The Mjglner BETA System
BETA Compiler

Reference Manual

Mjglner Informatics Report
MIA 90-02(1.5)
August 1996

Copyright © 1990-96 Mjainer Informatics ApS.
All rights reserved.
No part of this document may be copied or distributed
without the prior written permission of Mjglner Informatics

Table of Contents

1 100 [o P 1
2 SimpleUseof the ComMPIlerc.oiii e 2
G T I 1 = 1N o - Y 3
4 FilesGenerated by the Compiler.........o.oieiiiiiiii e 5
5 Implementation DeVIALIONSc.uiei e e ees 6
51 TheBETA BOOK .. .ot 6

52 RESIIICHIONS. .. 6

53 EXEENSIONS. . .o 11

5.3.1 String Literalsas ReEferenCes..........coovvvvieiiiiiiiiiiccii e, 11

5.3.2 SIMpPlelf 12

5.3.3 XOr PrimitiVe. 12

5.4.4 Short-circuit Boolean EXPressions.........ccvvvevieieiieneeieennnnnns. 12

6 The Fragment SyStem.ie it 13
6.1 Fragment Language SyNtaX..........c.eeieivieii i e 13

6.2 Fragment DenOtalioNS..........oueiei et ae e 17

6.3 Fragment PropertieSo e 17

6.4 Modularization Of Dala StrUCIUIES.vvieiiieiiieee e 19

6.4 Modularization With INNERo 20

6.5 Formal Syntax of Fragment Language...........cccovvvieiiiiiiiiieainannnnn, 22

6.6 File Name ReSIICHIONSveie e 23

7 Error Handling.......oovii e e 24
7.1 SYNEAX ETTOIS .. e 24

7.2 Stalic SEMantiC ErTOrS.ovieieiiii i 24

7.3 Assembler and Linker Errors.ocoveiiiiiiiiiiieeee e 25

14 YA T] £ T 25

7.5 RUN-TIME EITOIS ..o 26

8 COmMPIlEr ATQUMENES.t ettt et e e 28
9 Machine Dependent ConfiguralionS...........oueeiriieeie i 31
10 Code Generation for Multiple MaChingsS.c.coovieiii i 33
10.1 Placement of ObjeCt COOE.......cvvviniii i 33

0 |V = o {0 33

2T o] 1T =" Y/ 35
Appendix A. Semantic Errorsand Warnings.covviiiieieieieieieiieieie e aaen, 37
Al SEMANICEITOIS ...t 37

A2 SEMANtiIC WaMiNGSv ettt e e 41
AppendiX B. The BETA Grammar.couieieieiee et e ateneee e naaneenens 43
AppendiX C. New FeatUreSIN V5.2 ee e 47
C.l New Platforms. 47

C.2 #tnowalowed for ObjectS........coovviiiiii i, 47

C3 CCsatinUNIX JoObTIlES. ..o 47

C.4 Check for bound SLOTS......viuiiiiie e 48

C5 Interfragment leavelrestart..........ccoveiiiii i 48

BETA Compiler Reference Manual

C.6
Index51

Generalized special charactersin string literals.

1 Introduction

This manual describes version 5.2 of the BETA compiler (corresponding to release
4.0 of the Mjginer BETA System). The compiler implements most parts of the BETA
language as described in [Madsen93]. There are, however, some implementation
restrictions.

The user should read section 5 for a description of the im-
plementation restrictions and deviations from [M adsen93]

See Appendix C for an overview of new features in v5.2 of the compiler. The BETA
compiler is accompanied by a large collection of libraries and application frame-
works. Thisincludes atext concept, and libraries for input/output on keyboard, screen
and files, a user interface package, alibrary of well-known datastructures, and a meta-
programming system. The Mjglner BETA System is available for Macintosh (at least
68020 CPU, 8 Mbyte RAM, MPW 3.2 or later), UNIX workstations such as Sun-4
(SPARC running SunOS or Solaris), HP-9000 series 400, 700, Silicon Graphics
running IRIX 5.3, and PC’ s running Windows NT, Windows 95 or Linux.

On Macintosh the user interface system is implemented on top of the Macintosh
Toolbox. For Macintosh thereis also alibrary that interfaces directly to the Toolbox.

On UNIX, the user interface system is implemented on top of the X Window System
(X11R3 or later). A number of UNIX facilities can be accessed viaa UNIX library.

On Windows 95 and Windows NT, the user interface system is implemented on top
of WIN32.

A generd interface to C and assembly language is part of the libraries/compiler.

The rest of this manual is organized as follows: Section 2 describes the simplest way
of using the compiler. Section 3 describes the organization of the basic BETA li-
braries. Section 4 describes the files generated by the compiler. Section 5 describes
various deviations in the implementation of BETA. Section 6 describes the imple-
mentation of the fragment system. Section 7 describes compile- and run-time errors.
These sections contain useful information for all users.

The remaining sections are only for advanced users. In section 8, a number of differ-
ent arguments to the compiler are described. In section 9, it is described how to in-
stantiate machine dependent configurations of a program. In section 10 it is described
how code is generated for multiple machines.

BETA Compiler Reference Manual

A BETA program

ORIGIN

Program slot

Compiling

More information

2 Simple Use of the
Compiler

The following is an example of avery small BETA program.

ORI G N ' ~beta/basiclib/vl. 5/ betaenv'
--- PROGRAM descriptor ---
(#
do 'Welcone to Mol ner' -> putlLine
#)
Only the part between (# ... #) iISBETA. The ORIGIN specification:
ORI G N ' ~beta/ basi cli b/v1. 5/ betaenv'

describes that version 1.5! of the fragment bet aenv from the BETA basic library
(basi cl i b) isused.
The fragment name and category:

- PROGRAM descriptor ---

describes that the BETA program isfilled into aslot in bet aenv called PROGRAM The
BETA compiler is integrated with the Mjglner BETA fragment system. The above
BETA program is an example of aBETA fragment.

Assume that the above BETA fragment is located in the file f oo. bet . The BETA
fragment may then be compiled by issuing the command

bet a foo0. bet

which will compile, assemble? and link the BETA fragment. The final object code
will bein thefilef oo, which may be executed.

How to invoke the compiler depends on whether Macintosh, PC or UNIX is used.
Details about the different variants of the BETA compiler may be found in [MIA90-
6] for Macintosh, [MIA94-32] for Windows, and in [MIA90-4] for UNIX.

1 The actua version to be used depends on the current release installed at the
available hardware.

2 On some platforms, binary code is generated directly. In this case, the assembly
phase is omitted.

The BETA Library

3 The BETA Library

The BETA library is a collection of patterns and objects that include input/output, a
text concept, the user interface toolkit, the metaprogramming system, a container li-
brary, asystem library, etc. The library is organized as fragments.

One part of the library contains the basic patterns and objects which are used by most
programs. This basic BETA library is called basi cl i b and is described in [MIA90-
8], which also describes the interface to C and assembly language.

The library basicli b contains a number of different fragments groups containing
basic patterns, a text concept, various functions and control patterns, a file concept,
etc. One of these fragment groups is bet aenv, which contains the basic patterns, the
text concept, other basic patterns and objects representing the screen and the key-
board. All BETA programs must use bet aenv, which has the form:

(# ...
(* Alot of useful patterns *)

<<SLOT LIB: attributes>>

program <<SLOT program descri ptor>>
t heProgram *| program

do ...
& prograni] -> thePrograni];
t hePr ogr am

#

The LI B slot describes where most libraries are inserted. The pr ogr amslot describes
where an ordinary user program is inserted (see section 6 for more explanation of
this).

On UNIX, the BETA library is often located in the directory / usr /1 ocal /| i b/ bet a.

For Macintosh, the convention is that the BETA library is located in a folder called
beta.

In the rest of this manual, we assume that the basic library is located in
/usr/local/lib/beta. We aso use the UNIX convention for denoting directories
with the character / to separate directory and file names.

The Mjginer BETA System contains directories for the various libraries. The basic li-
brary basi cl i b ise.g. located in the directory:

/fusr/local/libl/betal/basiclib

The directory for alibrary contains directories corresponding to different versions of
thelibrary. Version 1. 5 of bet aenv is contained in the directory

/fusr/local/libl/betal/basiclib/vl.5

This directory contains the fragment groups constituting basi cl i b. Instead of refer-
ring to a specific version, it is possible to refer to the current official version by
means of the name cur r ent . (Thisis not possible on Windows and Macintosh).

The Mjginer BETA System accepts the following abbreviation for the BETA library:

basiclib

betaenv

Location of
libraries

BETA Compiler Reference Manual

~beta

Repeating mode

More information

~bet a denotes /usr/local/libl/beta

The meaning of ~bet a can be changed by using the BETALI B environment variable,
see [MIA 90-04].

To sum up, the file containing the current version of bet aenv may be referred to by:
~bet a/ basi cl i b/ current/bet aenv
A user-program using bet aenv may then look as follows:

ORI G N ' ~bet a/ basi cli b/ current/betaenv'
- PROGRAM descriptor ---
(#
do 'Welcome to Molner' -> PutLine
#)
Please note, that on Windows and Macintosh the separator in ORI G N specificationsis
also/. Seesection 6.2.

Assume that the above program resides on the file f oo. bet . The program may then
be compiled by issuing the command:

beta foo. bet
Thefilef oo will now contain an executable version of f oo. bet .
When developing the program, it may be an advantage to invoke the compiler as

beta -r foo. bet

This will run the compiler in repeating mode. After having trandated the fragments
specified in the argument list, if in repeating mode, the compiler prompts the user for
the name of another fragment to be translated. Hitting <RETURN> in this case will
recompiler the program last compiled. See section 8 for a survey of the lega
command line options.3

Please consult the BETA tutorial [MIA 94-24] for a quick survey of the BETA lan-
guage and the basic libraries.

3 Thisiscurrently not possible on Windows and Macintosh.

Files Generated by the Compiler

4 Files Generated by the
Compiler

For each fragment file, a number of other files may be produced by the compiler; let
f 0oo. bet beaBETA fragment. Then

. f oo. | st contains information about possible syntactic and static semantic er-
rors. If such errors occur, then the file contains a pretty-print of the fragment
with an indication of the error(s). See section 7 for further information about
error handling. Possible semantic error messages are listed in appendix A.

. foo. ast Or foo. astL contains the abstract syntax tree representation of the
compiled source code for big-endian and little-endian architectures, respec-
tively. The AST files are used by many toolsin the Mjglner BETA System.

. f 0oo. . s contains the generated assembly code for the compiled source code?.
Assembly files are located in subdirectories named according to the machine
type, to which the source code has been compiled. Currently, the directories
sun4, sun4s, hpux9nc, hpux9pa, nti, |inux, sgi, and mac can be created.
These directories are automatically created by the compiler, if not present
aready. The assembly fileisusually deleted by the compiler after assembly.

. f 0o. o contains the object code generated by the assembler. Likef oo. . s, this
fileis placed in a subdirectory.

. f 0o. . db contains information used by the debugger Valhalla when debugging
the foo fragment. See [MIA 92-12]. Like foo. . s, this file is placed in a
subdirectory.

. foo..gs andfoo. . go are generated instead of foo..s and foo. .o if foo is
compiled with debug info on. Thisis atemporary solution and these files will
not be generated in afuture release of the compiler.

The above list of filesis generated for each fragment group that is included in a pro-
gram. In addition, the following two files are generated for each program:

. f oo containing the executable code for the program.

. foo..job containing directives for assembly and linking. Like f oo. . s, this
file is placed in a subdirectory. This file is usually deleted by the compiler
after linking.

For some implementations (e.g. Windows NT) other extensions than . . s and . o may
be used.

4 On some platforms, binary machine code is generated directly. In this case, no
assembly fileis generated.

List files

Abstract syntax
tree files

Assembler files

Object files

Debug files

Executable

Job file

BETA Compiler Reference Manual

The BETA book

Restrictions

5 Implementation
Deviations

5.1 The BETA Book

The BETA language is described thoroughly in [Madsen93].

It is prerequisite to be familiar with [Madsen93] in order
tousethe Mjglner BETA System.

This book is currently the only definition of the BETA language, but a precise
language definition is being worked on.

A short introduction to BETA and the Mjglner BETA System may also be found in
the Mjglner BETA Tutoria [MIA 94-24] and in [Knudsen94].

The BETA grammar is given in appendix B.

There are a few of deviations from [Madsen93] in the current implementation of
BETA. These deviations are described below.

5.2 Restrictions

1. Theinteger operations+, -, *, di v, mod, =, <>, etc. will work on 32 bits.

2. Assignment between instances of i nteger, and real is alowed. In assign-
ments of realsto integers the values are truncated.

Assignment between instances of i nteger and char is alowed. Character
constants have their ASCII char value. Assignment of an arbitrary i nt eger
valueto char instances may thus give meaningless results.

Assignment between instances of i nt eger and bool ean is alowed, but will
give awarning. In a future release these assignments will not be allowed and
will give an error. The patterns true and fal se have the values 1 and 0
respectively. Assignment of an arbitrary i nt eger value to boolean instances
may thus give meaningless results.

The following table shows legal combinations of operands and the result type.

Entries not shown are illegal. Entries marked with * are illegal. Entries
marked with ! will give awarning, and will becomeillegal in afuture release.

Implementation Deviations

Abbreviations:

int
bool
iref
cref
sref

For assignment and binary operators, the rows and columns of the tables show
left and right operands respectively, and the elements of the tables show the

means
means
means
means
means

result type.
Assignment: ->

integer
boolean

item reference
component reference
structurereference
NONE isboth aniref, acref and an sref.

. | | bool ek : :

int
char
real
bool
iref
cref
sref

int
int
int

char
char

*

real !
* *
real *
* bool
* *
* *
* *

cref

sref

3. The relationa operators =, <>, <, etc. do only work for the basic patterns
i nt eger, real, bool ean, and char and for references (only =, <>) l.e. E1
E2, where E1 and E2 are instances of some user-defined pattern will not work.

The following tables show legal combinations of operands and the result type.

The notation is explained in item 2 above.

Binary operators. =, <>

int char real bool iref cref sref
int bool bool bool ! * * *
char bool bool bool * * * *
real bool bool bool * * * *
bool ! * * bool * * *
iref * * * * bool * *
cref * * * * * bool *
Sref * * * * * * bOOl

Assignment
Compatibility

Comparison
Operator
Compatibility

8 BETA Compiler Reference Manual

Binary operators. <, <=, >, >=

int char real bool sref
int bool bool bool * *
char bool bool bool * *
real bool bool bool * *
bool * * * bool *
sref * * * * bool

4. Arithmetic/logical operators.

Arithmetic/ The following tables show legal combinations of operands and the result type.
Logical Operator The notation is explained in item 2 above.
Compatibility .]
Binary operators. +, -, *, div
int char real
int int int real
char int int *
real real * real

Binary operator: mod

int char
int int int
char int int

Binary operator: /

int char real
int real real real
char real real *
real real * real

char islikely to be eliminated as alegal operand for / in afuture version.

Binary operators. and, or, xor

bool

bool bool

Unary operators. + -
int, char, real result type is the same as operand type

Unary operator: not
bool result typeis bool

Implementation Deviations

5. Inif-imperatives
(if EO // El then ... // E2 then ... if)

the exit-lists of EO, E1, E2, ... must consist of exactly one i nt eger, real,
char, bool ean or reference.

6. Inserteditems,i.e,

do ...; P

([Madsen93], section 5.10.2) are implemented as dynamic items (&P). How-
ever, the user is urged to use dynamic items for recursion in order to ensure
compatability with future releases.

7. Inserted components, i.e.,

do ...; [(# ... #); ...
([Madsen93], section 5.10.3) have not been implemented.
8. Virtua superpatterns, i.e.,

A< (# ... #); (* Were Ais sone virtual *)
B: A(# ... #)
have not been implemented.
By using afinal binding, this problem may often be overcome like this:
A: (# ... #); (* Ais no longer virtual *)
B: A(# ... #)
The situation may also occur in amore indirect way:
graph:

(# node:< (# ... #);
nodelList: @ist(# el enent::< node #);

o

Here the virtual further binding of el enent inlist isnot allowed, since node
isitself virtual.

The current version of the compiler will allow final binding using a pattern
that isitself virtual. That is, you can do this:

graph:
(# node:< (# ... #);
nodeList: @ist(# elenent:: node #);

o

General virtual prefixes behave much like multiple inheritance and will not be
implemented in the near future.

9. Thelabelled compound imperative

A (L: inpl; inmp2; ...; inmpN:L)
has been eliminated from the language. Instead the following construct may be
used:

A (# do impl; inp2; ... ; inpN #)

Inserted items with no declarations and no superpattern will be inlined in the
enclosing code. There will thus be no execution overhead compared to the old
(never implemented) labelled compound imperative statement.

10 BETA Compiler Reference Manual

10. Consider the following example:

A (# X "P; (* reference to itemqualified by P *)
B: *| P (* reference to conponent qualified by P *)
do ...
this(P)[] -> X]; (* legal use of this(P)[] *)
this(P)[] -> R]; (* illegal use of this(P)[] *)
#)

The illegal use is due to the fact that t hi s(p)[] is considered a reference to
an item object and not a component object.

11. Indeclarationslike:
P. <AD>(# ... #);

X @&AD>;
Y: ~"<AD>;

it is checked that <AD> is a static denotation, where static is defined as
follows:

. A name Aisaways static

. In aremote-name R A, R must be a static object

. Useof TH S(A) . Tisstatic

. Only iny: ~p. T, canP beapattern

. Denotationsusing R e] , and (f oo) . bar are not static
This meansthat e.g. descriptors like:

Riel.A(# ... #)

(foo).bar(# ... #)
RP(# ... #) where 'R is a dynanmic ref.

are only allowed in imperatives.

For y: ~R P where R is a dynamic reference, the compiler will currently
report awarning and suggest to use

Y: A P whereAisthequalification of R.

Note: that when using - - nowar nQua, this warning will not be printed. A future
release may change the warning to an error.

12. There are some deviations with respect to the implementation of concurrency.
Please consult [MIA90-8] before using the concurrency.

13. Itisingenera not possibleto use | eave Porrestart PwherePisapattern.
P must in general be alabel. However, the following has been implemented:

P: (#
do

I”e;';lve P;

.r.e.st art P;

#
Leave/restart from an inserted item, however, is not supported by the current
version of the compiler:

Implementation Deviations

11

P. (#
do
»
do
leave P; (* |LLEGAL *)
" restart P; (* ILLEGAL *)
y
#

14. A pattern where the object descriptor is described as a slot cannot be used as a
super-pattern. |.e. the followingisillegal:

A: <<SLOT Pdesc: descri ptor>>;
B: P(# ... #); (* illegal *)

Instead the following can often be used:

C. (# do <<SLOT Pdesc: descriptor>> #)
D P(# ... #); (* legal *)

15. The Program pattern as described in the chapter on exception handling in
[Madsen93] has not been implemented.

16. There are some restrictions on the use of fragments as described in section 6
below.

5.3 Extensions

5.3.1String Literals as References

The pattern Text enters and exits a char-repetition. This means, that a text may be
initialized using constant strings as follows:

t: @ext;
do "hello" ->1t;

Many operations involving texts, however, takes references to texts as enter/exit
parameters. Thisis mainly for efficiency reasons.

To alow easy invocation of such operations on string literals, the following is also
alowed:

t: “ext,
do 'hello" ->1tJ[];

The semantics of thisis, that a text object is instantiated, initialized by the constant
string, and finally assigned to the text reference.

Extensions

12

BETA Compiler Reference Manual

5.3.2 Simple If

Often the following If statement is used:
b: @ool ean;
do (if b//TRUE

then ...
el se ...

if);
The current version of the compiler supports an extension to the BETA language

called Simple If. This extension means, that the case-selector // may be omitted, if
the evaluation on the left hand side exits a boolean. That is, the above may be written

b: @ool ean;

do (if b
then ...
el se ...

if);
Likein the general i f -statement, the el se part if optional.

5.3.3 Xor Primitive
Anxor primitive is supported as a basic operation on booleans. That is

bl, b2, b3: @ool ean
do bl xor b2 -> b3

ispossible.

5.4.4Short-circuit Boolean Expressions
Boolean expressions are implemented as short-circuit.
That is, in
Bl or B2 B2 isnot evaluated if B1 istrue
B1 and B2B2 isnot evaluated if B1 isfalse

The Fragment System

13

6 The Fragment System

The Mjglner BETA System is based on the notion of fragment. The fragment system
must be used for splitting a large program into smaller units (fragments). The frag-
ment system is used to support modularization, separation of interface and implemen-
tation parts, variant control and separate compilation. It is highly recommended to use
the fragment system, since this may improve the structure of the program.

The principles of the fragment system are described in
[Madsen93]. In the following it is assumed that the reader
isfamiliar with this description.

The description in [Madsen93] is dlightly more idealized than the actual implementa
tion in the Mjglner BETA System:

In [Madsen93], the syntax of the fragment language is
given in terms of diagrams. The fragment language im-
plemented by the Mjglner BETA System has a textual syn-
tax.

In the Mjginer BETA System, dots have only been imple-
mented for the syntactic categories <<DoPart>>,
<<obj ect Descri pt or>> and <<at t ri but es>>,

A fragment form of the category <<attributes>>, may
only contain pattern declarations. It cannot contain any
other kind of declarations, including virtual pattern decla-
rations, virtual pattern bindings, static or dynamic decla-
rations.

Thediasdescri pt or can be used instead of obj ect Descri ptor.

In the rest of this section, details of the Mjglner BETA System implementation of
fragments are given.

In the current system, fragments are organized in groups. A group is stored as afile.
The BETA compiler accepts a BETA program in the form of one or more files. Each
file must contain a group of fragments (i.e. one or more fragments).

6.1 Fragment Language Syntax

In the following some of the examples of fragments from [Madsen93] will be given
followed by the syntax used by the Mjalner BETA System. The first example shows
the simplest possible BETA fragment-group:

Implemented
categories

Attributes
restrictions

Fragment group

14

BETA Compiler Reference Manual

Graphical syntax

Textual syntax

Library

Using the library

NAMVE ''mini 1'

ORI A N ' bet aenv'

PROGRAM descri pt or

(#

do "Hello world!" -> PutlLine
#)

The fragment-group is stored in the file mi ni 1. bet , which is also the name of the
fragment-group. The following syntax isis used by the Mjginer BETA System:

ORIG N ' ~bet a/ basi clib/vl. 5/ betaenv'

-- program descriptor --

(#

do '"Hello world!"->PutLine

#)
The origin bet aenv has been expanded into a complete file name for bet aenv.
The next example is an example defining alibrary fragment:

NANMVE 'yl i b’

ORI A N ' bet aenv'

LIB: attributes

Hello: (# do 'Hello' -> PutText #);
World: (# do 'World' -> PutText #)

Thisfragment is stored in afile nyl i b. bet and the corresponding syntax in the Mjal-
ner BETA Systemiis:

ORIA N ' ~bet a/ basi clib/vl. 5/ betaenv'
-- LIB: attributes --

Hello: (# do 'Hello" -> PutText #);
Wrld: (# do 'World -> PutText #)

The following fragments is an example of a fragment including the above defined li-
brary:

NAME ' ni ni 2

ORI A N ' bet aenv'

| NCLUDE ' nylib'

PROGRAM descri pt or

(#

do Hello; World; newLine
#)

Thisfragment isstored in afileni ni 2. bet and has the following syntax:

ORIG@ N ' ~betal/ basiclib/vl.5/betaenv';
| NCLUDE ' nylib';

-- program descriptor --

(#

do Hello; World; newLine

#)

The following example shows a fragment with a body:

The Fragment System

15

NAME 'textlib’

ORI A N ' bet aenv'

I NCLUDE ' nyli b’

LIB: attributes

Spr eadText :
{A blank is inserted between all chars in the text 'T'}
(# T: @ext
enter T
<<SLOT SpreadText: DoPart >>
exit T
#);
Br eakl nt oLi nes:
{'T refers to a text which is to be split into lines.}
{*w is the width of the lines.}
(# T. » Text; w. @I nteger
enter (T[], wW
<<SLOT Breakl ntoLi nes: DoPart >>
#)

Itisstoredinafiletext!ib. bet and hasthe following syntax:

ORIGA N ' ~bet a/ basi cli b/v1. 5/ betaenv';
BODY 'textlibbody';
---LIB: attributes---
Spr eadText :
(* Ablank is inserted between all chars in the text 'T
(# T. @ext
enter T
<<SLOT SpreadText: DoPart>>
exit T
#);
Br eakl nt oLi nes:
(* 'T refers to the text to be split into lines. *)
(* "W is the width of the lines. *)
(# T: ~ Text; w @I nteger
enter (T[], w)
<<SLOT Breakl ntolLi nes: DoPart >>
#)

The body of t ext I i b isshown in the next example:

*)

NAME 'textli bbody'

ORIAN "textlib'

SpreadText: DoPart

do (# L: @nteger
do (for i: (T.length->L)-1 repeat
(" ",L-i+1) -> T.InsertCh
for)
#)

Br eakl nt oLi nes: DoPart

do T.scan
(# seplnx,i,l: @nteger;
do i+1->i; | +1->;
(if (ch<=" ") then i->seplnx if);
(if I=w then
(nl, sepl nx)->T. | nxPut ;
i -sepl nx->|
if);
#)]
T.new i ne;

Thisfragment isstored in afilet ext | i bbody. bet . The corresponding syntax is.

Body

16 BETA Compiler Reference Manual

ORIG@N "textlib'
-- Spreadtext: DoPart --
do (# L: @nteger

do ...

#)
- - Breakl ntoLi nes: DoPart --
do ...

Notice, that when local variables are needed in aDoPart dlot, it may be necessary to
make an inserted item in the DoPar t . Alternatively a Pri vat e descriptor slot may be
declared in the interface, and the L attribute moved to the Pri vat e fragment, which
should then be placed int ext | i bbody. bet too.

General fragment Finally a genera outline of a fragment group with several include, body and frag-
file structure ments is shown in the next example:

NAME F

ORIG N G
| NCLUDE Al
| NCLUDE A2

| NCLUDE Am
BODY Bl
BODY B2

BODY Bk
Fl: S1
ffl
F2: S2
ff2

Fn: Sn
ffn
This fragment group is stored in afile F. bet and the syntax is:

ORIAN'G;

I NCLUDE ' Al' 'A2'... 'Am
BODY 'B1' 'B2' ... 'BK';
Propl; Prop2; ... Propl
-- F1: S1 --

ffl

-- F2: S2 --

ff2

- Fn: Sn --

ffn
Propl, Prop2, ..., Propl are propertiesthat may be defined for a fragment. Formally
the ORI G N, | NCLUDE, and BODY parts are also properties. In section 6.3 a list of
possible propertiesis given.

The Fragment System

6.2 Fragment Denotations

In the examples above, terms like

| NCLUDE ' ~bet a/ basi cli b/ v1. 5/ bet aenv'

were used. Below we will use the term Fr agment Denot at i on for the “fragment path”
givenin, e.g., the | NCLUDE property. The other properties, that accept Fr agment Deno-
tati ons asarguments are explained in section 6.3.

Notice that a Fr agment Denot ati on iS not the same as a file name, although it re-
sembles a UNIX file path, and although it normally corresponds directly to a (set of)

file(s):
1. The separator in the Fragnent Denot ati on is always the ‘/’ character, e.g.,
also for BETA programs on the Macintosh, where *: * is used for file paths.

2. Asexplained in section 3, the notation ‘~bet a’ is legal in Fr agnent Denot a-
tions on al platforms, and simply means “the place BETA isinstalled”. As
mentioned, the meaning of ‘~beta’ can be controlled by using the BETALI B
environment variable, please consult [MIA 90-04], [MIA 94-34], and [MIA
90-06] for details.

3. Thenotation ‘. " means ‘current directory/folder’ on all platforms, and the no-
tation ‘. . " means ‘father directory/folder’, i.e. the directory containing a given
directory.

4. It is not alowed to specify an extension (e.g. ‘.bet’ or ‘.ast’) in a
Fragnment Denot at i on.

There are some restrictions in the legal fragment file names, which also apply to the
Fr agnent Denot at i ons, please see section 6.6.

6.3 Fragment Properties

The fragment system allows arbitrary properties to be associated with fragments. The
BETA compiler recognizes the following properties. For most users, only ORI G N,
| NCLUDE, and BODY are relevant.

ORI G N <Text Const >

The origin of afragment is a fragment which is used when binding fragment-
formsto slots.

| NCLUDE <Stri ngLi st >

Specifies one or more fragments that are always included when using this
fragment.

BODY <Stri ngLi st>

Specifies one or more fragments that fills the slots in this fragment file, but are
not visible.

MDBODY <Machi neSpeci fi cati onLi st>

Specifies one or more machine dependent fragments that fills the dots in this
fragment file dependent on the machine type. See section 9 for further descrip-
tion.

Fragment
denotation

‘/ * separator

~beta

18 BETA Compiler Reference Manual

OBJFI LE <Machi neSpeci fi cati onLi st>

The object file isincluded in the linker-directive. Thisis typically an Externa
library which is interfaced to via the External interface described in [MI1A90-
8]. See also section 9.

BETARUN <Machi neSpeci fi cati onLi st>

The standard BETA run-time system is replaced with the one in the object-
file. See also section 9.

MAKE <Machi neSpeci fi cati onLi st >

Specifies one or more makefiles to be executed before linking. See also
section 9. The Makefile is executed relative to the directory, where the file
containing the MAKE property is placed.

RESOURCE <Machi neSpeci fi cati onLi st>

Specifies one or more resource files to be included in the applicaiton. Only
used on Macintosh and Windows NT platforms. See also section 9.

LI BFI LE <Machi neSpeci fi cati onLi st >
Issimilar to OBJFI LE, but specifiesinclusion of alibrary. See al'so section 9.
LI NKOPT <Machi neSpeci fi cati onLi st >

Machine dependent options to append to link directive for programs using the
fragment. Only used on UNIX platforms. See also section 9.

ONnl n2 ... nk
The compiler switches n1 n2 ... nk (positive numbers) are set. See also section
8.

OFF n1 n2 ... nk
The compiler switches n1 n2 ... nk (positive numbers) are cleared. See also
section 8.

The te_rms <I\/achi_neSpeci f i_cati onLi st>, <StringList>, and <Text Const> are
syntactically explained in section 6.5.

The Fragment System

19

6.4 Modularization of Data Structures

This section gives some advices that can be used when modularizing data structures.
Consider the following program library (st ack. bet):

ORIG N ' ~bet a/ basi clib/vl. 5/ betaenv'
--- Lib: attributes ---
st ack:
(# el enent: < object;
A: [100] ~el enent;
top: @nteger;
push:
(# e: "elenent;
enter e[]
do top+l->top;
e[] -> Altop][];
#),
pop:
(# e: "elenent;
do Altop][] -> e[];
t op- 1- >t op;
exit e[]
#);
t op:
(# e: "elenent;
do Altop][]->e[];
exit e[]
#),
#)

If we want to separate the interface and the implementation, this can be modularized
in the following way:

Introduce the following S.OTs:

ORIG N ' ~bet a/ basi clib/vl.5/betaenv';
BODY ' st ackl npl*
--- Lib: attributes ---
st ack:
(# el ement: < object;
private: @<SLOT private: descriptor>>;

push:

(# e: "elenent;

enter e[]

<<SLOT pushBody: DoPart>>
#),

pop:

(# e: "elenment;
<<SLOT popBody: DoPart>>
exit e[]
#);
t op:
(# e: "element;
<<SLOT topBody: DoPart>>
exit e[]
#);
#)

Separating the
interface

20

BETA Compiler Reference Manual

Interface

Implementation

Using DoPart slot

Create a new fragment file st ackl npl . bet :

ORI

(#

#)

do

do

do

G N 'stack';

private: descriptor --
A: [100] “el enent;

top: @nteger;

pushBody: DoPart --
private.top+l->private.top;

e[] -> private. Alprivate.top][];

popBody: DoPart --
private. Al private.top][]
private.top-1->private.top;
topBody: DoPart --

private. Alprivate.top][]->e[]

->e[];

The reason why the data representation (A and Top) is put into adescri ptor slot in-
stead of an attributes slot isthat attributes slots may only contain patterns, no
static items (objects) or object references. This is due to the implementation of sepa-
rate compilation. Therefore it is necessary to put static items into an attribute (in this
case pri vat e) that is declared by means of adescri pt or slot. Because of this al ac-
cesses to the representation must be done via the pri vat e variable (see pushBody,
popBody andt opBody). Notice that the parameters are visible in the interface. If the
operations had local variables they should not be shown in the interface.

6.4 Modularization with INNER

Programs fragments with do-parts that contain an | NNER imperative e.g.:

ORIA@ N ' ~bet a/ basi cli b/vl.5/betaenv';

A

lib: attributes ---
(# do inpl; inp2; |INNER

i mp3 #)

can be modularized in the following two ways depending on whether the | NNER im-

perative should be visible in the interface or not.

If the | NNERis preferred visible in the interface, the interface fragment could look like

(f ooli

ORIG@ N ' ~betal/ basiclib/vl.5/betaenv';

bl. bet):

BODY ' f ool npl 1

A

and the implementation fragment (f ool npl 1. bet):

ORI

(#

(#

lib: attributes --
(#
do <<SLOT inpl2slot:
| NNER;
<<SLOT i np3sl ot:
#)

G N ' fooli bl

i mpl2sl ot: descriptor --
do inpl; inp2 #)

i p3sl ot: descriptor --
do inp3 #)

descri pt or >>;

descri pt or >>

Inthis case abDoPart slot might be used instead (f ooLi b2. bet):

ORIG@ N ' ~betal/ basiclib/vl.5/betaenv';

BODY ' f ool npl 2'

A

lib: attributes --
(# <<SLOT inpl2slot:

DoPart >> #)
with the implementation fragment (f ool npl 2. bet):

The Fragment System

21

ORIGA N ' fooli b2

-- inmpl2slot: DoPart --

do impl; inp2; INNER inp3
Using do-parts like this, then although the | NNER is not visible in the interface, the A
pattern may still be specialized and behave as if the | NNER was in the interface. No-
tice, that when specializing a pattern with no | NNER in the do-part, the compiler will
normally complain about this. But when the pattern being specialized contains a
SLOT, the compiler will assume, that the SLOT contains an I NNER. Thus it is
possible to specialize the A pattern in f ool i b2.

But if the | NNER imperative is placed “inside” some structure e.g.:

A (#
do (if E1
/1 E2 then | NNER
/1 E3 then inp
if)
#)

you might not want to show thei f imperative in the interface. In this case a variant of
the | NNER construct may be used, in which case the interface fragment could be
(f ooLi b3. bet):

ORIA@ N ' ~bet al/ basiclib/vl.5/betaenv';
BODY ' f ool npl 3

--- lib: attributes ---

A: (# do <<SLOT Abody: descriptor>> #);

and the implementation fragment (f ool npl 3. bet):

ORI G N ' foolLi b3'
--- Abody: descriptor ---
(#
do (if E1
/1 E2 then I NNER A
/1 E3 then inp
if)
#)
If a“normal” | NNER had been used instead of | NNER A, it would mean that specializa-
tions of the pattern containing the | NNER in the do-part combine the actions at this
point. But the pattern containing the | NNER in the do-part, in this case would be the
anonymous pattern in the ABody descriptor fragment. By using | NNER A, it is ensured,
that the control flow descents to the specialization of A athough the | NNER is inside
the ABody descriptor.

A DoPart dlot could also be used here, as in the previous example.

22 BETA Compiler Reference Manual
6.5 Formal Syntax of Fragment
Language
The formal syntax of the BETA fragment-system is:
<TranslationUnit> ::= <Properties> <FornPart >
gragmem <FornPart> ::* <FormDef> P
rammar .
<FormDef> ::= -- <FormDefinition>
<FormDefinition> ::| <DescriptorForn> | <AttributesFornr | <dopart_forne
<DescriptorForne ::= <NameDcl > : descriptor -- <ObjectDescriptor>
<AttributesFornr ::= <NanmeDcl > : attributes -- <Attributes>
<Dopart Fornme ::= <NanmeDcl > : dopart -- <DoPart>
<Properties> ::= <PropertylList>
g‘;ﬁﬁggr <PropertylList> ::+ <PropertyQpt> ';'
<PropertyOpt> ::? <Property>
<Property> | <ORIG N>
| <I NCLUDE>
| <BODY>
| <MDBODY>
| <OBJFILE>
| <LIBFI LE>
| <Ll NKOPT>
| <BETARUN>
| <MAKE>
| <RESOURCE>
| <ON>
| <OFF>
| <Cher>
<ORIA@ N> ::= "ORIG@ N <Text Const >
<I NCLUDE> ::= "I NCLUDE <StringList>
<BODY> ::= 'BODY' <StringList>
<MDBCODY> ::= ' MDBCODY' <Machi neSpecificationList>
<OBJFI LE> ::= ' OBJFI LE <Machi neSpecifi cati onLi st >
<LIBFI LE> ::= 'LIBFILE <Machi neSpecificationLi st>
<LI NKOPT> ::= ' LI NKOPT" <Machi neSpecificationLi st>
<BETARUN> ::= ' BETARUN <Machi neSpecifi cati onLi st>
<MAKE> ::= 'MAKE <Machi neSpecificationList>
<RESOURCE> ::= 'RESOURCE <Machi neSpecificationList>
<ON> ::= 'ON <Integerlist>
<OFF> ::='"'OFF <IntegerlList>

<StringLi st>::+ <Text Const >
<I nt egerList>::+ <l|ntegerConst>
<Machi neSpeci fi cati onLi st>::+ <Machi neSpeci ficati on>

<Machi neSpeci fication> ::= <Machi ne> <Stri ngLi st >
<Machi ne> ::| <NaneApl> | <Default>

<Default> ::= 'default’

<CQt her> ::= <NanmeDcl > <PropertyVal uelLi st >

<Pr opertyVal
<Pr opert yVal
<Val ue> ::|

<NaneDcl > ::
<NameApl > ::

<Text Const > ::
<l nt eger Const > :

uelList> ::* <PropertyVal ue>

ue>

;= <Val ue>

<NarmeDcl > | <l ntegerConst> | <Text Const >

<
<

NareDecl >
NanmeAppl >
<String>
. = <Const >

The Fragment System

23

Note that the symbol -- may consist of two or more dashes (-), and that the old style
INCLUDE and fragment syntax (- -1 NCLUDE fragment) are not described by this
grammar. Thisold-style INCLUDE syntax is likely to be removed in afuture release.

6.6 File Name Restrictions

Because of implementations details, the current version of the fragment system im-
poses the following restrictions on file names used for BETA programs.

1. It is not alowed for a program to use two files with the same name, say
f oo. bet (ignoring case), which both contains fragments of category At -
tributes.

2. Itisnot alowed for a program to use a file named, say, f oo. bet , if f 0o. bet
contains a fragment of category Attri but es, and if there is a SLOT of cate-
gory Obj ect Descri ptor/Descriptor or DoPart named foo in any of the
filesinvolved in the program. Again case isirrelevant.

3. Itisnot alowedto usethe ‘-’ (dash) character in fragment file names.

4. Because the Fragnent Denot at i on separator character is‘/’ it is not allowed
to use the ‘7’ in fragment file names, not even on platforms where the file
system would allow it.

5. In general, it is advisable to restrict the characters used in the fragment file
names to be: a-z, A-zZ, 0-9, and ‘_'. If other characters are used in the
fragment file names, there is a danger, that the supporting tools (such as
linkers) will complain.

The symptom on breaking rule 1 or 2 is typicaly a “Mul ti pl e defined symbol

MLFOO' and the like, in the linking phase, the symptom for breaking rule 3 is that the
compiler / Vahalla [MIA 92-12] / Sif [MIA 90-11] may become confused. Finally
the symptom on breaking rule 5 may be a complaint from the assembler about illegal
characters.

Except for rule 3, these restrictions only apply to the file names. The directories /
Folders containing the files, may be freely named.

"isillegal in file
names

Symptoms

24

BETA Compiler Reference Manual

/ Error Handling

BETA programs containing errors will cause error messages during compilation.
Error messages may appear during syntax analysis, static semantic anaysis, code
generation and assembly/linking. In addition various forms of system errors may
occur.

/.1 Syntax Errors

A syntax error is given when there are errors in the context free syntax of the BETA
program. These includes missing semicolons, non-matching brackets, etc. Such errors
are printed on the screen and may look as follows:

Parse errors
1 ORIA N ' ~beta/ basi clib/vl. 5/ betaenv'
2 --PROGRAM descriptor--
3 (# T (# #);
4 X: [100) @nteger;
*kkkkkhkkkhkkkikxkhkxkx A
Expected synbols: >=nod < <= = %<>>->*1] div + /
xor or and
File "syntaxerror.bet"; Line 4
S (# T (# #);
4 X: [100) @nteger;
5 do (for i: X range repeat
6 3->X[i];
7 if)
kkkkkk*x AN
Expected synbols: _NAVE__KONST_ _STRING_ none not @@
restart leave ; (# % & (this + inner for tos suspend
File "syntaxerror.bet"; Line 7

The error message shows that there are syntax errorsin lines4 and 7. In line 4 the ar-
row(”) points at the place where an illegal symbol is met. The compiler gives alist of
acceptable symbols. In this case) should have beenaj.Inline7, theif should have
been afor.

HHHFHFHH

7.2 Static Semantic Errors

Static semantic errors appear in situations where a name is used without being de-
clared, where a pattern name is used as an object, etc. Each error found is printed on
the screen with a small indication of the context. After the checking, a pretty print of

Error Handling

25

the fragment including a precise indication of the error is generated on the | st -file
(see section 4)5

In appendix A, the semantic error messages that may be reported by the compiler are
listed.

7.3 Assembler and Linker Errors

Errors may also appear during assembling and linking. The following type of errors
may appear:

. The assembler/linker complains about a corrupt ..s or .o file. This may
happen if the compilation/assembly has been interrupted for some reason
leaving an incomplete file. This can usually be handled by forcing a
recompilation of the corresponding BETA file. (Delete the. . s and . o filesin
guestion)

. The disk may run full during assembling or linking. Restart compilation after
having obtained more disk space.

See also section 6.6.

7.4 System Errors

Two kinds of system errors may appear: (1) Errors in the compiler, and (2) error sit-
uations in the operating systems. Most times a meaningful error message is given in
these situations, but due to the nature of these errorsthisis not always the case.

Compiler errors should be reported to Mjglner Informat-
icsSApS. Thiscan bedonein one of three ways:

1. Viae€ectronic mail using the Internet address
support@mjolner.dk

2. By sending afax to Mjglner Informatics ApS at
+45 86 20 12 22

3. By issuing an ordinary mail to the address
Mjgainer Informatics
Science Park Aarhus,
Gustav WiedsVeg 10
DK-8000 Arhus C
Denmark

5 Some semantic errors may cause the compiler to fail without generating a pretty
print. There should however always be an error indication on the screen. In case
the compiler fails during checking and it is not obvious for what reason, it is
possible to trace the checking of declarations and imperatives using the option - -
t raceCheck (see section 8). However, this may generate alarge amount of output
on the screen. The compiler may also fail during code generation. These errors
may be traced using option - -t raceCode. However, tracing errors in this way
should rarely be needed.

26 BETA Compiler Reference Manual
Operating system errors are often due to local problems. Examples of such errors may
be: insufficient access to files, no more disc space, file server inaccessible, etc.

7.5 Run-time Errors
Run-time errors are errors in the program detected during its execution. In this case
an error message is given and a dump of the call stack of objects is generated on the
filef oo. dunp if the program is named f oo.
Consider the following fragments (note that the name of the fragments are complete
UNIX file paths)
[usr/smth/nylib. bet:
ORIG N ' ~bet a/ basi cl i b/v1. 5/ bet aenv
--LIB: attributes--
libl: (# do I NNER #);
lib2: libl
(# T: (# x: @nteger #);
R AT
do (* &T[]->R[] *)
111->R x; (* R[] is NONE *)
| NNER
#)
Iib3: lib2(# do 'hello' ->putLine #)
[usr/smth/runtineerr.bet:
ORIG N ' ~bet a/ basi clib/vl. 5/ betaenv'
I NCLUDE ' nyli b’
- - PROGRAM descriptor--
(# fool: (# do foo2 #);
foo2: (# do foo.foo3 #);
foo: @# foo3: (# do |ib3 #)#)
do fool
#)
Execution of this program on a sun4 machine will result in the following run-
timeerr. dunp file:
.dump file

Bet a execution aborted: Reference is none.
Call chain: (sun4)

itemlib3#<lib2#>libl# in /usr/smth/nylib
-- BETAENV-~ in ~betal/basiclib/vl.5/betaenv
item <foo3#> in /usr/smth/runtineerr
-- foo# in /usr/smth/runtinmeerr
item <foo2#> in /usr/smth/runtineerr
-- PROGRAM ~ in /usr/smth/runtineerr
item <fool#> in /usr/smth/runtineerr
-- PROGRAM~ in /usr/smth/runtineerr
conp <PROGRAM ~> in /usr/smith/runtinmeerr

basi ¢ conponent in ~betal/basiclib/vl.5/betaenv
Theinformation inrunti neer r. dunp has the following meaning:

. The activation stack of invoked objects is shown. Each element of the stack is
shown as two lines. The object and its statically enclosing object.

. For each object, the name of the file where it is defined is also shown.

Error Handling

27

From the above file it can be seen that the error occurred in an instance of
li b3. The description |i b3#<l i b2#>li bl shows the superpattern chain of
I i b3. The braces (<,>) indicates that the error occurred in the do-part of | i b2.

The symbol immediately after the name of an object shows its kind. The
different possibilities are:

Thedescriptor belongsto apattern, e.g. P: (#. . . #)

~ Singular named descriptor, e.g. X2 @# ... #)

* Singular unnamed descriptor,e.g. ...; (# ... #);...

- Descriptor SLOT.

Notice that, e.g. the PROGRAM SLOT is marked with both - and ~ since a
descriptor SLOT givesrise to asingular named descriptor.

It can be seen that | i b3 was called from f 003, which was called from f 002,
which was called from f oo1, etc. The bottom most objects are defined in be-
taenv

For each active object its enclosing object is shown, on aline starting with “ - -
" The encloser of e.g. foo3 is foo. The rest of the objects have enclosers,
which are dots.

For each object, the corresponding fragment file is shown. The pattern 1 i b3 is
defined in thefile
fusr/smth/nylib

28 BETA Compiler Reference Manual

8 Compiler Arguments

When activating the BETA compiler, the following command line arguments are
valid.

Most options have both a”- - <name>" and a"- - no<nane>" form: Activate the option
using "--<nane>"; deactivate the option using "- - no<nanme>". In the listing below,
the activating form is shown first (and explained), if both exist for an option.

Shortcuts For most options, there is a short (one-character) option for the non-default form.
One-character options allow multiple option characters after the "- " (e.g. "- qwd").

Case Long option names are case insensitive, whereas one-character options are case
sensitiveness sensitive.

A star (*) in the listings below indicates the default option.
--help -h Show abrief overview of the legal command line options

--r epeat -r Run compiler in repeating mode. After having transated
the fragments specified in the argument list, if in repeating
mode, the compiler prompts the user for the name of
another fragment to be trandlated:

Type Fragnent File Nane:

Thisinteraction is continued until the compiler is
explicitly killed, e.g. by sending acont r ol - Cor the end-
of-stream character to the compiler process.

The compiler may also be given additional options at the
prompt, e.g. you may type- - nol i nk f oo. bet to translate
f 0o. bet , but avoid linking of it.

If no new fragments are specified at the prompt, the
compiler will retranglate the last fragment it has translated
when <RETURN> it typed.

By using repeating mode, the compiler saves time when
analyzing dependencies between fragments, since
fragments are saved in memory between compilations.

--noRepeat *

--link * Link program

--noLink -X

--static Use static linking

--dynamic * Usedynamic linking

--list * Generate .Ist file, if semantic errors

--noList -|

Compiler Arguments

29

--debug

--noDebug

--code
--noCode

--checkQua
--noCheckQua

--checkNone
--noCheckNone

--check| ndex
--noCheckl ndex

--warn
--noWarn

--warnQua
--noWarnQua

--verbose
--quiet
--mute

--traceCheck
--noT raceCheck

--traceCode
--noTraceCode

--out

--preserve
--NOPreserve

--job
--noJob

--switch

Generate debug info to enable debugging. Include
debugging information in the generated code. Thisis used
by the BETA debugger—valhalla. On the other hand,
using - - noDebug reduces the size of the executable files
by 30-50%, and also speeds up linking time.

Generate code

Generate runtime checks for QUA errors

Generate runtime checks for NONE references

Generate runtime checks for repetition index out of range

Generate warnings

Generate warnings about runtime QUA checks

Verbose compiler info output
Only compiler info on parse, check, etc.
No compiler info output

Trace the compiler during semantic checking

Trace the compiler during code generation

Specify name to use for resulting executable image

Preserve generated . j ob and assembly files

Executethe. . j ob file

Set/unset one or more compiler switches. The - s option
makes it possible to define one or more so-called compiler
switches. Switches are specified as integers on the
command line after - - swi t ch or - s, possibly terminated
by a0 (zero). Switches are used for a number of purposes:
parameterization of the compiler, debugging, testing etc.
The most interesting switches with respect to
parameterization are listed bel ow; notice that some of
them may also be set as ordinary options.

o« 5. Suppress code generation. l.e. only semantic

checking is performed. This switch will also set
switch 33. Same as -c.

e 6: Suppresslinking. Same as -x.

e 14: Do not generate run-time checks for NONE-
references. Same as-N

30

BETA Compiler Reference Manual

--linkOpts

fragmentl ... fragmentN

15: Do not generate run-time checks for index-errors.
Sameas-| .

18: Preserve assembly- and job-files. Same as -p.

19: Suppress notification of insertion of run-time
checks for qualification errors in reference assign-
ment. Same as-q.

21: Continue trand ation after semantic errors.
23: Preserve job-files.

32: Do not produce .Ist file in case of semantic errors.
Same as-I.

33: Do not execute .job file. Same as -j.
37: Do not generate debugging information. Same as -
d.

42: Do not generate run-time checks for qualification
errors in reference assignment. Same as-Q.

191: Print each descriptor just beforeit is checked.
192: Print each declaration just before it is checked.
193: Print each imperative just before it is checked.

308: Print each declaration just before code is genera-
ted for it.

311: Print each imperative just before code is genera-
ted for it.

Specify text string to be appended to the link directive

Arguments other than the above mentioned options are
treated as the names of fragments to be trandated by the
compiler. It should be noted that for an option to take
effect in the trandation of afragment whose nameis
passed as argument to the compiler, the option must
appear before the fragment name in the argument list.

Machine Dependent Configurations

9 Machine Dependent
Configurations

In this section, the terminology of the fragment system is used freely without further
explanation. The fragment system has been extended to support generic software de-
scriptions. The same generic software description may be used to instantiate configu-
rations for different machines. The term “machine” covers a CPU and an operating
system running on that CPU.

The concept of generic software descriptions is implemented by means of special
“generic properties’. Normally, a property has exactly one associated set of values. A
generic property has a number of such value-sets. The idea is that the programmer
can specify a value-set for each machine. These value-sets are the ones termed
<Machi neSpeci fi cati onLi st > in the formal specification of properties in section
6.3 and 6.5. As an example:

OBJFI LE sun4 "xlib.o'
| i nux "zlib.o'
default 'wib.o'

OBJFILE is the name of a generic property. The OBJFILE property is used for inclu-
sion in the linkage phase of external object files, e.g. produced by a C compiler. A
generic property specification should be seen as a kind of “switch/case” statement.
The semantics of the above OBJFILE property is that when instantiating a configura-
tion for the machine sun4, the value xlIib. o is chosen. This means that the object
filexlib. o isincluded when linking a configuration for a sun4 machine. Similarly
for I i nux machines. The def aul t literal indicates that when instantiating configura-
tions for machines other than sun4 or 1i nux , the object file w i b. o should be in-
cluded.

Besides OBJFILE, there are the following generic properties. MAKE, BETARUN,
LIBFILE, LINKOPT, RESOURCE, and MDBODY. For al of these properties, the
relation between machine symbols and value-sets are specified in the same manner as
described above. To be precise, the following algorithm is used when instantiating a
configuration for a specific machine type, say A.

1. If A matches any of the machine symbols of the generic property, the value-
set associated with that particular machine symbol is chosen. If no match is
possible, proceed with step 2.

2. If the symbol def aul t is specified as machine symbol, the associated value-
set is chosen. If not, awarning isissued.

The only distinction between the different generic propertiesisin the interpretation of
the elements of the chosen value-set. For OBJFILE, the value-set is interpreted as
external object files. MAKE is meant to point out a number of so-called makefiles.
These are executed just prior to the linkage phase. A makefile is often used to keep
the included object files up to date with respect to the source files from which they
originate. For BETARUN, the value-sets must contain exactly one element, and this
element denotes the runtime system to be used in the resulting configuration. With re-
spect to LIBFILE, the elements of the value-sets are interpreted as external libraries,
e.g. the X11 library, to be included in the linkage phase. The chosen value-set in an
MDBODY property denotes ordinary BETA fragments to be treated as if they had

Generic
properties

Configurations

32 BETA Compiler Reference Manual

been specified by means of a normal BODY property. The MDBODY property may
thus be used to specify that a fragment appears in a number of machine dependent
variants. Finaly, the LINKOPT property denotes arguments to append to the link-di-
rective in the linking phase of compilations. Finally, the RESOURCE property is used
(only on PC and Macintosh) to specify a set of resource files to add to the application.

Cross-compila- Configurations are instantiated by the compiler, by default for the machine on which

tion the compilation takes place. It is possible to instantiate a configuration for a machine
other than the one, on which the compilation is performed (*“ cross-compilation”). This
requires extensions to the Mjglner BETA System; please contact Mjainer Informatics
if thisis needed.

Code Generation for Multiple Machines

33

10 Code Generation for Mul-
tiple Machines

When instantiating a configuration for some machine, a number of object files are
produced by the compiler - one for each fragment contributing to the configuration.
On most architectures, the compiler actually generates symbolic assembly code, and
this code is turned into object files by means of the native assembler. The native
linker is used to produce an executable image for the machine in question on basis of
these object files.

10.1Placement of Object Code

Different machines normally use different formats for object files. The files contain-
ing object code and symbolic assembly code are always placed in a sub-directory
relative to the directory containing the common source code. A sub-directory is cre-
ated for each special object file format. Currently the following subdirectories are
used:

sun4 SUN-4 (SPARC) running SunOS 4.x
sun4s SUN-4 (SPARC) running Solaris 2.x
hpux9pa HP 9000/700 running HP-UX 9.x
hpux9nt HP 9000/300-400 running HP UX 9.x

sgi Silicon Graphics (MIPS) running IRIX 5.3
Ii nux PC running Linux 1.0 or later

nti PC running Windows NT

mac Macintosh mc680x0, MPW 3.2 or later

For executable images to be activated “directly”, without prefixing their name with
the name of a sub-directory, executable images are placed in the same directory as the
common source files. It is however possible to control the naming of the executable
images. Thisis done by means of the -0 option to the compiler.

10.2Macro Expansion

Consider this use of the MDBODY property:
MDBODY default './$/betaenvbody_$'

The symbol $ is expanded by the compiler. It is expanded to the name of the subdi-
rectory into which the generated code will be placed. That is, if code is generated for
a mac (Macintosh) machine, the above expands to ./ mac/ bet aenvbody_nac. This
may be a convenient short-hand, but may also make is possible to instantiate configu-
rations for new machines without changing the original source code.

Bibliography

[Knudsen 94]

[Madsen 93]

[MIA 90-4]

[MIA 90-6]

[MIA 90-8]

[MIA 90-11]

[MIA 92-12]

[MIA 94-24]

[MIA 94-34]

J. L. Knudsen, M. L&fgren, O. L. Madsen, B. Magnusson
(eds.): Object-Oriented Environments — The Mjalner Ap-
proach, Prentice Hall, 1994, ISBN 0-13-009291-6.

O. L. Madsen, B. Mgdller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming Lan-
guage, Addison-Wesley, 1993, ISBN 0-201-62430-3

Mjglner Informatics. The Mjaglner BETA System: Using
BETA on UNIX Systems, Mjglner Informatics Report MIA
90-4.

Mjglner Informatics. The Mjaglner BETA System: Using
BETA on the Macintosh, Mjglner Informatics Report MIA
90-6.

Mjglner Informatics. The Mjglner BETA System: Basic Li-
braries, Reference Manual, Mjginer Informatics Report
MIA 90-8

Mjealner Informatics. Sf — A Hyper Structure Editor, Tu-
torial and Reference Manual Mjglner Informatics Report
MIA 90-11.

Mjglner Informatics. The Mjginer BETA System — The
BETA Source-level Debugger — Users's Guide, Mjgliner
Informatics Report MIA 92-12

Mjglner Informatics. The Mjginer BETA System — The
Mjginer BETA System Tutorial Mjg@lnerInformatics Re-
port MIA 94-24.

Mjglner Informatics. The Mjglner BETA System — Using
on Windows 95 or Windows NT MjglnerInformatics Re-
port MIA 94-34.

35

Appendix A. Semantic
Errors and Warnings

A.1 Semantic Errors

The following is a list of semantic error messages that may be reported by the com-
piler. See also section 7.2.

1. Nameisdeclared more than once

Name is not declared

Attribute is not declared

A pattern is expected here

Anitem is expected here

A repetition is expected here

A simple evaluation cannot be assigned

The lists have different lengths

The lists have different lengths

In"leave P" or " restart P*, "P" must be an enclosing label
or enclosing pattern

11. Illlegal assignment/comparison of value, reference or repetition
12. Only asingle nameis allowed here

13. Attempt to bind V which isnot virtual (V ::<T)

14. InV :<T, T doesnot have a correct qualification

15. Anobject is expected here

16. A basic pattern cannot be used as a super-pattern

© o N kWD

=
o

17. A virtua pattern or a pattern defined as a descriptor slot cannot
be used as super-pattern
18. A string of length 1 isachar - NOT atext
19. lllegal recursion in the definition of a pattern.
One of the following type of errors have occurred:
(1) There may be a circle in the super-pattern chain:
A:C#H..#);B:A#..#),C.B#..®

37

38

BETA Compiler Reference Manual

20.
21.
22.
23.
27.
28.
29.
30.
31
32.
33.

35.
36.
37.
38.
39.
40.
41.

&R BN

46.
47.

49,

(2) The pattern may direct or indirectly contain a static instance
of itself:
P.(#...X:@P, ...do... %)

(3) The pattern may directly or indirectly contain an inserted
instance of itself:

P.(#..do..;P#..#),..H#Hor

A:(#..P.(#R ™MA; ...do...,RP#..#);..#) .. %)

Incompatible qualifications in assignment/comparison

Only simple values or references may be compared

Only simple values may appear in unary expressions

Fatal error: virtua binding not found

The descriptor is both used as item and component

Static size of descriptor is larger than 32760 bytes

Illegal recursion in object-description

Illegal assignment to constant value/reference or repetition

Only pattern-declarations may appear in afragment of category 'attributes
A virtual qualification must be a pattern name or a descriptor

A virtual pattern or descriptor-slot cannot be used as a component
An enter/exit parameter of an "external” must be one of:
integer,char,real ,integer-repetitions,char-repetition,

subpattern of cstruct,variable-subpattern of external

An"external" can only have one exit parameter

A sub-pattern of "external" cannot be used as super-pattern

The DO-part of an "external” should be empty

A repetition/for-imp range must be an integer, char or boolean evaluation
A simple pattern cannot be used here

Unknown inline primitive

The superpattern of this descriptor has no INNER

Attempt to bind a virtual in a descriptor with no superpattern

The qualification of avariable pattern must be a pattern

A pattern-, virtual-, variable-pattern, or reference is expected here
A repetition name is expected here

In"this(P)" or "inner P", P must be the name of an enclosing pattern
An unexpanded nonterminal must be a SLOT

A super-pattern must be a simple pattern or asimple

pattern attribute of a static object

A simple pattern or virtual pattern cannot be assigned

Semantic Errors and Warnings

39

50.

ol

92.
53

55.

56.

S7.

58.

99.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

80.
81.

astructure reference

A structure reference can only be assigned to/compared

with another structure reference

Only integer,char,boolean, real objects and references can be

compared in an if-imperative

Rename declaration has NOT been implemented

Syntax error in number

Name not declared. Thereis no corresponding virtual declaration

A pattern with a do-part slot cannot be used as a super-pattern

The QUA construct has not been implemented

A basic pattern like integer, real, char, boolean, false, and true

cannot be used as a super-pattern

In alist being assigned to and being assigned from asin
...>(EL,E2,..En)-> ...

the elements may not be patterns

The enter-parameters of an external call must be supplied

The left-side of the assignment/comparison has no (exit-)list

or the right-side has no (enter-)list

An element of the left-side/right-side of the assignment/comparison

has no (exit-)list or (enter-)list

The Left-side of the assignment/comparison has no (exit-)list

An element of the left-side of the assignment/comparison has no (exit-)list
The right-side of the assignment/comparison has no (enter-)list

An element of the right-side of the assignment/comparison has no (enter-)list
A simple value (integer,boolean,char,real) cannot be assigned/compared
to/with alist

An object with no exit-list is being assigned/compared to a reference.

The left-side may be missing a "[]" or the right-side may have a superfluous

Uik

An element with no exit-list in the left-side list is being
assigned/compared to a reference on the right-side
The left-side may be missing a "[]" or the right-side may have a superfluous

Uik

A reference is being assigned/compared to an object with no enter-list
The right-side may be missing a "[]" or the left-side may have a superfluous

Uik

A reference is being assigned/compared to an element on the right-side with
no enter-list

The right-side may be missing a "[]" or the left-side may have a superfluous

ll[]ll
"inner P* isonly legal in the do-part of the pattern "P"

In a computed-remote, "(EV).X","EV" cannot be an evaluation-list

40

BETA Compiler Reference Manual

82.

83.

85.

87.

88.
89.

90.
91.
92.
93.
94,

96.

98.

100.
101.
102.
103.
104.
105.
107.
108.
110.

111.

112.
113.

In acomputed-remote, "(EV).X", "EV" must have one exit-element,
which must be areference
In acomputed-remote, "(EV).X", "EV" isnot alegal evaluation
"Extend" and "new" must have an enter-parameter
"leave P' or "restart P*, where "P" is a pattern,
isonly legal in the do-part of "P"
A repetition index must be an integer-evaluation
The base of this number istoo large
A subpattern of "data’ may only have declarations of the forms:
"X:~T" where "T" is subpattern of "data’, or
"X: @T" where"T" isinteger,shortint,char,boolean,real
or subpattern of "data’
A subpattern of "data’ may not have a do-part
A boolean evaluation is expected here
Primitive operation appears in wrong context
It is not possible to obtain a structure reference for abasic pattern
like integer, real, char, boolean, false, and true or instances of these
A virtual pattern cannot be bound to a basic pattern like
integer, real, char, boolean, false, and true
In "X: "<AD>.P","Y: @<AD>.P', "<AD>" cannot be:
arepetition element asin "R[e].P"
a computed remote asin"(R).P"
It must be a static object
A sub-pattern of "external” must be defined as a pattern
In"V < T","T" must be anon-virtual pattern
In"V T, "T" must be a pattern
A cycle has been detected in the super-chain of the virtual/final binding
Incompatible types of binary operator
Incompatible left- and right-side of assignment
Illegal assignment to constant, literal or expression
A virtual cannot be bound to a slot
Illegal use of the "&"-operator
Illegal recursion in exit list:
apatternisreferred directly or indirectly in its own exit list
Illegal recursion in enter list:
apatternisreferred directly or indirectly in its own enter list
Externa entry point has a blank- or control character
Thereisacircle in the super-pattern chain

Semantic Errors and Warnings

A.2 Semantic Warnings

24. A run-time qualification check will be generated here
25. Repetition of static componentsis not implemented
26. Repetition of non simple patternsis not implemented
86. "leave P and "restart P, where "P" is a pattern,

are currently not allowed in internal descriptors of "P"
95. In "X:*R.P',"Y: @R.P", or "Z: @R.P(#...#),

"R" should NOT be a dynamic reference!

For "X: "R.P", consider using "X: "T.P",

where"T" isthe pattern qualifying "R" ("R: ~T").

A future release may consider this to be a semantic error.
97. An"inner" inasingular object will never be executed
99. Final binding to avirtual pattern is a new facility

in this version of the compiler.

Please report any problems to support@mjolner.dk
106. Assignment/comparison between boolean and integer
109. Text hasanull-char. All chars after the null-char are ignored

Appendix B. The BETA
Grammar

This appendix contains a listing of a grammar describing the BETA language ac-
cepted by the compiler. The grammar formalism used in the Mjginer BETA System is
a variant of context free grammars. A structured context free grammar is a context
free grammar (CFG) where the rules (productions) satisfy a certain structure. See

[MI1A90-8] for adescription of structured context free grammars.

<Bet aFor np

<Descri pt or For n»
<Attri but esForne :
<Cbj ect Descri ptor> ::
<Mai nPart > :
<Attributes>
<Pref i xOpt >
<Prefix> :
<AttributeDecl Opt> ::
<Attri but eDecl > :

<Patt er nDecl >

<Si nmpl eDecl >
<RepetitionDecl >
<Vi rt ual Decl >

<Bi ndi ngDecl >

<Fi nal Decl >

<Vari abl ePatt er n>

mimnnonnnnip———"—"—"—=Hu-~o+1uimin—-——

<ref erenceSpeci fication> ::

<Staticltenpr

<Dynam cl tenp

<St ati cConponent >
<Dynani cConponent > ::
<Cbj ect Speci fi cati on>

<| ndex>

<Named| ndex>
<Acti onPart >
<Ent er Par t Opt >
<DoPart Opt >
<Exi t Part Opt >
<Ent er Part >
<DoPart >

-1 1l

<Descri pt or For n»
<Attri but esForne

<Cbj ect Descri pt or >
<Attributes>

<Prefi xOpt > <Mai nPart >

(e

<AttributeDecl Opt> ";'
<Prefix>

<At tri but eDenot ati on>
<Attri but eDecl >
<Pat t er nDecl >

<Si nmpl eDecl >
<RepetitionDecl >

<Vi rt ual Decl >

<Bi ndi ngDecl >

<Fi nal Decl >

<Attributes> <ActionPart> "'#)'

<Nanes> ':' <bjectDescriptor>
<Nanes> ':' <referenceSpecification>
<Nanmes> ':' '[' <index> ']' <referenceSpecification>
<Nanmes> ':' '<' <QbjectSpecification>
<Nanes> ':' ':' '<' <hjectSpecification>
<Nanmes> ':' ':' <QObject Specification>
<Attribut eDenotation>

s

'I
I
I
I
I

l@lll

I/\Illl

<Staticltenpr
<Dynani cl t enp

<St ati cConponent >
<Dynam cConponent >
<Vari abl ePat t er n>

@ <Obj ect Specification>
"N <Attri buteDenotation>
<(bj ect Speci fi cati on>
<Attri but eDenot ati on>

<Cbj ect Descri pt or >

<Attri but eDenot ati on>

<Si npl el ndex>
<Nanedl ndex>

<NaneDcl > ':' <Eval uati on>

<Ent er Part Opt > <DoPart Opt > <Exi t Part Opt >
<Ent er Part >

<DoPart >

<ExitPart>

"enter' <Eval uation>

ldol

<l nperatives>

43

BETA Compiler Reference Manual

<Exi t Part> ;= 'exit' <Eval uation>

<l nperatives> i+ <l npOpt> ';

<l mpOpt > :? <l np>

<l mp> <Label | edl mp>
<For | mp>

<Si npl el f I np>
<Ceneral | f | mp>
<Leavel np>
<Restart | mp>
<l nner | mp>
<Suspendl np>
<Eval uati on>
<Label | edl np> <NareDcl > ':' <l np>
<For | np>
ndex> 'repeat' <lnperatives> 'for' ')

(' 'for' <

<Ceneral | f I mp> :
(" 'if' <Bvaluation> <Alternatives> <El sePartCpt> "if' ')’

<Si npl el f I np> =

(" '"if' <BEvaluation> 'then' <Inperatives> <ElsePartQpt> 'if
::= "l eave' <NaneApl>

"restart' <NanmeApl >

"inner' <NameApl Opt >

<NaneApl >

' suspend

<Al'ternative>

<Sel ections> 'then' <lnperatives>

<Sel ecti on>

<CaseSel ecti on>

"//' <eval uati on>

<El sePart >

"el se' <lnperatives>

<Eval uation> ',

<Expr essi on>

<Assi gnnent Eval uati on>

::= <Bvaluation> '->" <Transaction>

<Obj ect Eval uati on>

| <Obj ect Ref erence>

<Eval Li st >

<StructureReference>

<l nsertedltenr

<ref erence>

<Obj ect Denot ati on>

<Dynani cbj ect Gener ati on>

<Dynami cQbj ect Gener ati on> <Dynanmi cl t enzener at i on>

<Dynani cConponent Cener at i on>

<(bj ect Descri pt or>

<Attri buteDenotati on>

<Ref erence> '[]

<AttributeDenotation> '##

"(' <BEvaluations> ')

'& <Obj ect Speci fication>

<Leavel np>
<Restart | mp>

<l nner | mp>
<NanmeApl Opt >
<Suspendl np>
<Al ternatives>
<Al ternative>
<Sel ecti ons>
<Sel ecti on>
<CaseSel ecti on>
<El sePart Opt >
<El sePart >
<Eval uati ons>
<Eval uati on>

<Assi gnnment Eval uati o
<Transacti on> D

— VT + DU+ 0+ 0

<bj ect Eval uati on> :

<Ref er ence>

<Insertedltenpr

<(bj ect Denot ati on>

<(bj ect Ref erence>
<StructureReference>
<Eval Li st >
<Dynanmi cl t encener at i on>

<Dynam cComponent Generation> ::="'& '|' <ObjectSpecification>
<Attri but eDenot ati on> ;] <NaneApl >

| <Renote>

| <Conput edRenot e>

| <Indexed>

| <Thi sCbj ect>
<Renot e> <AttributeDenotation> '.' <NaneApl >
<Comput edRenot e> "(' <EBEvaluations> ')' '.' <NaneApl >
<l ndexed> <AttributeDenotation> '[' <Evaluation> ']

<Thi shj ect >
<Expr essi on>
<Rel at i onal Exp>

"this' '(' <NaneApl> ')

<Rel ati onal Exp> | <Si npl eExp>
<EqExp> | <LtExp> | <LeExp>

<G Exp> | <CGeExp> | <NeExp>
<AddExp> | <SignedTerm> | <Terne

<Si npl eExp>

The BETA Grammar

<AddExp>

<Si gnedTer e
<Ter ne

<Mul Exp>

<EqExp>

<Lt Exp>
<LeExp>

<G Exp>
<CeExp>
<NeExp>

<Pl usExp>

<M nusExp>

<O Exp>

<Xor Exp>
<unar yPl usExp>
<unar yM nusExp>
<Ti mesExp>
<Real Di vExp>
<| nt Di vExp>
<ModExp>
<AndExp>
<Fact or >

<RepetitionSlice>

<not Exp>
<noneExp>
<Nanes>
<NaneDcl >
<NaneApl >

<Si npl eEntry>
<Text Const >

<I nt eger Const >
<Si npl el ndex>

I -1 1+ 11

<Pl usExp> | <M nusExp> | <O Exp> | <Xor Exp>
<unaryPl usExp> | <unaryM nusexp>

<Mul Exp> | <Factor>

<Ti mesExp> | <Real Di vExp> | <Int Di vExp>
<ModExp> | <AndExp>

<Qper andl: Si npl eExp>
<Qper andl: Si npl eExp>
<QOper andl: Si mpl eExp>

'=' <QOperand2: Si npl eExp>
<Oper andl: Si npl eExp> ' >'

<' <Operand2: Si npl eExp>
<=' <QOperand2: Si npl eExp>
<QOper and2: Si mpl eExp>
>=" <Qper and2: Si npl eExp>
<>' <Qper and2: Si npl eExp>

<Qper andl: Si mpl eExp>
<Qper andl: Si npl eExp>

<Si nmpl eExp> '+ <Ternp
<Si mpl eExp> '-' <Ternp
<Si npl eExp> 'or' <Ternw

<Si npl eExp> ' xor' <Ternp
'+ <Ternp

- <Ternp

<Termr '*' <Factor>
<Term> '/' <Factor>
<Ternmp 'div' <Factor>
<Ternm> 'nod' <Factor>
<Tern» 'and' <Factor>

<Text Const >

<l nt eger Const >

<Not Exp>

<NoneExp>
<RepetitionSlice>
<Transacti on>
<Attri but eDenot ati on>
"[" <Low: Eval uati on>
"not' <factor>

' none'

<NameDcl > ',
<NaneDecl| >
<NaneAppl >

<Text Const >

<String>

<Const >

<BEval uati on>

<Hi gh: Eval uation> ']"

Appendix C. New Features in
vD.2

The following new features have been implemented in version 5.2 of the compiler,
compared to version 5.1.

C.1 New Platforms

A lot of efforts have been put into porting the compiler into some new platforms:
. A final version for Silicon Graphics MIPS is now available.
. The linux compiler now generates binary code directly.

. Work is going on the make a binary compiler for Windows NT and Windows
95 too.

. Work is going on to make native binary code generation for PowerPC based
macintoshes.

This work has caused a lot of changes to the interior of the compiler and runtime-
system. These changes should be transparent to the user, though.

C.2 ## now allowed for objects

You may now use P## as an aternative to P. st ruc, when P is an object. Previously
was only alowed for patterns.

C.3 CCsetin UNIX job files

The job files on UNIX platforms now set the CC environment variable to a suitable
default value before executing the Make commands.

Thus $(co may now be used in the make fileson UNIX platforms.

47

48

BETA Compiler Reference Manual

C.4 Check for bound SLOTs.

In general the compiler will only attempt to link, if a PROGRAM dlot has been found
in the dependency graph (this feature was introduced in v5.1 of the compiler, but the
implementation was buggy).

If SLOTs of category moPart Or Descriptor in the dependency graph are not bound,
and linking would otherwise have happened, the compiler now issues a warning, and
does not attempt to link. This prevents the kind of error that could give an "Undefined
Reference" error at link time in v5.1 of the compiler.

Likewise, if two or more fragments tries to bind the same SLOT, the compiler will
give awarning. This prevents the kind of error, that could give an "Multiply Defined
Symbol" error at link timein v5.1 of the compiler.

C.5 Interfragment leave/restart

The compiler now supports interfragment leave/restart asin
f 0o. bet:
ORIG N ' ~bet a/ basi cli b/v1.5/betaenv';
BODY ' f oobody' ;
- - PROGRAM descri ptor---
(# do L: <<SLOT LL:descriptor>> #)
f oobody. bet :
ORIG@ N 'foo';

--LL: descriptor--
(# do leave L #)

Thisfeature did not work in previous versions of the compiler.

C.6 Generalized special characters in
string literals

The following special characters are now alowed in BETA string literals. Some of
them, e.g. \t, also worked in previous versions too.

\a alert (bell) character \v vertical tab

\b backspace \\ backslash

\ f formfeed \? guestion mark
\n newline \’ single quote
\r carriage return \ " double quote

\t horizontal tab \ooo octal number

New Features in v5.2

49

Notice that you may now use\' as an aternativeto '+ to include a literal quote in a
string. E.g.: ' Tom ' sCottage' . This has the consequence, though, that to type the
backslach character, you must now do it as: ' \\' instead of the previousway: " \"

\ ooo can also be\ o or\ oo, provided that the character immediately following it is not
adigit.

50

BETA Compiler Reference Manual

<>0

abstract syntax tree 5
activation stack 26

and .i.real 6

ASCII 6

assembling 25

assembly code 5, 33
assembly language 3
attributes 13, 20
backslash 54

backspace 54

basiclib 3

~beta 4

BETA language 6
BETALIB 4, 17
BETARUN 18, 22, 31
big-endian 5

BODY 16, 17, 22, 32
C3

C compiler 31

call stack 26

carriage return 54

CC environment variable 53
command line arguments 28
Compatibility 7, 8
compiler info output 29
compiler switches 29
concurrency 10
Configurations 31
context free grammars 43
context free syntax 24
cross-compilation 32
data structures 19

debug info 29

debugging information 29
descriptor 13, 20, 54
deviations 1, 6

disk space 25

51

div 6

DoPart 13, 54

DoPart slot 20

double quote 54

dynamic item 9

dynamic linking 28
extension 17

Externa library 18

fase 6

file name 17

File Name Restrictions 23
Files Generated by the Compiler 5
final binding 9

formal syntax of the BETA fragment-
system 22

formfeed 54

fragment 13

Fragment Denotations 17
fragment system 2

fragments 30

grammar 43

horizontal tab 54

If 12

implementation 19
INCLUDE 16, 17, 22
incomplete file 25

Index 57

INNER 20

INNER A 21

Inserted components, 9
inserted item 10

Inserted items 9

integer 6

interface 13, 19
interfragment leavelrestart 54
label 10

labelled compound imperative 9
leave 10

LIBFILE 18, 22, 31

library 3

linker-directive 18

linking 25

LINKOPT 18, 22, 31, 32
little-endian 5

Ist-file 25
MachineSpecificationList 17, 18, 22,
31

Macro Expansion 33

MAKE 18, 22, 31

52

BETA Compiler Reference Manual

MDBODY 17, 22, 31, 32
mod 6

modularization 13
Modularization of Data Structures 19
Multiply Defined Symbol 54
newline 54

NONE references 29

object code 5

object file 18

object files 33
objectDescriptor 13
OBJFILE 18, 22, 31

octal number 54

OFF 18, 22

ON 18, 22

ORIGIN 16, 17, 22
PowerPC 53

Private 16

properties 16

QUA checks 29

guestion mark 54

recursion 9

repeating mode 4, 28
RESOURCE 18, 22, 32
restart 10

restrictions 1, 23

result type 6, 7, 8

Run-time errors 26

run-time system 18

runtime checks for QUA errors 29
semantic error messages 25, 37
Semantic Errors 37

separate compilation 13
Short-circuit Boolean Expressions 12
Silicon Graphics 53
SimplelIf 12

single quote 54

dot 2, 54

special characters 54

static linking 28

Static Semantic Errors 24
statically enclosing object 26
string literal 11

string literals 54

struc 53

structured context free grammar 43
Syntax Errors 24

system errors 25

this 10

Trace 29

true 6

Undefined Reference 54
Vahalla5, 29

variant control 13

vertical tab 54

Virtual superpatterns 9
warnings 29

xor 12

