber: bool eanVal ue
(* True iff aGO has been added to THI S(Picture) *)
(# aGO ~Abstract G aphi cal Obj ect ;
enter aGJ]
#);
contai nsPoint::<
(* Answer if thePoint (canvascoordi nates) is inside the shape
* of any graphical object of TH S(Picture)
*
(# ... #);
firstContaining:<
(* Returns reference to first Abstract G aphical bject in
* THI S(Abstract) that contains thePoint.
* thePoint is assuned to be in coordinates relative to
* theCanvas.
*
(# theCanvas: 7BifrostCanvas;
t hePoi nt: @pPoi nt;
aG0 ~Abstract Gaphi cal Obj ect;
enter (theCanvas[], thePoint)

exit aGd]
#);
| ast Cont ai ni ng: <
(* Returns reference to |ast Abstract Gaphical Gbject in
* THI S(Picture) that contains thePoint.
* thePoint is assunmed to be in coordinates relative to
* theCanvas.
*
(# theCanvas: ”BifrostCanvas;
t hePoi nt: @Poi nt;
aG0 ~Abstract Gaphi cal Obj ect ;
enter (theCanvas[], thePoint)

exit aGd]
#);
witePS::<(# do ... #);
do | NNER;

#); (* Picture *)

Bibliography

88

13.30 BifrostCanvas

(* The BifrostCanvas is the connection between the graphic

* definitions and the device. G aphical objects becone visible on
* the output device when they are added to a BifrostCanvas by the
* use of the draw et hod.

*)

Bi frost Canvas: Canvas
(# <<SLOT CanvasAttributes: attributes >>;

t hePi cture:
(* Picture holding the graphical objects *)
APi cture;
vi sual Shape:
(* The part of THI S(BifrostCanvas) that is visible *)
AShape;
cl i pShape:
(* Shape used for clipping in TH S(BifrostCanvas). Defaults to
* vi sual Shape
*)
~Shape;
draw. (* Put GO on THI S(BifrostCanvas) *)
(# GO ~"NAbstract Graphi cal Obj ect

enter GJ]
#):

erase: (* Erase GO from THI S(Bi frost Canvas) *)
(# aG0 "Abstract G aphi cal oj ect;

enter aG]|]
#);
scanThePi cture:
(* Scan through each Abstract Graphical Object in thePicture in
* order fromthe bottomost to the frontnobst one.

*

(# go: "Abstract Graphi cal bj ect;
#);
scanThePi ct ur eRever se:
(* Scan through each Abstract Graphical Gbject in thePicture in
* order fromthe frontnost to the bottonmobst one.

*

(# go: "Abstract Graphi cal Obj ect;
#);
firstContaining:
(* Returns reference to first Abstract G aphical Gbject in
* thePicture that contains thePoint.
* thePoint is assumed to be in coordinates relative to
* THI S(Bi frost Canvas).
*
(# thePoint: @oint;
ent er thePoi nt
exit (TH S(BifrostCanvas)[],thePoint)
->t hePi cture. firstContaining
#)
| ast Cont ai ni ng:
(* Returns reference to |last Abstract Graphical Gbject in
* thePicture that contains thePoint.
* thePoint is assunmed to be in coordinates relative to
* THI S(Bi f rost Canvas) .
*

(# thePoint: @oint;
ent er thePoi nt

90 Bifrost Reference Manual

exit (THI S(Bi frostCanvas)[],thePoint)
- >t hePi cture. | ast Cont ai ni ng
#)

(* EVENT HANDLI NG *)
event Handl er: : <
(#
onQOpen: <
(* Called imediately after the BifrostCanvas has been
* made visible.
*

(#
#)
onMouseDown: : <
(* Called when a nouse button is pressed *)
(# nmousePos: @oi nt
(* the position of the nobuse in device coordinates
*),
button: (# exit buttonState #);
shiftMdified: (# exit shiftKey #);
(*l ockModi fied: (# exit capsLock #);*)
control Modified: (# exit control Key #);
net aModi fied: (# exit metaKey #);
altModified: (# exit altKey #);
#)
onKeyDown: : < (* Called when a key is pressed *)
(# ... #);
onRefresh:: <
(* Called when THI S(Bi frost Canvas) is being refreshed *)
(# do ... #);
onFr ameChanged: : <
(* Called when THI S(Bi frost Canvas) changes its frame
* (size).
*)
(# ... #);
onActivate:: <
(* Called when the BifrostCanvas is activated, e.g. by
* entering it with the nouse.
*
(# ... #);
onDeactivate::<
(* Called when the BifrostCanvas is deactivated, e.g. by
* |eaving it with the nouse.
*
(# ... #);
#);
borderwi dth: @
(* The width of the border if present. Defaults to 0 *)
(# val ue: @ nteger;

enter (# enter value ... #)
exit (# ... exit value #)
#);
borderpaint: @
(* The Paint used to fill the border if present. Defaults to
* bl ack
*
(# p: "Paint;
enter (# enter p[] ... #)
exit (# ... exit p[] #)
#)

backgroundpaint: @
(* The Paint used as background. Defaults to white *)

(# p: "Paint;
enter (# enter p[] ... #)

Bibliography 91
exit (# ... exit p[] #
#)
open: : <
(* Open the BifrostCanvas, i.e. make it visible and start to

* handl e events.
*
(# create::< (# ... #);
def aul t background: @ool ean
(* If defaul tbackground is set to true,

* THI S(Bi frost Canvas) will appear with the sane
* background col or as the surroundi ng wi ndow, ot herw se
* it will be set to white (unless otherw se specified by
* backgr oundpai nt

*),
#)
close:: <
(* Cose the BifrostCanvas, i.e. nake it di sappear and forget
* all information stored in it.
*
(# ... #);
writeEPS: <
(* Wite Encapsul ated PostScript to the streamout *)
(# out: ~Stream
pagesi ze: @ ectangl e;
vertical: @ool ean
noCf Copi es: @ nt eger;
enter (pagesize, vertical, noO Copies, out[])
do ...
#)
r eadEPS: <
(* Reads an EPS file witten with witeEPS fromstreaminFile
*
)
(#
inFile: ~Stream
enter inFile[]
#) ;
setdip:
(* Make clipShape the new clipping region in
* THI S(Bi f rost Canvas)
*
(#
enter clipShape[]
do ...;
#) ;
getdip:
(* Exit the clipping region of TH S(BifrostCanvas) *)
(# exit clipShape[] #);
devi ceToCanvas:
(* Transform pl from Devi ce coordi nates to BifrostCanvas
* coordi nates

*

(# pl, p2: @P0int;

enter pl
exit p2
#);

canvasToDevi ce:
(* Transformpl from Bi frost Canvas coordi nates to Device
* coordi nates
*
(# pl, p2: @Point;
enter pl

92

Bifrost Reference Manual

exit p2
#);

(* DAMAGE / REPAIR *)
damaged:
(* Inform THI S(Bi frost Canvas) that r has been damaged, and
* thus should be a part of the area redrawn upon the next
* repair.
*
(# r: @Rectangl e;
enter r
do ...;
#),
repair:
(* Redraw all damaged areas in THI S(BifrostCanvas) *)
(# do ... #);

(* | NTERACTI ON *)
i nteractionHandl er:
(* Specialize TH S(Bifrost Canvas) .| nteractionHandl er to
* performan interaction. Specialize the different virtuals

* inside TH S(InteractionHandl er) to performactions in
* response to various events. O course, using an
* | nteractionHandl er only gives neaning if a pointing device
* and/ or a keyboard is connected to the actual device.
*
* NOTICE: At npst one InteractionHandl er may active at any
* given time
*)
(# initialize:<
(* Called before TH S(InteractionHandler) is started *)
(# ... #);
noti on: <
(* Called when the the pointing device has been noved *)
obj ect ;

buttonPress: <
(* Called when a button of the pointing device has been
* pressed.
*
(# button: @nteger enter button do | NNER, #);

butt onRel ease: < obj ect
(* Called when a button of the pointing device has been
* rel eased
*),

keyPress: <
(* Called when a key on the keyboard has been pressed *)
(# ch: @har; enter ch do I NNER #);

keyRel ease: <
(* Called when a key on the keyboard has been rel eased *)
(# ch: @har; enter ch do | NNER #);

t erm nat eCondi ti on: < bool eanhj ect
(* Specifies under what condition to stop
* THI S(1 nt eracti onHandl er)

(# ... #);
term nated: <
(* Called just before THI S(Interacti onHandl er) ends *)
(# ... #);
get Poi nterLocation: @
(* Returns the current pointer |ocation in device
* coordi nates
*
(# thePoint: @oint;
do ...;
exit thePoint
#);

Bibliography 93

i shodi fierOn: @ool eanVal ue
(* Tell if theModifier is currently being pressed *)
(# theModifier: @bdifier;
enter theMdifier
do ...;
#);
doubl ed i ck: @ool eanVal ue
(* Answer if the last button press on the pointing device
* was a double click
*
(# ... #);
do ...;
#)
i nteractiveCreat eShape:
(* Tell GO to start an interaction for creation on
* THI S(Bi f rost Canvas)
*
(# GO "Abstract Graphi cal Obj ect;
p: @oint (* start interaction at p *);
theModi fier: @bdifier;
enter (GJ],p,theMdifier)
#);
i nt eracti veConbi neShape:
(* Tell GO to start an interaction for conbination on
* THI S(Bi f r ost Canvas)
*
(# GO ~"Abstract Graphi cal Obj ect;
p: @oint (* start interaction at p *);
theModi fier: @bdifier;
enter (GJ],p,theModifier)
#)]
i nteractiveReshape:
(* Tell GO to start an interaction for reshaping on
* THI S(Bi f rost Canvas)
*
(# GO "Abstract Graphi cal Obj ect;
p: @oint (* start interaction at p *);
theModi fier: @bdifier;
enter (GJ],p,theMdifier)
#)
i nteractiveMve:
(* Tell GO to start an interaction for notion on
* THI S(Bi f rost Canvas) .
*

(# GO "Abstract Graphi cal Obj ect;
p: @oint (* start interaction at p *);
theModi fier: @bdifier;
enter (GJ],p,theMdifier)
#);
interactiveRotate: (* Not Yet |nplenented *)
(* Tell pict to start an interaction for rotation on
* THI S(Bi f r ost Canvas)
*
(# GO ~"Abstract Graphi cal bj ect;
p: @oint (* start interaction at p *);
theModi fier: @bdifier;
enter (GJ],p,theMdifier)
#)]
interactiveScale: (* Not Yet I|nplenented *)

(* Tell pict to start an interaction for scaling on
* THI S(Bi f rost Canvas)

94 Bifrost Reference Manual

*

(# GO "Abstract Graphi cal Obj ect;
p: @oint (* start interaction at p *);
theModifier: @bdifier;
enter (GJ],p,theMdifier)
#);
bri ngForwar d:
(* Bring aGO forward in THI S(Bi frost Canvas).thePicture *)
(# aGO ~Abstract G aphi cal Qbj ect ;
enter aG(]
#),
sendBehi nd:
(* Send aGO behind in TH S(Bifrost Canvas).thePicture *)
(# aGO ~Abstract G aphi cal Qbj ect ;
enter aG(]
#);

hi t Control :
(* Answer whether p is within 2 mmof a control point of aGO
* Exits exact point if hit, NONE otherw se
*
(# aGO ~Abstract G aphi cal oj ect ;
p: @oint;
res: “Point;

enter (aG]J], p)

exit res[]
#);
hilite:
(* Tell GO to highlight itself on THI S(BifrostCanvas) *)
(# GO ~"Abstract Graphi cal Obj ect

enter GJ]
#);
unHi lite:

(* Tell GO to unhighlight itself on TH S(BifrostCanvas) *)
(# GO "Abstract Graphi cal nj ect

enter GJ]

#):

Primtives for imrediate drawi ng (sonetinmes al so known as
transient drawing). For efficiency all of these use DEVICE
coordi nates. Nothing drawn by means of these primtives can
be repaired automatically by TH S(BifrostCanvas). Uses an
arbitrary color, that is guarentied to be different to what
i s underneath. May be erased by repeating the drawrequest,
and is thus very useful for feedback in interaction.

* % X F kX X F

~—

set | medi at eLi neW dt h:
(* Set the width used for imediate Iines and arcs *)
(# lineWdth: @nteger;
enter |lineWdth
#);
i medi at espot :
(* Draw a small filled rectangle around center *)
(# center: @roint;
enter (center)
#);
i mredi at eLi ne:

Bibliography 95

(* Draw an immediate line frompl to p2 *)
(# pl, p2: @Point;
enter (pil,p2)
#)
i mredi at eDot :
(* Draw a dot of the size of one device-pixel at p *)

(# pl: @Point;
enter (pl)
#):

i mredi at eMul ti Li ne:
(* Draw an imrediate nmultiline specified by the points in p.
* |f close is true, the nultiline will be closed by a line
* fromthe first point to the [ast point.
*
(# p: ~PointArray;
cl ose: @ool ean;
enter (p[], close)
do ...;
#)]
i mredi at eArc:
(# cx, cy: @nteger; (* Center coordinates *)
hr, vr: @nteger; (* Horizontal/vertical radius *)
al, a2: @nteger; (* Defining angles in degrees *)
enter (cx, cy, hr, vr, al, a2)
#);
i medi at erect :
(* Draw the outline of r *)
(# r: @rectangle;
enter r
#);
i medi at eText :
(* Draw theString at pos, with appearance as specified with
* theFont Nane, theStyle, theSize, and underline
*
(# pos: @oint;
t heFont Nane: @ront Nane;
theStyle: @tyle;
t heSi ze: @ nt eger;
underline: @ool ean;
theString: "text;
enter (pos, theFontNane, theStyle, theSize,
underline, theString[])
do ...
#);

(* Wility functions to convert between pixels and
*mlineter.
*)
MMIoPi xel : (* Exits p scaled fromnmmto pixels *)
(# p: @Point;
enter p

#) ;
pi xel ToMM (* Exits p scaled frompixels to nm *)
(# p: @Point;
enter p
do ...
exit p
#);

(* PRI VATE *)

96 Bifrost Reference Manual

privatePart: @...;
™ ~Matrix
(* Transformation from TH S(Bi frost Canvas) to the actua
* device
*)’
#);

13.31 Bifrost

-- LIB: attributes --
Bi frost: Guienv(# do | NNER #)

13.32 EPSfile

ORIA@ N "Bifrost';
BODY ' pri vat e/ PS/ EPSr ead’
" private/ PS/ EPSmacr os' ;
--- streanLib: attributes ---
ski pEPSheader s:
(* This functions should be called to skip over the PostScri pt
* headers and check that it is a valid Bifrost PostScript file.

*
* PostScript headers are generated by canvas.witeEPS or if
* startEPSfile is used directly.
*
(#
f or mat Excepti on: exception
(* called if TH S(stream) isn't a valid Bifrost PostScript

* file.
*
(#
t: ~text
enter t[]
#):

format Error: < fornmat Excepti on;
inFile: "~stream
enter inFile[]

#);
(* The following is indented to allow the user to wite to
* PostScript files, ie. witing several pictures (pages) to one
* file. Currently however, the user herself will have to generate
* sone Post Script code which separates the pages and nakes it valid
* postscript code. This is likely to change in future rel eases.
*
start EPSfi |l e:
(* Wites PostScript headers to TH S(stream). This function
*

shoul d be called exactly once for each file before you do
* anyt hing el se.

This is called automatically by canvas.witeEPS file, but can
be used if the user don't want to use canvas.witeEPS.

o+ X F ok
~

#);

Bibliography 97

endEPSfi | e:

(* Wite PostScript epilogue to out. This function should be

* called exactly once, before you close this file.

*

* As startEPSfile, this is automatically called by

* canvas.witeEPS, and should nornmally only be used if the user
* al so used startEPSfile.

*

(# ... #);

eoe: bool eanVal ue

(* Tests for end of EPS file as marked by endEPSfile *)
(# ... #)

--- BifrostAttributes: attributes ---
| oadPi ct ur e:

(#
<<SLOT bifrostLoadPi cture: attributes>>;
par seExcepti on: exception
(* A parse exception is generated if any parse errors occurs
* while reading the EPS file.

* Notice that if for instance the file is truncated, the
* normal stream exception are generat ed.

*

(# t: "text;
enter t[]
#):;

par seError: < parseException
createGO <
(* Should be specialized to create user defined patterns *)
(# GO ~"Abstract Graphi cal Obj ect;
patternNane: “text;
enter patternNane[]
exit]
#);
in: ~stream
out: ~Picture;
private: @..
enter inf[]

ékit out[]
#)

13.33 ColorNames

ORIA N ' ~bet a/ basi clib/vl. 6/ bet aenv'

LIB: attributes --

(* Patterns used as enter paraneters for SolidCol or.nane *)

al i cebl ue: (# exit (61440, 63488, 65280) #);
anti quewhite: (# exit (64000, 60160, 55040) #);
anti quewhi tel: (# exit (65280, 61184, 56064) #);
yel | ou: (# exit (52480, 52480, 0) #):
yel | owd: (# exit (35584, 35584, 0) #);

yel | onwgr een: (# exit (39424, 52480, 12800) #);

98

Bifrost Reference Manual

13.34 Palette

ORIG@ N "Bifrost"';
BODY 'private/lnpl/Palettelml';
| NCLUDE ' Predefi nedGO ;

-- BifrostAttributes: attributes --

Pal ette: BifrostCanvas

"

*
*
*
*

*

A canvas showi ng an either vertical or horizontal

graphi cal objects. At any time exactly one of these are

hi ghli ghted by a black frame. This default

hi ghl i ght

changed by furtherbinding "hiliteiteni. G aphical

added to THI S(Pal ette) by using "append”.
currently selected graphical object is in

(# eventhandler::<

(# onQpen: : <(# ... #);
onMouseDown: : < (# ... #);
#);

The nunber
"sel ection".

bl ackpai nt: @bol i dColor; (* A black solid color *)

sel ection: @ ntegerVal ue
(* Number of currently selected item?*)
(# checknew. @
(# ns: @nteger;
enter ns ...
#)
enter checknew
#);
noOf I tens: i ntegerVal ue

(* Exit the number of graphical objects in TH S(Pal ette)

(# ... #);
framePaint: @

(* The paint used in the frame and defaul t

(# f: ~Paint;
newFr anePai nt: @
(#
enter f[]
do ...
#)
ent er newkr amePai nt
exit f[]
#);
goPaint: @

hilite *)

(* The paint used in the Abstract Graphical Objects *)

(# g: "Paint;
newGoPai nt: @
(# b: @ool ean
enter g[]
do ...;
#)
ent er newGoPai nt
exit o]
#);

open: : <

(* Open THI S(Palette). Place it at position.
* deltay gives the step-lengths in horizontal

* direction, respectively. |If vertical

is true,

* vertical palette, otherwi se a horizontal one.

*

(# deltax, deltay: @nteger;
vertical: @ool ean;

del t ax,
and verti cal

it will

sequence of

may be
objects are
of the

*)

be a

Bibliography 99

enter (deltax, deltay, vertical)
#):
si ze:
(* Hides BifrostCanvas.size. The size of THI S(Palette) should

* not be set directly, since it will adjust itself depending
* on the nunber of itens.

*

(# s: @oint
exit (# ... exit s #)
#)
close::<(# ... #);
append: <

(* Append go as a selectable itemin TH S(Palette). go will
* be centered in a box with dinensions deltax and deltay (as
* specified to init)
(# go: "Abstract Graphi cal Obj ect;
enter go[]
do ...; INNER
#) ;
hiliteitem<
(* Highlight itemno i instead of the currently highlighted
* item Does not change the current selection
(# donei ni nner: @ool ean;
i: @nteger;
enter i
do | NNER;
#);
changed: <
(* Called when the selection changes *)
(# ... #);

pal etteprivate: @..;
#)

13.35 PredefinedGraphicalObject

ORIG N 'Bifrost'
BODY ' private/lnpl/PredefinedGol npl'

-- BifrostAttributes: attributes --
Pr edef i nedG aphi cal Obj ect: Abstract G aphi cal Obj ect

(# shapeDesc:: <
Pr edef i nedShape;

TMDesc::< (# enterTM:< (# do ...; INNER #)#);

init::< (# ... #);

get Shape: : < (# do theShape. cal cul at eShape -> s[] #);
do | NNER;

#);

13.36 Line

Li ne: PredefinedG aphi cal Obj ect
(# shapeDesc: : < Li neShape;

100 Bifrost Reference Manual

begi n: (# enter theShape.begin exit theShape.begin #);
end: (# enter theShape.end exit theShape.end #);
width: (# enter theShape.width exit theShape.w dth #);
dashes: (# enter theShape.dashes exit theShape.dashes #);
cap: (# enter theShape.cap exit theShape.cap #);

coor di nat es:
(# enter theShape. coordinates exit theShape.coordi nates #);

draw : < (# ... #);
copy::<(# do INNER, ... #);
do | NNER;

#)

13.37 Multiline

Mul tiLi ne: PredefinedG aphi cal Obj ect
(# shapeDesc:: < Ml tiLi neShape;

width: (# enter theShape.width exit theShape.w dth #);
poi nts: (# enter theShape.points exit theShape.points #);

addPoi nt :
(# p: @oint
enter p
do p->(TM.inversetransfornpoi nt - >t heShape. addPoi nt
#);
i nsert Point:
(# 1: @nteger; p: @oint
enter (p,i)
do (p->(TM.inversetransfornpoint,i)->theShape.insertPoint
#)
del et ePoi nt :
(# p: @oint
enter p
do p->(TM.inversetransfornpoi nt - >t heShape. del et ePoi nt
#) ;
get Poi nt :
(# 1: @nteger;
p: @oint;
enter i
do i->t heShape. get Poi nt - >p
exit p
#) ;
set Poi nt :
(# 1: @nteger;
p: @oint;
enter (i,p)
do (p->(TM.inversetransfornpoint,i)->theShape. set Poi nt
#);
cl osest Li neSegrent :
(# p: @oint; i: @nteger
enter p
do ...
exit i
#);

dashes: (* Not Yet Inplenmented *)

(# enter theShape.dashes exit theShape.dashes #);
cap: (# enter theShape.cap exit theShape.cap #);
join: (# enter theShape.join exit theShape.join #);
draw : < (# ... #);
copy::< (# do INNER, ... #);

do | NNER;

Bibliography

101

#);

13.38 GraphicText

Graphi cal Text: GraphicText (# #); (* Alias *)

G aphi cText: Predefi nedG aphi cal Obj ect
(# shapeDesc:: < Text Shape;

inittext: (# enter theShape.inittext #);

position:

(# enter theShape.position
exit theShape. position

#);
t hef ont nane:
(#

ent er theShape.t hef ont nanme
exit theShape. thef ont name

#) ;
theStyl e:
(#

enter theShape.theStyle
exit theShape.theStyle

#)
Sl ze:
(#

ent er theShape. size

exit theShape. si ze

#);
under | i ne:
(#

ent er theShape. underline
exit theShape. underline

#);
t heText :
(#

ent er theShape.theText
exit theShape. theText

#)
draw : < (# ... #)
copy::< (# ... #);

i nteractiveCreat eShape:: <

(# last Ch: @har;

exit |astCh
#);

i nteractiveReshape:

(# lastCh: @har;

exit |astCh
#);

do | NNER;

#);

(* Last character typed in interaction *)

<
(* Last character typed in interaction *)

102

Bifrost Reference Manual

13

Arc:
(#

do
#);

13

Pi eSl
(#

.39 Arc

Pr edef i nedGr aphi cal (bj ect
shapeDesc: : < ArcShape;

center: (# enter theShape.center
hori zont al Radi us:
(#
ent er theShape. hori zont al radi us
exit theShape. hori zont al radi us
#),;
verti cal Radi us:
(#
enter theShape.verticalradius
exit theShape. vertical radius
#)
angl el:
(#
ent er theShape. angl el
exit theShape. angl el
#)
angl e2:
(#
enter theShape. angl e2
exit theShape. angl e2
#)
ar cW dt h:
(#
ent er theShape. arcWdth
exit theShape.arcWdth

#);
draw. : < (# ... #);
copy::< (# do INNER;, ... #);
I NNER

40 PieSlice

i ce: PredefinedG aphi cal Ohj ect
shapeDesc: : < Pi eShape;
center:

(#

ent er theShape. center
exit theShape.center
#),
hori zont al Radi us:
(#
enter theShape. horizontal radi us
exit theShape. horizontal radi us
#),;
verti cal Radi us:
(#
ent er theShape. vertical radi us
exit theShape.vertical radi us
#);
angl el:
(#
ent er theShape. angl el
exit theShape. angl el

exit theShape.center #);

Bibliography

103

#)
angl e2:
(#
ent er theShape. angl e2
exit theShape. angl e2

#)

draw. :< (# ... #);

copy::< (# do INNER, ... #);
do | NNER
#);

St r okeAbl ePr edef i nedGr aphi cal Obj ect: PredefinedG aphi cal Obj ect

(#

shapeDesc: : < Strokeabl eShape
do | NNER
#)

13.41 Rect

Rect: StrokeAbl ePredefi nedG aphi cal Obj ect
(# shapeDesc: : < Rect Shape;

upperl eft:
(#
ent er theShape. upperl eft
exit theShape. upperl eft
#)

wi dt h:
(#
enter theShape.w dth
exit theShape.w dth
#)

hei ght :
(#
ent er theShape. hei ght
exit theShape. hei ght
#)

corners:
(#
ent er theShape. corners
exit theShape.corners

#)
draw : < (# ... #);
copy::< (# do INNER, ... #);
do | NNER;

#);

13.42 Ellipse

El li pse: StrokeAbl ePredefi nedG aphi cal Obj ect
(# shapeDesc:: < EllipseShape;

center:
(#
ent er theShape. center
exit theShape. center

104

Bifrost Reference Manual

#);
hori zont al r adi us:
(#

ent er theShape. hori zont al radi us
exit theShape. horizontal radi us

#),
vertical radi us:
(#

ent er theShape. vertical radi us
exit theShape.verti cal radi us

#),
geonetry:
(#
enter theShape. geonetry
exit theShape. geonetry

#);

draw. : < (# ... #);

copy::< (# do INNER;, ... #);
do | NNER;

#);

13.43 RasterGrays

ORIGA N '"Bifrost';

BODY ' private/lnpl/RasterGayl ml';

-- BifrostAttributes: Attributes --

RasterGray: Til edSoli dCol or

(* Abstract superpattern for the ten patterns bel ow. Each of these

* use one of the bitmaps in the fragnment

Hal f t onePatterns to nmake

* an illusion of a shade of gray even on a black & white device.
* See the pattern RasterG ays below for a conveni ent use.

*

(# do init; (0, 0, 0) -> RGBval ues;

Rast er G ay0: Raster G ay
(#init:: (# ...)#);
Raster Grayll: RasterG ay
(#init:: (# ... #);
Raster Gray22: Raster G ay
(#init:: (# ... #)#);
Raster G ay33: Raster G ay
(#init:: (# ...)#);
Rast er G ay44: Raster G ay
(#init:: (# ... #);
Rast er G ay56: Raster G ay
(#init:: (# ... #)#);
Raster G ay67: RasterG ay
(#init:: (# ...)#);
Raster G ay78: Raster G ay
(#init:: (# ... #);
Rast er G ay89: Raster G ay
(#init:: (# ... #)#);
Rast er G ay100: Raster G ay
(#init:: (# ...)#);

Rast er Grays:

(* A convenient alternative to using the above patterns directly is

* using an instance of RasterG ays:

Raster Grays enters a

* percentage, and exits a reference to an initialized RasterGay

Bibliography

105

yi el ding a approxi mati ng shade of gray: percentage=0 yields

white, percentage=100 yields bl ack

* of eight internmedi ate shades of gray.
*

(# private: @..;
percent age: @ nteger;
thegray: "“Raster G ay;
init:

(# ... #

ent er percent age

do ...;

exit thegray[]

#);

13.44 SelectionPicture

ORIA@ N '"Bifrost"

BODY ' private/lnpl/Sel ectionPicturelnpl’;

-- BifrostAttributes: attributes --

Sel ectionPicture: Picture
(* Apicture used to hilite a group of

ot her percentages yields one

graphi cal objects.

* Sel ectionPicture automatically highlights the graphical objects

* added to it.

*

(# thecanvas: ~Canvas

(* The Canvas the GOs are shown in *);

init::< (# enter theCanvas[] ... #);
copy::<(# do ... #);

draw : < (# ... #)

erase::< (# ... #);

add: : < (# ... #);

delete::< (# ... #);

cl ear:

(* Renove all graphical objects from TH S(Sel ectionPicture) *)

(# ... #);
onOne@O < obj ect

(* Called when noOF GOs becones 1 *);

onTwoG0s: < obj ect

(* Called when noOFGCs changes from1l to 2 *);

onEnpty: < obj ect

(* Called when noOF GOs becones 0 *);

#)

14. Bibliography

[Andersen 91]

[Edel sbrunner 80]

[Foley 90]

[Madsen 93]

[MIA 90-2]
[MIA 90-10]
[MIA 91-16]

[MIA 91-19]

[MIA 94-27]

[Newman 81]

[Poskanzer]

Peter Andersen, Kim Jensen Mgdller, and Jergen Rask:
Bifrost—An Interactive Object Oriented Device Indepen-
dent Graphics System, Master’s thesis, DAIMI Internal
Report IR-100, Aarhus University, January 1991.

H. Edelsbrunner: Dynamic Rectangle Intersection Search-
ing. Technische Universitdt Graz. February 1980.

James D. Foley, Andries van Dam, Steven K. Feiner, and
John F. Hughes. Computer Graphics—Principles and
Practice, Addison-Wesley, The System Programming Se-
ries, 2, 1990.

O. L. Madsen, B. Mdller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming Lan-
guage, Addison-Wesley, 1993, ISBN 0-201-62430-3

Mjgalner Informatics. The Mjglner System: BETA Compiler
Reference Manual Mjglner Informatics Report MIA 90-2.

Mjalner Informatics. The Mjglner System — The Macintosh
Libraries, Mjglnerlnformatics Report MIA 90-10.

Mjglner Informatics. The Mjaglner System—X Window
System Libraries, Mjglnerlnformatics Report MIA 91-16.

Mjalner Informatics. Lidskjalv: User Interface Framework
- Reference Manual. Mjglner Informatics Report MIA 94-
27.

Mjglner Informatics: The Bifrost Graphics System, Tuto-
rial. Mja@lner Informatics Report MIA 91-19.

William M. Newman and Robert F. Sproull: Principles of
Interactive Computer Graphics, McGraw-Hill Book Com-
pany, 1981.

Jef Poskanzer: Portable BitMap, GrayMap, and PixMap,
Unix Manual Pages.

106

Index

15. Index

The entries in the index with italic pagenumbers are the identifiers defined in
the public interface of the libraries:

The minor level entries refer to identifiers defined local to the identifier of the
major level entry. For those index entries referring to patterns with super- or
subpatterns within the library, these patterns are specified in special sections of
the minor level index for that identifier.

Entries with plain pagenumbers refer to the text of this manual.

scale, 85

setPaint, 82
A shapeDesc, 82

subpatterns:

" Graphical Object, 86
a,)) Picture, 86
AbstractGraphical Object, 82 PredefinedGraphical Object, 99

booleanValue thePaint, 85 ‘
subpatterns: theSh é 85
containsPoint, 85 ™ 885 ’
containsPoint, 85 TMDesc, 82
super pattern: transform, 85
booleanValue, 105 unHilite é3
82;%’23 writePS, 85
erasé o3 writeUserData, 82
: AbstractShape, 63
getBounds, 83 booleanValue
ggghal nt(,98822 subpatterns:
ﬁilite ag3, containsPoint, 64
iite, calculatePoints, 66
hitControl, 83 containsPoint, 64
init, 82 ’
init, 82 super pattern:
interaction, 84
bpetiore - 6?390' eanValue, 105
interactiveCombineShape, 84 drgxhnite 65
interactiveCreateShape, 84 : :
X X fillRule, 63
interactiveMove, 84 getBounds, 64
_ interactiveReshape, 84 getcontrols: 65
interactiveCombineShape, 84 hb. 65 '
superpattern: hc, 65
interaction, 105 ili
interactiveCreateShape, 84 “"'Ei;’,“;‘;’t’tgi-
wpier:trc)e?gcetri gn 105 hiliteDesc, 105
_ _) hiliteControls, 65
interactiveMove, 84 super pattern:
super pattern: hiliteDesc, 105
interaction, 105 hiliteDesc, 64
interactiveReshape, 84 subpatfer ns:

super pattern:
interaction, 105
interactiveRotate, 84

hiliteBound, 65
hiliteControls, 65

. X hiliteOutline, 65
mg:cg;e&:a e84 hiliteOutline, 65
movelro 85 Super pattern:

) ! hiliteDesc, 105
private, 85 ho. 65
readUserData, 82 hofspot 64
recal cul ateShape, 85 Inter actli on, 65

rotate, 85

Bifrost Reference Manual

InteractiveCombine, 65
InteractiveCreate, 65

InteractiveReshape, 65 B

@ nval | d, 64

I r;)\g j%aéte, 64 b, 56 .
privatePart, 66 ES?;%“’XQ dpaint, 0
subpatterns: begin, 61, 69, 100

PictureShape, 86

PredefinedShape, 68 Blfrs(l);atérQSattern'
o 2'16;?&62 Guienv, 96
pSegment 3 BifrostCanvas, 89
el 615 backgroundpaint, 90
d o 105, borderpaint, 90
add’ 30, bqrderwi dth, 90
addControl, 62, 63 lggr?\?azgl"%aglcg: a1
addLine, 18 i '
addPoint, 58, 70, 100 2} ;‘;ﬁ“@‘l’e’ %
AddPoints, 55 damaged, 92
addSpline, 66 deviceToCanvas, 91
addSpline, 19 draw, 89
aliceblue, 97 erase. 89

anglel, 72, 73, 102
angle2, 72, 73, 102, 103
antiquewhite, 97
antiquewhitel, 97

eventHandler, 90
onActivate, 90
onDeactivate, 90
onFrameChanged, 90

append, 58, 99
appendPointArray, 59 Onseyzgévn, 9090
appendShape, 67 onoou goown,
appendShape, 13, 14 OnRgfme,eh
Arc, 102 ~ OnRefres , 90
éng|el 102 firstContaining, 89
angle2, 102 getClip, 91
arcWidth, 102 E!Ilct:e, 94I o
center, 102 .lt onFro,
co ioz immediateArc, 95
Gy, 100 immediateDot, 95
i i immediateline, 94
S?r'zf’eS;iRi‘?Jé‘s' 102 immediateMultiLine, 95
su;zrpatte} n: immediaterect, 95

immediatespot, 94
immediateText, 95
interactionHandler, 92

PredefinedGraphical Object, 102
verticaRadius, 102

A rcasngel‘g? ;g booleanObject
angle2‘ 73 subpatte_rns: N
arcWidth 73 terminateCondition, 92
calculateéhape 73 buttonPress, 92
center, 73 ‘ buttonRelease, 92
containsPoint, 73 doubleClick, 93
copy, 73 ’ thPo[nterLocanon, 92
firstF;oint 73 !nltlah_z(_a, 92
’ isModifierOn, 93
getBounds, 73 v o
getControls, 73 keyReIease o
hiliteOutline, 73 mec.{t - 92.
horizontalRadius, 73 on, N
interactiveCreate, 73 ter n;;n?etre(;(t)trglr:-l on, 92
interactiveReshape, 73 pbo%leandbject 105
gﬁsglzgasttern- terminated, 92
Predefinedshape 73 interactiveCombineShape, 93
’ interactiveCreateShape, 93
transform, 73 I _
verticalRadius, 73 interactiveMove, 93
WritePS, 73 interactiveReshape, 93
ArcShape, 40 interactiveRotate, 93

interactiveScale, 93
lastContaining, 89
MMToPixel, 95
open, 91

pixel ToMM, 95

arcWidth, 73, 102

Index

privatePart, 96
readEPS, 91
repair, 92
scanThePicture, 89
scanThePictureReverse, 89
sendBehind, 94
setClip, 91
setlmmediatelineWidth, 94
subpatterns:
Palette, 98
superpattern:
Canvas, 89
thePicture, 89
T™, 96
unHilite, 94
visual Shape, 89
writeEPS, 91
BifrostCanvas, 52
BitMap, 76
BitMapPrivatePart, 76
calculate, 76
copy, 76
getPixel, 76
init, 76
pixel, 76
putPixel, 76
readFromPBMfile, 76
super pattern:
Raster, 76
writeToPBMfile, 76
BitMap, 22
BitMapPrivatePart, 76
blackpaint, 98
Bold, 55
superpattern:
Style, 55
booleanValue
subpatterns:
eoe, 97
borderpaint, 90
borderwidth, 90
bringForward, 87, 94
bringForward, 30
buttonPress, 92
buttonRel ease, 92

C

c, 56
calculate, 76, 77
calculatePoints, 60, 61, 62, 63, 66
CalculateShape, 68, 70, 71, 72, 73, 74, 75
Canvas

subpatterns:

BifrostCanvas, 89

Canvas, 33

. Clipping, 34

. Drawing Area, 33

. Event Handler, 35

. thePicture, 33

. Visible Area, 33

. Visible Shape, 33
Canvas Coordinate System, 4
canvasToDevice, 91
cap, 69, 70, 100
Cap Styles;, 12
CapButt, 54

super pattern:

CapStyleDesc, 54
CapRounded, 54

superpattern:

CapStyleDesc, 54
CapSquare, 54

superpattern:

CapStyleDesc, 54
CapStyleDesc, 54

subpatterns:

CapButt, 54

CapRounded, 54

CapSquare, 54
CCs, 4
center, 72, 73, 74, 102, 103
changed, 99
CircleAngle, 57
circleAngle, 52
CircularSplineSegment, 62

calculatePoints, 63

copy, 62

drawRubberBand, 62
DrawRubberSplineDesc, 62
findSegments, 62
getControls, 63
makeOffset, 63
makeSecondOffset, 63
nextToLastPoint, 62

super pattern:

SplineSegment, 62

writePS, 62
CircularSplineSegment, 7
clear, 105
Clip Shape, 34
Clipping, 34
clipShape, 89
close, 63, 66, 91, 99
close, 9
closestLineSegment, 71, 100
CMYvaues, 79
CMYvalues, 23
combineShape, 68
combineShape, 13, 16
Combining Shapes, 13
CommandModifier, 54

superpattern:

Modifier, 54
Complex Shapes, 13
Complex Transformation, 5
connectShape, 67
connectShape, 13, 15
connectShapeSmooth, 68
connectShapeSmooth, 13, 15
Constraining Pictures, 31

containsPoint, 64, 66, 69, 71, 72, 73, 74, 75, 85, 86,

88
containsPoint:, 28
ControlModifier, 54
super pattern:
Modifier, 54
controls, 61
Coordinate, 4
Coordinate System, 4, 31
coordinates, 69, 100

copy, 57, 59, 61, 62, 63, 66, 69, 71, 72, 73, 74, 75,
76,77, 79, 81, 83, 86, 87, 100, 101, 102, 103,

104, 105
copy, 21
corners, 74, 103
Courier, 55

Bifrost Reference Manual

super pattern:
fontname, 55
createGO, 97
currentPoint, 66

D

d, 56

damaged, 92

damaged, 34

dashes, 69, 70, 100

DCS, 4

DefaultMaxHue, 55
DefaultMaxSat, 55
DefaultMaxVal, 55

delete, 62, 67, 87, 105

delete, 30

deletePoint, 58, 70, 100

Device Coordinate System, 4
deviceToCanvas, 91
doubleClick, 93

draw, 82, 86, 87, 89, 100, 101, 102, 103, 104, 105
draw, 29

drawHilite, 65

drawOnPixmap, 87
drawRubberBand, 59, 61, 62, 63
DrawRubberSplineDesc, 62, 63

E

Ellipse, 103
center, 103
copy, 104
draw, 104
geometry, 104
horizontalradius, 104
shapeDesc, 103
super pattern:
StrokeAblePredefinedGraphi cal Object, 103
verticalradius, 104
EllipseAngle, 57
EllipseAngle, 52
EllipseShape, 74
calculateShape, 75
center, 74
containsPoint, 75
copy, 75
firstPoint, 74
geometry, 75
getBounds, 75
getControls, 75
hiliteQutline, 75
horizontalradius, 75
interactiveCreate, 75
interactiveReshape, 75
open, 75
super pattern:
StrokeableShape, 74
transform, 75
verticalradius, 75
writePS, 75
EllipseShape, 39
empty, 59
Encapsulated PostScript, 50
end, 61, 69, 100
endEPSfile, 97

endReshape, 60, 61, 62
eoe, 97

superpattern:

booleanValue, 97

EqualPoint, 55
erase, 83, 87, 89, 105
erase, 29
Even-Odd Rule, 9
EvenOddRule, 54
eventHandler, 90, 98
ExpandRectangle, 56

F

figureitems, 53
fill, 77
Fill Rules, 8
fillArc, 78, 80, 81
fillEllipse, 78, 80, 81
fillLine, 78, 80, 81
fillMultiLine, 78, 80, 81
fillOther, 78
fillPie, 78, 80, 81
fillRect, 78, 80, 81
fillRule, 63
fillrule
. Even-Odd Rule, 9
. Non-Zero Winding rule, 8
fillShape, 77, 80, 81
fillShape, 21
fillText, 78, 80, 81
findSegments, 60, 61, 62, 63, 68
firstContaining, 88, 89
firstContaining, 31
firstGO, 88
firstPoint, 58, 59, 61, 66, 69, 70, 71, 72, 73, 74, 86
fontName, 55
subpatterns:
Courier, 55
Helvetica, 55
Times, 55
super pattern:
integerObject, 55
formatError, 96
formatException, 96
framePaint, 98

G

g, 80
geometry, 75, 104
getBounds, 64, 66, 69, 71, 72, 73, 74, 75, 83, 86, 87
getClip, 91
GetClip, 34
getControls, 59, 61, 63, 65, 68, 69, 71, 72, 73, 74,
75, 86
getinverse, 56
getPaint, 82
getPixel, 76, 77
getPoint, 58, 70, 100
getPointerL ocation, 92
getShape, 82, 86, 99
goPaint, 98
Graphic Context, 27
. Global, 27
. Locadl, 27

Index

. Shared, 27
Graphica Object
.init, 27
Graphical Object, 86
copy, 86
draw, 86
getShape, 86
hilite, 86
recal cul ateShape, 86
setShape, 86
shapeDesc, 86
super pattern:
AbstractGraphica Object, 86
unHilite, 86
writePS, 86
Graphical Object, 27
. containsPoint, 28
. draw, 29
. erase, 29
. Geometric Transformations, 28
. Graphic Context, 27
. hilite, 29
. hitControl, 28
. interactiveCombineShape, 28
. interactiveCreateShape, 28
. interactiveMove, 28
. interactiveReshape, 28
. transform, 29
. unHilite, 29
Graphical Text, 101
super pattern:
GraphicText, 101
graphics, 53
Graphics Modelling, 30
GraphicText, 101
copy, 101
draw, 101
inittext, 101
interactiveCreateShape, 101
interactiveReshape, 101
position, 101
shapeDesc, 101
size, 101
subpatterns:
Graphical Text, 101
super pattern:
PredefinedGraphical Object, 101
thefontname, 101
theStyle, 101
theText, 101
underline, 101
graphmath, 52
GrayMap, 76
calculate, 77
copy, 76
getPixel, 76
GrayMapPrivatePart, 77
init, 76
pixel, 76
putPixel, 76
readFromPGMfile, 77
superpattern:
Raster, 76
writeToPGMfile, 76
GrayMapPrivatePart, 77
Guienv
subpatterns:
Bifrost, 96
guienv, 52

H

hb, 65
hc, 65
height, 55, 74, 75, 103
Helvetica, 55

super pattern:

fontname, 55

Highlighting, 46
hilite, 83, 86, 87, 94
hilite, 29
hiliteBound, 65
hiliteControls, 65, 86
hiliteDesc, 64
HiliteDesc, 46
hiliteitem, 99
hiliteOutline, 65, 68, 69, 71, 72, 73, 74, 75, 86
hitControl, 83, 94
hitControl, 28
ho, 65
horizontalRadius, 72, 73, 75, 102, 104
hotspot, 64, 75
hotspot, 12
HSVvalues, 79
HSVvalues, 23

i,58
IDMatrix, 56
IDmatrix, 52
immediateArc, 95
immediateDot, 95
immediateLine, 94
immediateMultiLine, 95
immediaterect, 95
immediatespot, 94
immediateText, 95
in, 97
inFile, 96
init, 58, 75, 76, 77, 79, 81, 82, 86, 99, 104, 105
initialize, 92
initPoints, 57
initText, 71, 101
Input Control, 35
insert, 59, 62, 67
insertPoint, 58, 70, 100
IntegerList, 58

append, 58

copy, 59

i,58

init, 58

insert, 59

inx, 58

length, 58

private, 58

remove, 58
integerObject

subpatterns:

fontName, 55
Style, 55

Interaction, 65, 84
Interaction, 42

. Feedback, 44

. Model, 42

Bifrost Reference Manual

interactionHandler, 92
InteractionHandler, 42
I nteractiveCombine, 65, 68
interactiveCombine, 45
interactiveCombineShape, 84, 87, 93
interactiveCombineShape, 28
InteractiveCreate, 65, 68, 70, 71, 72, 73, 74, 75
interactiveCreate, 45
interactiveCreateShape, 84, 87, 93, 101
interactiveCreateShape:, 28
interactiveMove, 84, 93
interactiveMove, 28
InteractiveReshape, 65, 68, 70, 71, 72, 73, 74, 75,

84, 87, 93, 101
interactiveReshape, 28, 45
interactiveRotate, 84, 93
interactiveScale, 84, 93
invalid, 64
invalidate, 64, 69
invalidateCapStyle, 69
invalidateDash, 69
invalidatel nteger, 69
invalidateJoinStyle, 69
invalidatePoint, 69
invalidateReal, 69
inverse, 56
inverseTransformPoint, 56
inverseTransformRectangle, 56
inx, 58
isClosed, 63, 67
isEmpty, 67, 88
isEmpty, 32
isFlat, 67
isMember, 88
isMember, 32
isModifierOn, 93
Italic, 55

super pattern:

Style, 55

J

join, 70, 100
Join Styles, 12
JoinBevel, 55
super pattern:
JoinStyleDesc, 55
JoinMiter, 54
super pattern:
JoinStyleDesc, 54
JoinRound, 54
super pattern:
JoinStyleDesc, 54
JoinStyleDesc, 54
subpatterns:
JoinBevel, 55
JoinMiter, 54
JoinRound, 54

K

keyPress, 92
keyRelease, 92

L

lastContaining, 88, 89
lastContaining, 31
lastGO, 87
lastPoint, 58, 59, 61, 66, 70
length, 58
Lidskjalv User Interface Toolkit, 52
Line, 99
begin, 100
cap, 100
coordinates, 100
copy, 100
dashes, 100
draw, 100
end, 100
shapeDesc, 99
superpattern:
PredefinedGraphical Object, 99
width, 100
LineSegment, 61
begin, 61
calculatePoints, 61
copy, 61
drawRubberBand, 61
end, 61
endReshape, 61
findSegments, 61
firstPoint, 61
getControls, 61
lastPoint, 61
makeOffset, 61
makeSecondOffset, 61
nextToFirstPoint, 61
nextTolLastPoint, 61
prepareReshape, 61
reverseQrientation, 61
setFirstPoint, 61
setLastPoint, 61
super pattern:
Segment, 61
transform, 61
writePS, 61
LineSegment, 7, 17
LineShape, 69
begin, 69
CalculateShape, 70
cap, 69
containsPoint, 69
coordinates, 69
copy, 69
dashes, 69
end, 69
firstPoint, 69
getBounds, 69
getControls, 69
hiliteOutline, 69
interactiveCreate, 70
interactiveReshape, 70
open, 69
super pattern:
PredefinedShape, 69
transform, 70
width, 69
writePS, 70
LineShape, 37
lineTo, 66

Index

lineTo, 9
Loading a canvas, 50
|loadPicture, 97
createGO, 97
exception
subpatterns:
parseException, 97
in, 97
out, 97
parseError, 97
parseException, 97
super pattern:
exception, 105
private, 97
LockModifier, 54
super pattern:
Modifier, 54

M

makeOffset, 60, 61, 63
makeSecondOffset, 60, 61, 63
Matrix, 56

a, 56

b, 56

c, 56

d, 56

getlnverse, 56

inverse, 56

inverseTransformPoint, 56

inverseTransformRectangle, 56

set, 56
subpatterns:
MoveMatrix, 56
RotateMatrix, 57
ScaleMatrix, 57
transformPoint, 56
transformRectangle, 56
tx, 56
ty, 56
matrix, 52
MatrixMul, 57
MaxRGB, 55
MetaModifier, 54
super pattern:
Modifier, 54
MMToPixel, 95
Madifier, 54
subpatterns:
CommandModifier, 54
ControlModifier, 54
LockModifier, 54
MetaModifier, 54
NoModifier, 54
ShiftModifier, 54
motion, 92
move, 85
Move Transformation, 5
MoveMatrix, 56
super pattern:
Matrix, 56
moveMatrix, 52
moveTo, 85
MultiLine, 100
addPoint, 100
cap, 100
closestLineSegment, 100
copy, 100

dashes, 100
deletePoint, 100
draw, 100
getPoint, 100
insertPoint, 100
join, 100

points, 100
setPoint, 100
shapeDesc, 100
super pattern:

PredefinedGraphical Object, 100

width, 100
MultiLineShape, 70

addPoint, 70

calculateShape, 71

cap, 70

closestLineSegment, 71

containsPoint, 71

copy, 71

dashes, 70

deletePoint, 70

firstPoint, 70

getBounds, 71

getControls, 71

getPoint, 70

hiliteOutline, 71

insertPoint, 70

interactiveCreate, 71

interactiveReshape, 71

join, 70

lastPoint, 70

open, 70

points, 70

setPoint, 70

superpattern:

PredefinedShape, 70

transform, 71

width, 70

writePS, 71
MultiLineShape, 38

N

Name, 79
Neighborhood, 46
nextToFirstPoint, 59, 61, 66

nextTolL astPoint, 59, 61, 62, 63, 66

NoModifier, 54

superpattern:

Modifier, 54

NonCircularSplineSegment, 63

addControl, 63
booleanVaue

subpatterns:

isClosed, 63

calculatePoints, 63
close, 63
copy, 63
drawRubberBand, 63
DrawRubberSplineDesc, 63
findSegments, 63
getControls, 63
isClosed, 63

superpattern:

booleanValue, 105

makeOffset, 63
makeSecondOffset, 63
nextTolL astPoint, 63

Bifrost Reference Manual

open, 63
private, 63
super pattern:
SplineSegment, 63
writePS, 63
NonCircularSplineSegment, 7
Non-Zero Winding rule, 8
noOfGOs, 88
noOfGOs, 32
noOfltems, 98
npoints, 57

O

onActivate, 90
onDeactivate, 90
onEmpty, 105
onFrameChanged, 90
onKeyDown, 90

fillShape, 77
superpattern:
fill, 105
fillText, 78
superpattern:
fill, 105
init, 77
paintprivate, 78
SetBackgroundPaint, 79
setBorderPaint, 78
setCanvasPaint, 78
setSpecia Paint, 78
subpatterns:
RasterPaint, 80
SolidColor, 79
writePS, 78

Paint, 21

. copy, 21
. fillShape, 21

paintprivate, 78

onMouseDown, 90 Pal tht)gegg %
onOneGO, 105 blackpaint, 98
onOpen, 90 changed, 99
onRefresh, 90 dlose 99'
onTwoGOs, 105 even t’han dier 98
open, 61, 63, 65, 66, 69, 70, 72, 73, 74, 75, 91, 98 framePaint §8
open, 9 ralgw) 98’
out, 97 ﬁcl) an,
ovalAngle, 52 i iteitem, 99
’ integerValue
subpatterns:
|_3 noOfltems, 98
noOfltems, 98
superpattern:
paddingSolidColor, 80 integerValue, 105
Paint, 77 open, 98
copy, 77 paletteprivate, 99
fill, 77 selection, 98
subpatterns: size, 99
fillArc, 78 super pattern:
fillEllipse, 78 BifrostCanvas, 98
fillLine, 78 paletteprivate, 99
fillMultiLine, 78 parseError, 97
fillOther, 78 parseException, 97
fillPie, 78 percentage, 80, 105
fillRect, 78 Picture, 86
fill Shape, 77 add, 86
fillText, 78 booleanValue
fillArc, 78 subpatterns:
super pattern: isEmpty, 88
fill, 105 isMember, 88
fillEllipse, 78 bringForward, 87
super pattern: containsPoint, 88
fill, 105 copy, 87
fillLine, 78 delete, 87
super pattern: draw, 87
fill, 105 drawOnPixmap, 87
fillMultiLine, 78 erase, 87
super pattern: firstContaining, 88
fill, 105 firstGO, 88
fillOther, 78 getBounds, 87
super pattern: hilite, 87
fill, 105 init, 86
fillPie, 78 integerValue
super pattern: subpatterns:
fill, 105 noOfGOs, 88
fillRect, 78 interactiveCombineShape, 87
super pattern: interactiveCreateShape, 87
fill, 105 interactiveReshape, 87

Index

isEmpty, 88 verticaRadius, 72
super pattern: writePS, 73
booleanVaue, 105 PieShape, 39
isMember, 88 PieSlice, 102
super pattern: anglel, 102
booleanVaue, 105 angle2, 103
lastContaining, 88 center, 102
lastGO, 87 copy, 103
noOfGOs, 88 draw, 103
super pattern: horizontal Radius, 102
integerValue, 105 shapeDesc, 102
scanGOQOs, 87 super pattern:
scanGOsReverse, 87 PredefinedGraphical Object, 102
sendBehind, 87 verticalRadius, 102
setPaint, 87 pixel, 75, 76, 77
shapeDesc, 86 pixe' ToMM, 95
subpatterns: PixMap, 77
SelectionPicture, 105 calculate, 77
superpattern: copy, 77
AbstractGraphica Object, 86 getPixel, 77
TMDesc, 86 init, 77
unHilite, 87 pixel, 77
writePS, 88 PixMapPrivatePart, 77
Picture putPixel, 77
. add, 30 readFromPPMfile, 77
. bringForward, 30 super pattern:
. Constraining, 31 Raster, 77
. Coordinate System, 31 writeToPPMfile, 77
. delete, 30 PixMap, 23
. firstContaining, 31 PixMapPrivatePart, 77
. isEmpty, 32 Plain, 55
. isMember, 32 super pattern:
. lastContaining, 31 Style, 55
. noOfGOs, 32 Paint, 55
. ScanGOs, 31 X, 55
. ScanGOsReverse, 31 y, 55
. sendBehind, 31 point, 52
pictureprivate, 86 PointArray, 57
PictureShape, 86 addPoint, 58
containsPoint, 86 copy, 57
copy, 86 deletePoint, 58
firstpoint, 86 firstPoint, 58
getBounds, 86 getPoint, 58
getControls, 86 initPoints, 57
hiliteControls, 86 insertPoint, 58
hiliteOutline, 86 lastPoint, 58
pictureprivate, 86 npoints, 57
super pattern: private, 58
AbstractShape, 86 scanPoints, 58
transform, 86 setPoint, 58
writePS, 86 PointArrayList, 59
PieShape, 72 appendPointArray, 59
anglel, 72 booleanValue
angle2, 72 subpatterns:
calculateShape, 73 empty, 59
center, 72 empty, 59
containsPoint, 72 superpattern:
copy, 72 booleanValue, 105
firstPoint, 72 private, 59
getBounds, 72 scanPointArrays, 59
getControls, 72 PointInRect, 56
hiliteOutline, 73 points, 70, 100
horizontalRadius, 72 position, 71, 101
interactiveCreate, 73 PostScript comment character, 51
interactiveReshape, 73 Predefined Graphical Objects, 40
open, 72 Predefined Shapes, 37
super pattern: PredefinedGraphica Object, 99
PredefinedShape, 72 getShape, 99

transform, 73 init, 99

Bifrost Reference Manual

shapeDesc, 99
subpatterns:
Arc, 102
GraphicText, 101
Line, 99
MultiLine, 100
PieSlice, 102
StrokeAblePredefinedGraphical Object, 103
super pattern:
AbstractGraphica Object, 99
TMDesc, 99
PredefinedShape, 68
CalculateShape, 68
containsPoint, 69
integerVaue
subpatterns:
invalidatel nteger, 69
invalidate, 69
invalidateCapStyle, 69
invalidateDash, 69
invalidatel nteger, 69
super pattern:
integerValue, 105
invalidateJoinStyle, 69
invalidatePoint, 69
invalidateReal, 69
prePrivate, 69
subpatterns:
ArcShape, 73
LineShape, 69
MultiLineShape, 70
PieShape, 72
StrokeableShape, 73
TextShape, 71
superpattern:
AbstractShape, 68
transform, 69
writePS, 69
prepareReshape, 60, 61, 62
prePrivate, 69
private, 58, 59, 63, 81, 85, 97, 105
privatePart, 66, 80, 96
putPixel, 76, 77

R

Raster, 75
calculate, 76
copy, 75
getPixel, 76
height, 75

super pattern:
integerVaue, 105
hotspot, 75
init, 75
integerVaue
subpatterns:
height, 75
width, 75
pixel, 75
putPixel, 76
RasterPrivatePart, 76
subpatterns:
BitMap, 76
GrayMap, 76
PixMap, 77
width, 75
super pattern:

integerValue, 105
Raster, 22
RasterGray, 104
subpatterns:
RasterGray0, 104
RasterGray100, 104
RasterGray11, 104
RasterGray22, 104
RasterGray33, 104
RasterGray44, 104
RasterGray56, 104
RasterGray67, 104
RasterGray78, 104
RasterGray89, 104
super pattern:
TiledSolidColor, 104
RasterGray0, 104
init, 104
super pattern:
RasterGray, 104
RasterGray100, 104
init, 104
super pattern:
RasterGray, 104
RasterGray11, 104
init, 104
super pattern:
RasterGray, 104
RasterGray22, 104
init, 104
super pattern:
RasterGray, 104
RasterGray33, 104
init, 104
super pattern:
RasterGray, 104
RasterGray44, 104
init, 104
super pattern:
RasterGray, 104
RasterGray56, 104
init, 104
super pattern:
RasterGray, 104
RasterGray67, 104
init, 104
super pattern:
RasterGray, 104
RasterGray78, 104
init, 104
super pattern:
RasterGray, 104
RasterGray89, 104
init, 104
super pattern:
RasterGray, 104
RasterGrays, 104
init, 105
percentage, 105
private, 105
thegray, 105
RasterPaint, 80
copy, 81
fillArc, 81
fillEllipse, 81
fillLine, 81
fillMultiLine, 81
fillPie, 81
fillRect, 81

Index

fill Shape, 81
fill Text, 81
init, 81
paddingSolidColor, 80
private, 81
setBackgroundPaint, 81
setBorderPaint, 81
setCanvasPaint, 81
super pattern:
Paint, 80
thePixMap, 80
writePsS, 81
RasterPaint, 25
RasterPrivatePart, 76
Rasters, 21
readEPS, 91
readFromPBMfile, 76
readFromPGMfile, 77
readFromPPMfile, 77
readUserData, 82
readUserData, 51
recal cul ateShape, 85, 86
Rect, 103

copy, 103

corners, 103

draw, 103

height, 103

shapeDesc, 103

superpattern:
StrokeAblePredefinedGraphi cal Object, 103
upperleft, 103
width, 103
Rectangle, 55
height, 55
width, 55
X, 55
y, 55
rectangle, 52
RectShape, 74
calculateShape, 74
containsPoint, 74
copy, 74
corners, 74
firstPoint, 74
getBounds, 74
getControls, 74
height, 74
hiliteOutline, 74
interactiveCreate, 74
interactiveReshape, 74
open, 74
super pattern:
StrokeableShape, 74
transform, 74
upperleft, 74
width, 74
writePS, 74
RectShape, 39
remove, 58
repair, 92
repair, 34
reverseOrientation, 59, 61, 62, 67
RGBvalues, 79
RGBvalues, 23
rotate, 85
Rotate Transformation, 5
RotateMatrix, 57

super pattern:

Matrix, 57

rotateMatrix, 52

S

saving a canvas, 50
Saving and Loading Specialized Objects, 50
scale, 85
ScaleMatrix, 57
super pattern:
Matrix, 57
scaleMatrix, 52
Scaling Transformation, 5
scanGOs, 87
ScanGOs, 31
scanGOsReverse, 87
ScanGOsReverse, 31
scanPointArrays, 59
scanPoints, 58
scanThePicture, 89
scanThePictureReverse, 89
Segment, 59
calculatePoints, 60
copy, 59
drawRubberBand, 59
endReshape, 60
findSegments, 60
firstPoint, 59
getControls, 59
lastPoint, 59
makeOffset, 60
makeSecondOffset, 60
nextToFirstPoint, 59
nextTolL astPoint, 59
prepareReshape, 60
reverseQOrientation, 59
setFirstPoint, 59
setLastPoint, 59
subpatterns:
AbstractShape, 63
LineSegment, 61
SplineSegment, 61
transform, 59
writePS, 60
Segment, 7
. circular spline, 7
.line, 7
. non-circular spline, 7
Segment Definition Primitives, 17
selection, 98
SelectionPicture, 105
add, 105
clear, 105
copy, 105
delete, 105
draw, 105
erase, 105
init, 105
onEmpty, 105
onOneGO, 105
onTwoGOs, 105
superpattern:
Picture, 105
thecanvas, 105
sendBehind, 87, 94
sendBehind, 31
set, 56
SetBackgroundPaint, 79, 80, 81
setBorderPaint, 78, 80, 81

Bifrost Reference Manual

setCanvasPaint, 78, 80, 81 . interactiveReshape, 45
setClip, 91 .lineTo, 9
SetClip, 34 .open, 9
setFirstPoint, 59, 61 . splineTo, 10
setlmmediatelineWidth, 94 . stroke, 11
setLastPoint, 59, 61 Shape Definition Primitives, 9
setPaint, 82, 87 .close, 9
setPoint, 58, 70, 100 .lineTo, 9
setShape, 86 .open, 9
setSpecia Paint, 78 . splineTo, 10
Shape, 66 . stroke, 11
addSpline, 66 shapeDesc, 82, 86, 99, 100, 101, 102, 103
appendShape, 67 ShiftModifier, 54
booleanValue super pattern:
subpatterns: Modifier, 54
isClosed, 67 size, 71, 99, 101
isEmpty, 67 skipEPSheaders, 96
isFlat, 67 exception
close, 66 subpatterns:
combineShape, 68 formatException, 96
connectShape, 67 formatError, 96
connectShapeSmooth, 68 formatException, 96
containsPoint, 66 super pattern:
copy, 66 exception, 105
currentPoint, 66 inFile, 96
delete, 67 smoothness, 61
findSegments, 68 SolidColor, 79
firstPoint, 66 CMYvalues, 79
getBounds, 66 copy, 79
getControls, 68 fillArc, 80
hiliteOutline, 68 fillEllipse, 80
insert, 67 fillLine, 80
InteractiveCombine, 68 fillMultiLine, 80
InteractiveCreate, 68 fillPie, 80
InteractiveReshape, 68 fillRect, 80
isClosed, 67 fillShape, 80
super pattern: fill Text, 80
booleanValue, 105 HSVvalues, 79
isEmpty, 67 init, 79
super pattern: Name, 79
booleanValue, 105 privatePart, 80
isFlat, 67 RGBvalues, 79
super pattern: setBackgroundPaint, 80
booleanValue, 105 setBorderPaint, 80
|astPoint, 66 setCanvasPaint, 80
lineTo, 66 subpatterns:
nextToFirstPoint, 66 TiledSolidColor, 81
nextToL astPoint, 66 superpattern:
open, 66 Paint, 79
reverseOrientation, 67 writePS, 80
splineTo, 66 SolidColor, 23
stroke, 67 . CMYvalues, 23
super pattern: . HSVvalues, 23
AbstractShape, 66 . RGBvalues, 23
transform, 68 SolidGray, 80
writePS, 68 g, 80
Shape, 7 percentage, 80
.addLine, 18 subpatterns:
. addSpline, 19 SolidGrey, 80
. appendShape, 14 SolidGrey, 80
.close, 9 superpattern:
. combineShape, 16 SolidGray, 80
. Combining, 13 splineprivate, 62
. connectShape, 15 SplineSegment, 61
. connectShapeSmooth, 15 addControl, 62
. Highlighting, 46 calculatePoints, 62
. hotspot, 12 controls, 61
. interactiveCombine, 45 copy, 62

. interactiveCreate, 45 delete, 62

Index

DrawRubberSplineDesc, 62 hiliteOutline, 72
endReshape, 62 initText, 71
firstPoint, 61 interactiveCreate, 72
insert, 62 interactiveReshape, 72
|astPoint, 61 position, 71
nextToFirstPoint, 61 size, 71
open, 61 super pattern:
prepareReshape, 62 PredefinedShape, 71
reverseOrientation, 62 TextPrivate, 72
setFirstPoint, 61 theFontName, 71
setlLastPoint, 61 theStyle, 71
smoothness, 61 theText, 72
splineprivate, 62 transform, 72
subpatterns: underline, 72
CircularSplineSegment, 62 writePS, 72
NonCircularSplineSegment, 63 TextShape, 38
super pattern: thecanvas, 105
Segment, 61 theFontName, 71, 101
transform, 62 thegray, 105
writePS, 62 thePaint, 85
SplineSegment, 7, 17 thePicture, 89
splineTo, 66 thePixMap, 80
splineTo, 10 theShape, 85
startEPSfile, 96 theStyle, 71, 101
stroke, 67 theText, 72, 101
stroke, 11 theTile, 81
StrokeAblePredefinedGraphi cal Object, 103 tiledPrivate, 81
shapeDesc, 103 TiledSolidColor, 81
subpatterns: copy, 81
Ellipse, 103 fillArc, 81
Rect, 103 fillEllipse, 81
super pattern: fillLine, 81
PredefinedGraphical Object, 103 fillMultiLine, 81
StrokeableShape, 73 fillPie, 81
copy, 74 fillRect, 81
getBounds, 74 fillShape, 81
stroked, 73 fill Text, 81
strokewidth, 73 init, 81
subpatterns: setBackgroundPaint, 81
EllipseShape, 74 setBorderPaint, 81
RectShape, 74 setCanvasPaint, 81
super pattern: subpatterns:
PredefinedShape, 73 RasterGray, 104
writePS, 73 super pattern:
stroked, 73 SolidColor, 81
strokewidth, 73 theTile, 81
StrokeWidth, 37 tiledPrivate, 81
Style, 55 writePS, 81
subpatterns: TiledSolidColor, 25
Bold, 55 Times, 55
Italic, 55 superpattern:
Plain, 55 fontname, 55
super pattern: T™, 82, 96
integerObject, 55 TMDesc, 82, 86, 99
SubPoints, 56 transform, 59, 61, 62, 65, 68, 69, 70, 71, 72, 73, 74,
75, 85, 86
— transform, 29
T Transformation, 5
. Complex, 5
terminateCondition, 92 ’ Matr_lx, 5
terminated, 92 -Moving, 5
TextPrivate, 72 - Rotaiing, 5
" . Scaling, 5
TextShape, 71 :

transformPoint, 56
transformRectangle, 56
tx, 56

ty, 56

calculateShape, 72
containsPoint, 72
copy, 72
firstPoint, 71
getBounds, 72
getControls, 72

Bifrost Reference Manual

U

underline, 72, 101

unHilite, 83, 86, 87, 94
unHilite, 29

Unlmplemented, 55
Updating Damaged Areas, 34
upperleft, 74, 103

user-data, 51

Vv

Vector, 55
X, 55
y, 55
verticalRadius, 72, 73, 75, 102, 104
Visible Shape, 33
visual Shape, 89

W

width, 55, 69, 70, 74, 75, 100, 103

WindingRule, 54

Windowltems, 52

writeEPS, 91

writePS, 60, 61, 62, 63, 68, 69, 70, 71, 72, 73, 74,
75, 78, 80, 81, 85, 86, 88

writeToPBMfile, 76

writeToPGMfile, 76

writeToPPMfile, 77

writeUserData, 82

writeUserData, 51

X

X, 55
XOR mode, 29, 42, 44

Y

y, 55

yellow3, 97
yellow4, 97
yellowgreen, 97

