
Process Libraries − Reference Manual

Mjølner Informatics Report
MIA 94−29

February 2002

Copyright © 1994−2002 Mjølner Informatics.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

http://www.mjolner.com

Table of Contents

1 Introduction ...1

2 Manipulating Processes...2
2.1 Child Processes...2
2.2 This Process and its Environment...3

3 Communicating with other Processes ...4
3.1 Communication Concepts..4
3.2 Scheduling...5
3.3 The Two Families of Sockets...5
3.4 The Fragment basicsocket...6

3.4.1 The Patterns of basicsocket..6
3.5 The Fragment binarysocket...7
3.6 The Fragment streamsocket..7
3.7 The Fragment commpipe...8
3.8 SocketGenerators..8

3.8.1 The patterns of socketgenerator...8
3.8.2 The patterns of streamgenerator and binarygenerator.......................................8

3.9 Error Handling..9
3.9.1 Error Callbacks..9
3.9.2 Error Propagation..9
3.9.3 Categories of Errors..10

3.10 Timeout Management..10

4 Addresses ...12
4.1 Specification of Connection Requirements..12
4.2 The Abstract Level...13
4.3 The Concrete Level..13

5 Managing a Pool of Connections ..15

6 The Demo Files...17
6.1 pipeline, consumer and producer...17
6.2 firstProgram and otherProgram...17
6.3 streamcounterserver and streamcounterclient...17
6.4 binarycounterserver and binarycounterclient...17
6.5 xpilotgames..17
6.6 repChatClient and repChatServer ...17

7 Known Bugs and Inconveniences ..19
7.1 General..19
7.2 Windows..19
7.3 Macintosh...19

8.1 Basicsocket Interface..20

8.2 Binarygenerator Interface ...23

8.3 Binarysocket Interface ..24

8.4 Commaddress Interface..26

 Process Libraries − Reference Manual

i

Table of Contents

8.5 Commpipe Interface ..32

8.6 Commpool Interface ..33

8.7 Errorcallback Interface..36

8.8 Processmanager Interface..37

8.9 Socketgenerator Interface ..40

8.10 Streamgenerator Interface ..43

8.11 Streamsocket Interface ...44

8.12 Systemcomm Interface ...47

Index ...48
A...48
B...48
C..48
D..49
E...49
F...49
G..49
H..50
I..50
K...50
L...50
M..50
N..50
O..50
P...50
R..51
S...51
T...52
U..52
W..52

 Process Libraries − Reference Manual

ii

1 Introduction
 This document describes the version 1.6 of the process library in the Mjølner System. This library
implements support for manipulating operating system processes and for communicating with
them. All fragments in the process library demand that the program uses the BETA simulated
concurrency, i.e. the slot program:descriptor must be a specialization of systemenv. In return, one
does not have to explicitly transfer the thread of control by suspending when an operation is about
to block − the systemenv scheduler and the process library cooperate to make it look like implicit
scheduling. This ensures that co−routines which can proceed with their work will never be
prevented from this because of a blocking communication operation in some other co−routine.

The fragment dealing with the manipulation of processes is processmanager. Processmanager
supports starting a child process, stopping it, and similar things.

The fragments dealing with communication between processes are basicsocket, streamsocket,
socketgenerator and a few variations hereof.

Some aspects of support for the communication between processes have been separated into the
fragments commaddress and errorcallback. commaddress defines a hierarchy of patterns, which
model addresses (destinations for communications) in a platform independent way. errorcallback
defines a few patterns used for error handling in this library.

On top of the support for single communication connections, commpool implements support for
holding a set of connections, and providing concurrency−secure access to these connections by
means of platform independent addresses, i.e. instances of patterns in commaddress. This
abstracts away the need to open and close these connections: if connections to the required
destination is available, one of them will be used, otherwise a new connection will automatically be
opened. If the process hits a maximum limit for the number of open connections, a least recently
used (and currently unused) connection will be closed.

1 Introduction 1

2 Manipulating Processes
First, a bit of terminology. A binary file is a diskfile, from which the operating system is able to
create a process, which is then called an instance of the binary. A process is a dynamic entity
within a computer which has an internal state and may interact with other processes. So there may
be more than one process which is instantiated from any given binary file, and these processes are
by no means the same thing. Here, each BETA object which is an instance of the pattern process,
models one process. If you want to manipulate more than one instantiation of a given binary, use
more than one process object.

2.1 Child Processes

 The fragment processmanager is concerned with child processes. An instance of the process
pattern in this fragment is attached to a binary file by initializing it with a file specification, like

'/bin/someApplication' −> aProcess.init;

In the following, aProcess denotes an instance of the pattern process, which has been attached to
a binary file.

One has the option to set up arguments for an instantiation of the binary, using
aProcess.argument.append, once for each argument. Afterwards, the process can be instantiated
with aProcess.start. In the following, this instantiation is referred to as the child process. When it
has been started, it is possible to change its life cycle and to adjust to it: aProcess.stop causes the
child process to be killed, aProcess.awaitStopped causes this process to sleep until the child
process terminates, and aProcess.stillRunning is a predicate which returns true if the child process
has not yet terminated.

The onStart virtual is a hook, into which one can put code to be executed immediately after the
child process has been started, and the onStop virtual is a hook which is executed when stop has
stopped the process. Please notice that onStop will NOT be executed in the (typical) case when the
child process terminates for any other reason, e.g. when it terminates normally.

The remaining pattern attributes of process are concerned with inter−process communication. The
network of inter−process communication must be defined before the child processes are started.
ConnectToProcess and connectInPipe enter a reference to another process object and connect the
referred child processes in a pipeline. redirectFromFile arranges for the child process to take
standard input from the specified file, and redirectToFile makes it redirect standard output to the
given file.

 RedirectFromChannel enters the writeEnd of a pipe and makes the child process accept standard
input from that pipe, and redirectToChannel enters the readEnd of a pipe and makes the child
process send standard output to it. The entered parameter is declared to be a (specialization of a)
stream. The reason for this is that a future release may accept a broader range of types of objects
entered; it should, for instance, be possible to use sockets.

 ConnectErrToProcess, redirectErrToFile and redirectErrToChannel work like connectToProcess,
redirectToFile and redirectToChannel with the exception that they use the standard error from the
process, rather than the standard output. It is possible to connect both the standard output and the
standard error to the same stream.

2 Manipulating Processes 2

2.2 This Process and its Environment

 commaddress defines thisHost, that returns the name and IP address on the internet.

Scanning of the command line and other functions that used to be in the process library are now
supported in betaenv.

 Process Libraries − Reference Manual

2.2 This Process and its Environment 3

3 Communicating with other Processes

3.1 Communication Concepts

 Inter−process communication is usually described as message based or as connection based. In
both cases, any primitive communication act has a number of participants, playing roles as the
receiving or the transmitting end. In this context, there will always be exactly one transmitting party
and one receiving party. There is support for specifying a group address, but there is not currently
any ready−made implementation of a group communication protocol.

For a message based communication, each message is sent to an explicitly specified receiver. For
a connection based communication, at first a connection between two parties is established. From
that point, messages can be transmitted via this connection without any explicit reference to their
destination. Here, the model of communication is connection oriented.

For operating systems that support a notion of standard channels for receiving input and delivering
output and possibly other things, it is possible for the communicating processes to be unaware (i.e.
independent) of the fact that standard input comes from another process or that standard output
goes to another process: It all looks the same as if the data came from a keyboard and went to a
display or whatever. On the other hand, this level of abstraction implies that the connection lifetime
will be the lifetime of the process and that there cannot be more connections than standard
channels. Like standard output and standard input, each connection only supports sending data in
one direction. Pipes establish this kind of connections. Use the pattern pipe.

To implement more elaborate patterns of communication, one must be able to create and destroy
connections during the execution of a process, and to explicitly choose with whom to communicate.
Sockets are used for this, and with sockets, every connection is two−way. Sockets come in two
main variants: passive and active. A passive socket is used to define a name, which may be used
by active sockets when establishing an actual connection. The interplay is like:

Passive: "Here I am! My name is Bob"
...
Active−1: "I want to speak with Bob"
Passive(Bob): "OK, here's a connection"
...
Active−2: "I want to speak with Bob"
Passive(Bob): "OK, here's a connection"
...
Active−3: "I want to speak with Cindy"
(Error: Here's no such thing as "Cindy")
...

I.e. active sockets connect by name, and more than one connection may be established by means
of one passive socket. The name is actually a pair whose first part is an identification of the host
(its IP address) and whose second part is an integer (the port number). This pair is unique for each
passive socket, at least from the time where the operating system accepts registration of the name
until the passive socket is closed. After that, the pair may be reused, that is: the port number may
be reused on the given host, if the operating system wishes to do so.

In this library, sockets are also divided along another axis, namely into stream sockets and binary
sockets. Stream sockets are specializations of the basic stream pattern, and support textual
communication. Binary sockets support transfers of blocks of data with a well−known size.

The patterns related to these concepts are: StreamSocket, BinarySocket and SocketGenerator.

3 Communicating with other Processes 4

SocketGenerators are used to accept incoming connection requests. When a request arrives, a
new socket of the specified type is created and connected to the requesting party.

3.2 Scheduling

Any program using the process library must be a systemenv program, because the process library
depends heavily on cooperation with the scheduler present in systemEnv programs.

Instances of the patterns of these fragments are expected to be executed from BETA co−routines,
and such co−routines must tolerate being suspended (de−scheduled) and later re−scheduled as
part of the execution of possibly lengthy operations. This means that concurrency control by means
of semaphores, monitors, and the like must be established almost as rigourously as had the
co−routines been fully concurrent threads of execution.

In return for this increase in complexity, a usually very important reduction in complexity arises from
having implicit instead of explicit scheduling. Especially when fitting a new piece into an existing
framework it is a great asset to be able to simply spawn the new piece as part of an initalization
phase and then have it running along with the rest of the program without changing any of the other
parts not directly interacting with this new piece.

In more concrete terms, it works like this: Whenever an operation is about to block, the current
component will be suspended. It will be resumed some time later, when the requested IO is
available. In the meantime, some other component which has requested IO available or is not
waiting for IO will be resumed. In this way the following liveness property of the program is
ensured: it will never be the case that a communication operation by blocking delays the
continuation of the execution of all of those components which are either (1) not executing a
communication operation or (2) executing a communication operation, but has IO of the requested
kind available. Of course, any component can still block the whole system by, for example, entering
an infinite loop that does nothing.

There are some operations, that may block the entire process for a while. These include
gethostbyname, starting a process, and waiting for a process to stop

3.3 The Two Families of Sockets

 Basically, the process library supports two families of sockets: stream sockets and binary sockets.
Both are implemented using basicsocket.

A stream socket is suitable for transferring data which is readable for human beings, such as the
data transferred in a UNIX talk session, or the more formal communication between a mail
program and an SMTP mail server. A streamSocket is a stream, so you may put, get etc.
However, it is also possible to use this kind of socket to transfer arbitrary binary data, as no
conversion or translation is performed. This may be used to connect to existing services with a
known binary protocol.

A binary socket is guaranteed to transfer any given block of arbitrary bytes unmodified, but you
must always specify the length of the data block when sending. To enable cross−platform
communication, the headers of the datablocks are modified internally. The current implementation
make little−endian machines (e.g. machines running Linux or Windows NT) transmit their package
headers in the format used by big−endian machines. It is your responsebility that the contents of
the datablocks are in a format understood by the receiver.

 Process Libraries − Reference Manual

3.2 Scheduling 5

In general, you must have a way of choosing either a binary or a stream variant of a connection to
be established, because it is not possible to change a streamSocket into a binarySocket on the
same connection, or vice versa. And each socket object models one connection, so it is not
possible to use the same socket object for several different connections − use a fresh object each
time instead. For socketGenerators, of course, this one−shot−restriction does not apply. See below.

3.4 The Fragment basicsocket

 The following section describes the top level patterns of basicsocket. After that, there is a section
with a general discussion of error handling. Finally another section discusses the treatment of
timeout.

3.4.1 The Patterns of basicsocket

 WaitForever is a constant used to specify an infinite timeout.

 AssignGuard is used to detect wrong usage of other patterns, and localHost_IP_number is the
number used by convention to indicate the 'this host'. None of them are important for the
understanding of the fragment.

sameConnection answers the question of whether this and other wraps the same OS level
connection. getPortableAddress returns a portable address for the connection.

Use connect to connect to a passive socket, like those generated by socketgenerator. connect
establishes a connection to a (host,port) pair given either as arguments, or stored in the attributes
port, host or inetAddr. You should set only one of host and inetAddr, as inetAddr is set to the
internet address of host if inetAddr is not set. host is ignored when inetAddr is set.

Host must be given in a format like quercus.daimi.aau.dk or 130.225.16.15. Depending on the
network topologi and the whereabouts of this process, some prefixes of the first format may also
suffice, notably a format like quercus. The port must be an integer. By convention, port numbers
below 5000 are reserved for system administration purposes and for special, well−known services
like e−mail and ftp. On the other hand, do not expect to be able to use more than a 16−bit unsigned
value (0 through 65535). The value to use when assigning inetAddr must be the four−byte internet
address, given as an integer value. E.g. the absolute address 130.225.16.15 is given as the integer
2195787791. The integer must be in the normal byte−order of the platform running the program.

forceTimeout is used to provoke the same response within an ongoing operation as would have
been the result of a timeout. This makes it possible to exercise timeout control over an operation
from within a co−routine different from the one executing that operation. Moreover, it makes it
possible to define a timeout limit for the execution of a number of operations, instead of setting
timeouts for each of them. UsageTimeStamp returns an integer value which indicates when this
socket was last used. The value makes sense only when compared to usage time stamps of other
sockets in this same process. The purpose is to enable a user of many sockets to close the least
recently used connection or similarly when and if the process runs out of system resources (e.g. it
experiences a to many open files error).

close must be called when done with the socket. Every local idle executes the idle on basicsocket.
The global error is called whenever a operation−level error is called and did not handle the error.
nonBlockingScope is explained below.

The nonBlockingScope pattern is used for specifying non−blocking communication. This means

 Process Libraries − Reference Manual

3.4 The Fragment basicsocket 6

that operations which cannot begin right away are discontinued. An example is: We try to read from
a socket, but no data at all is available to read. If, on the other hand, any irreversible actions have
been taken in an operation (e.g. reading a few bytes), it will not be interrupted by the
nonBlockingScope mechanism. This means it is always safe to interrupt an operation by enclosing
it in a nonBlockingScope, and then later to retry it. It also means that the granularity of scheduling
by means of nonBlockingScope is one communication operation; e.g. if the communication partner
sends half a block and then takes a break, this process can only execute an idle in the mean time,
it cannot switch forth and back between several such ongoing transfers. With each Idle pattern
comes a Blocking virtual. This is executed if the current operation is blocking, i.e. if nothing can be
done right away and nothing has been done yet. You may extend this virtual to take some action in
response to the operation being blocked. If the operation is enclosed in a nonBlockingScope,
Blocking gets executed immediately before the operation is interrupted. If you do not want to
interrupt the operation, execute continue in a extending of Blocking. (If you are not using a
nonBlockingScope, the operation wil automatically continue when possible)

withPE and withIdle are auxiliary patterns used in implementing the scheduling system.

3.5 The Fragment binarysocket

The only pattern defined is BinarySocket. BinarySocket inherits from BasicSocket.

endOfData returns true if no data is immediately available for reading. putInt and getInt are used to
transmit a single integer. The integer is transmitted in big−endian format. This makes
communication across little− and big−endian machines of integers easy.

putRep and getRep sends and receives instances of ExtendedRepstream. This is a generic
container for arbitrary blocks of data, in particular it is possible to put texts and integers into it and
read them out again. When receiving data into an ExtendedRepstream with getRep, the
ExtendedRepstream will automatically be extended in case the received amount of data exceeds
its current capacity.

len header data
|−−−−−−−−|−−−−−−−−|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|

putRepObj and getRepObj are used to send and receive instances of the pattern RepetitionObject.
The protocol for transmitting RepetitionObjects is a little different from the one used with
ExtendedRepstream objects: there is no header field, and the length field is the first element in the
repetition from the repetitionObject, i.e. repetitionObjects have their length built−in.

len data
|−−−−−−−−|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|

Otherwise, it is like the protocol for ExtendedRepstream objects.

3.6 The Fragment streamsocket

The following describes the operations of StreamSocket in order of appearance. StreamSocket
inherits from Stream. theSocket is the BasicSocket used to transfer the data.

timeoutValue is the timeout used on all operation that do not enter a timeout. This includes all the
patterns inherited from stream.

 Process Libraries − Reference Manual

3.5 The Fragment binarysocket 7

sameConnection checks if the OS level connection wrapped in this StreamSocket is the same as
the one wrapped in other. A StreamSocket connection may be closed by close. After this point, the
StreamSocket cannot be used for communication, so you can discard (i.e. forget) it. StreamSockets
should be closed after use to free up system resources. Flush ensures that all data in internal
buffers of the StreamSocket actually gets sent. close does an automatic flush. Put, get and peek
work as with other streams.

 PutText, getLine and getAtom work like in other streams. Eos returns true if no data can possibly
be read from this connection now or ever. On the other hand, it may still happen that the
communication partner holds the connection alive but will not write any more data to it. In this case,
this process has no chance of guessing that no more data will actually arrive, so eos will
spontaneously change from false to true when the other process actually closes the connection.

Init, forceTimeout, usageTimestamp, NonBlockingScope, leaveNBScope, connect, error, host, port,
inetAddr, idle uses the implementation in BasicSocket directly.

3.7 The Fragment commpipe

 A pipe must be initialized with init before usage. Then giving a reference to its readEnd (writeEnd)
as enter parameter to redirectFromChannel (redirectToChannel) of a not yet started process object
will attach this pipe to another (not yet created) process. If only one end of the pipe is attached to
another process, the current process may read from (write to) the other end of the pipe, when the
other process has been created.

3.8 SocketGenerators

 A socketGenerator is a factory from which instances of streamSocket and of binarySocket can be
obtained, in response to active sockets connecting to the socketGenerators port.

3.8.1 The patterns of socketgenerator

 Bind must be executed to establish the given port number as an address, to which active sockets
may connect. Executing bind with port=0 establishes a randomly chosen port number as an
address. The actual port number used may be read from port. None of the other operations make
sense on an unbound generator.

As usual, when you are done, execute close on the socketGenerator.

getPortableAddress exits a portableCommunicationAddress which describes the network identity of
this socketGenerator. ForceTimeout and usageTimeStamp work as with the other socket variants,
and the considerations concerning nonBlockingScope and leaveNBScope are as usual.

3.8.2 The patterns of streamgenerator and binarygenerator

To obtain a streamSocket on the next connection requested, execute getStreamConnection, and to
obtain a binarySocket, execute getBinaryConnection. Remember to enter a timeout value. When
you are done with the created socket, execute close on it.

 Process Libraries − Reference Manual

3.7 The Fragment commpipe 8

3.9 Error Handling

 Throughout process, the facilities from the fragment errorCallback are used in the handling of
errors.

3.9.1 Error Callbacks

An error callback is a virtual pattern which is invoked in response to the occurrence of some error.
Whenever an error condition is detected on a socket, a corresponding

virtual pattern is instantiated and executed. These patterns are specializations of errCB, as
declared in errorCallback. Such virtual patterns are hereafter denoted error callback patterns. To
catch and treat an error, extend the corresponding error callback.

If an error callback is not extended and the corresponding error occurs, an exception is executed
and the program terminates. If the error callback is extended, the following holds:

if abort is executed in the extending dopart, the operation (but not the program) is aborted. You
may execute leave within a specialization of abort. Do not leave an error callback from any other
point, as this may put the object or the process into an unstable state. If you abort but do not leave,
the operation aborts, but control flow is like when the operation succeeds; in this case, any exited
values are dummy values, reflecting that the operation failed. Do not use them! Actually, do not
abort without leave!

if continue is executed in the extending dopart, there will be an attempt to recover and finish the
operation after the execution of the error callback terminates. For many types of errors, no general
recovery is possible at the operation level. But you could close a couple of files in response to a
resourceError and then execute continue. In case of timeout, you can always choose to take
another turn with continue.

if fatal is executed in the extending dopart, an exception will be executed and the program will be
terminated. So the execution of the error callback will not return. This is also the default, but with
hierarchical error callbacks, you may need fatal to undo a continue at a higher level.

In case it happens more than once that an operation from the set {abort,continue,fatal} is executed,
the one executed as the last takes precedence.

3.9.2 Error Propagation

As mentioned, the error callback patterns are present at three different levels: Concrete error
callbacks, operation level error callbacks, and socket level error callbacks.

The concrete error callbacks provide the greatest level of detail: their names indicate the kind of
error condition detected. This makes it possible to treat different errors differently.

The operation level error callback is executed whenever an error condition is detected during the
execution of that operation. In a extending of this kind of error callback, you can adjust the default
action for all the concrete error callbacks in this operation. The single socket level error callback is
executed whenever any operation detects any error condition. In a extending of this error callback,
you can adjust the default action for all concrete and operation level error callbacks.

The means for adjusting the behaviour is in all cases to execute abort (probably abort(# leave L #)),

 Process Libraries − Reference Manual

3.9 Error Handling 9

continue, or fatal, and the semantics of these imperatives are the semantics of the concrete error
callbacks.

Error callback extendings take precedence like this, in ascending order: concrete level, operation
level, socket level. This means that the higher level specifies a default, and the more concrete level
may override this default by executing continue, abort, or fatal.

3.9.3 Categories of Errors

 At the concrete level of error callbacks, errors are categorized according to classes of operating
system level error messages.

The list of names used for concrete error callbacks and a short description of the corresponding
class of operating system level error is as follows:

Error callback name Meaning

accessError insufficient access rights

addressError address (i.e. (host,port)) in use or invalid

badMsgError (EBADMSG, hardly documented in man page)

connBrokenError connection has become unusable

eosError unexpected end−of−stream

getHostError error when getting hostname

internalError should not happen; please report if it does!

intrError operation interrupted by signal

refusedError connection refused by peer

resourceError too few file descriptors/buffers etc.

timedOut specified timeout period has expired

timedOutInTransfer timed out, and some data have been transferred

unknownError OS reports unknown errno (new OS?)

usageError e.g. you must initialize port before connecting

3.10 Timeout Management

 Because most operations may provoke the suspension (de−scheduling) of the current co−routine,
any such operation may implicitly prevent this co−routine from making any progress for an
indefinite period of time. To give the co−routine the power to do something about this, each of
these operations takes a specification of an upper limit (in seconds) to the time elapsed during the
execution of that operation.

When such a timeout has been specified for some operation, the scheduler will resume the
execution of that operation if it gets the control and the timeout period has expired. This means that

 Process Libraries − Reference Manual

3.9.3 Categories of Errors 10

lots of activity in the system as a whole may postpone the detection of a timeout somewhat, and −
as usual − an infinite loop somewhere could stop everything.

In practical terms, the operation is resumed when and if the timeout period expires, and of course it
resumes by executing an error callback. Two different error callbacks may be used to indicate the
problem. If no irreversible actions have been taken, the timedOut error callback is used. If some
irreversible actions have been taken, such as receiving or sending part of a message, the
timedOutInTransfer error callback is used. This last situation is considerably more grave than the
first: Aborting an operation in−transfer means breaking the protocol, which again means that any
subsequent messages received on the same connection will be garbled. Resynchronization is
hardly possible unless the data transferred are lines of text or some other format with built−in
structural markers. So in this situation, give it another chance, or close the connection.

For streamSocket the socket level attribute timeoutValue decides the timeout for all operations
inherited from stream. For binarySocket each operation which has timeout control takes the timeout
value as its first enter parameter. Likewise with socketGenerator. If you forget to specify such a
timeout value, the operation will always terminate at once with a timeout error.

 Process Libraries − Reference Manual

3.9.3 Categories of Errors 11

4 Addresses
 The fragment commaddress supports representing addresses of communication ports with which
one might like to establish connections. In this setting, more different operating systems and kinds
of communication ports are covered than what is actually supported in BasicSocket yet.
Accordingly, TCP/IP sockets are just one example of a kind of communication port, though a very
important one.

Instances of any of these patterns are values, and under normal circumstances their identity will
make no difference. This ensures that it makes sense to translate them from BETA objects into
simple strings of text and back again, and this eases the migration of such values across networks
and other media.

At the most abstract level, portableCommAddress models a portable communication address. This
specifies the address of a single destination or the address(es) of a group of destinations.

The patterns portableMultiAddress and portablePortAddress specialize portableCommAddress into
concrete patterns for the multiple−destination case and one−destination case, respectively.

The pattern concretePortAddress and its specializations represent non−portable, protocol specific
communication port addresses. Of course, any concretePortAddress is portable, being a normal
BETA object; but only on some platforms will it be possible to have such a communication port as
is specified by the concretePortAddress.

ConcretePortAddresses are kept in portableCommAddresses and selected according to protocol
specifications, given as protocolSpec objects.

4.1 Specification of Connection Requirements

 The pattern protocolSpec is used to package a specification of requirements to a communication
transfer. This package is given to a portablePortAddress, which will then use it to choose an
appropriate channel. A specification is built with an instance of protocolSpec by setting its cType
and rType attributes. For these, choose from the constant values given in the fragment commError.

The cType value can be any of the constants commProtocol_... and specifies that the chosen
channel must be a TCP/UDP/etc. connection or that any kind of connection will do
(commProtocol_dontcare).

The value of rType is any of the constants commRely_dontcare (no requirements),
commRely_unreliable (allow all the below mentioned kinds of malfunction) or commRely_reliable
(prevent all those malfunctions). Or it is a sum of some of the constants commRely_loss (prevent
packet lossage), commRely_dup (prevent packet duplication), commRely_order (prevent packets
from arriving out of order), commRely_contents (prevent packets from having corrupt data).

In reality, the last guarantee is enforced by means of checksums or something similar, so it is only
very unlikely that a packet with corrupt data will pass unnoticed, not impossible. Moreover, all the
other guarantees depend on having packets with trustworthy (header) contents, so not all
combinations make sense.

4 Addresses 12

4.2 The Abstract Level

 The abstract pattern portableCommAddress is used to specify the identity of an abstract
communication address. The patterns portableMultiAddress and portablePortAddress are its
non−abstract specializations.

Before usage, initialize any specialization of portableCommAddress with init.

Any portableCommAddress is able to express its value in textual form, by the operation asText.
This enables simple and safe migration of an instance of any specialization of
portableCommAddress: Translate it into text, send it across the network, write it into a disk file, or
whatever, and then reconstruct it as a BETA object from its text value.

Tell a portableCommAddress what proporties are required of the communications associated with it
by entering a protocolSpec object reference. This affects its choice of concrete communication
port(s) in subsequent communications.

To reconstruct a portableCommAddress from its text representation, give it as enter parameter to
portableCommAddressFromText, and a corresponding object will be exited. The text is expected to
have been produced by some instance of a specialization of portableCommAddress using its
asText.

Problems in this process are reported by invoking parseError. This terminates the application,
unless you extend parseError to handle it.

4.3 The Concrete Level

A portableMultiAddress specifies a group of communication ports. Start or enhance the group by
inserting members. Reduce it by deleteing members.

A portablePortAddress specifies the identity of one logical communication destination. A logical
destination corresponds to a number of concrete communication ports, represented by instances of
specializations of concretePortAddress. It is up to the user of these patterns to ensure that the
contained set of concrete ports actually logically belong to the same destination.

The idea is that if I can talk on a channel of type {A,B} and you can talk on a channel of type
{B,C,D}, it is up to the underlying framework to discover that in order to establish a connection,
we must use type B.

A portablePortAddress can be built by inserting specializations of concretePortAddress. Only one
concrete address is allowed for each known type − inserting a second instance overrides the
previously inserted one. With delete, any concrete port can be removed again. To retrieve a
concrete port (without removing it), use one of the Get...Port operations. If this portablePortAddress
does not contain any concrete port of the requested variety, NONE is exited.

 ConcretePortAddress is an abstract superpattern for specifying the address of a concrete
communication port, such as a UNIX stream socket, a Macintosh PPC ToolBox session, a shared
memory buffer etc.

Like a portableCommAddress, each concrete specialization is able to express its value textually
with the operation asText, and it is able to characterize its communication protocol with the
operation protocol. The operation protName exits a text which is a short, descriptive name for that
protocol, and conformsTo answers true/false to the question, whether this kind of connection

 Process Libraries − Reference Manual

4.2 The Abstract Level 13

conforms to the protocol associated with an entered commProtocol_... constant.

The pattern unixAbstractPortAddress captures similarities between TCP and UDP ports,
represented by tcpPortAddress and udpPortAddress. The tcpPortAddress also fits a MacTCP port.
The pattern unixPortAddress represents an AF_UNIX address family socket, i.e. it appears as a
name in some directory, just like a file; ppcPortAddress represents a Macintosh PPC ToolBox
session; memPortAddress corresponds to a shared memory implementation of inter−process
communication.

 Process Libraries − Reference Manual

4.2 The Abstract Level 14

5 Managing a Pool of Connections
 A connection pool manages a number of client side communication interfaces (e.g. active sockets),
and allows choosing which one of them to use for a communication transfer by means of a
portableCommAddress. This abstracts away the need to establish connections: whenever a
connection as specified is available in the pool, we use it. Otherwise, such a connection will
implicitly be established and added to the pool. If this process runs out of resources associated with
these connections (e.g. file handles), it is possible to ask the pool to close the least recently used
connection.

The connections are subject to concurrency control, so they must be used in a take−it, use−it,
give−it−back fashion. This is achieved by the pattern communication. The concurrency control is
necessary to prevent the situation where two users of the pool both transmit messages to some
other party on one given connection, and randomly divide the incoming messages on that
connection between them, both believing to have the other party for themselves. Using the pattern
communication, at most one user of the pool communicates on any given connection at any given
point of time.

By now, the only variant of connection pool implemented is the binaryConnectionPool. Instances of
binaryConnectionPool are used for managing a number of binary socket connections. Before
usage, initialize it. The user of a binaryConnectionPool gives a specification of the receiver, the
type of connection, the quality of service etc. in a portableCommAddress to a (specialization of) the
control pattern communication. This is used as follows (where bcPool is an instance of
binaryConnectionPool):

addr[] −> bcPool.communication
 (# (* Extend error callbacks here *)
 do
 (* Within this dopart: use 'sock' to communicate *)
 (* Do not bring references to sock outside *)
 #);

If you want to leave the dopart of a specialization of a communication, use a construction like
leaving(# do leave L #) in stead of leave L. Otherwise some resources may be rendered
inaccessible.

Whenever the pool establishes a new connection, the hook onNewConnection of communication is
executed. In a extending of this hook, a reference to the newly established connection is available,
and by assigning a co−routine to actor, the connection gets associated with this co−routine. This is
used to handle incoming messages to connections in the pool, which are not the immediate
response to an outgoing message transmitted in a usage of communication: have the co−routine sit
around waiting for the incoming messages. To support such things, one must specialize
binaryConnectionPool.

If the connection delivered as sock within a specialization of communication is to be taken away
from the pool and used outside, execute removeSock and bring out a reference to sock. If it is
known that the connection will not be useful anymore, execute removeSock and sock.close.

The operation markAsDead is used to tell the pool that it certainly cannot have a connection like
the one entered. If a communication partner closes a connection (or perhaps terminates
unexpectedly), and the other end of that connection is in a connection pool, it could happen that
this connection is not chosen in any communication for some time. If a new connection is created,
the operating system may then reuse the local connection identifier (file handle, in case of UNIX
sockets), giving a totally different connection, which is then administrated by some new BETA

5 Managing a Pool of Connections 15

socket object. Now two BETA socket objects will talk to the same OS level connection (file handle),
but this means that the first object (in the pool) has silently been redirected to a new
communication partner. Of course, this leads to strange errors.

So, whenever creating a BETA socket object OUTSIDE a connection pool, please tell it by means
of markAsDead, that any connections in the pool with the same OS level identifier must have died
silently and thus should be removed from the pool. Internally, the connection pool handles this
automatically.

Please note that this problem is not specific for connection pools, for the process library, or even for
BETA programs, for that matter. But it occurs mainly in the presence of complicated and very
dynamic communication topologies, which are more likely to appear with connection pools. It would
actually be best to carry out similar checks (using sameConnection) also when using only simple
socket objects in an application.

 removeSomeConnection will seek through all unused connections in the pool. An unused
connection is a connection such that no instance of communication in any co−routine of this
process currently refers to it with its sock attribute. From this set of unused connections, it chooses
the least recently used (as reported by its usageTimestamp), closes it, and removes it from the
pool. If all connections are currently in use, application specific actions must be taken to free some
of them. The callback noConnectionsRemovable is executed in this situation. It does not terminate
the application by default, so beware of the possible infinite retry loop if removeSomeConnection is
used in response to resourceError, and no connections could actually be removed.

When done with a connectionPool, close it to close all of the connections contained within it.

 Process Libraries − Reference Manual

5 Managing a Pool of Connections 16

6 The Demo Files
 A number of demonstration files are provided in the subdirectory demo. They show simple and
typical ways to use the process library.

Because of the process aspect, and because of the nature of inter−process communication, the
demo files come in small groups. For some groups, one program will manipulate others. For other
groups, one may start a server and some clients and then interact with the clients to initiate
communication. In the following, the groups are presented one by one.

6.1 pipeline, consumer and producer

 Execute pipeline, which will then start producer and consumer in such a way that standard output
from producer is piped into standard input of consumer. The file items is read in by producer and
written to its standard output. consumer reads it standard input and writes it to its standard output.
the result is, that items is written to standard output.

6.2 firstProgram and otherProgram

 When executed, firstProgram will start otherProgram and accept a StreamSocket connection from
otherProgram. Then they exchange a couple of words, and both terminate.

6.3 streamcounterserver and streamcounterclient

 Start an instance of streamcounterserver. Then start a number of instances of streamcounterclient.

6.4 binarycounterserver and binarycounterclient

 Start an instance of binarycounterserver. Then start a number of instances of binarycounterclient.

6.5 xpilotgames

xpilotgames demonstrates how to use the StreamSocket pattern to connect to the xpilot meta
server and send a query about ongoing games.

6.6 repChatClient and repChatServer

 This group is used interactively. Start repChatServer and then a number of instances of
repChatClient. Each client will connect to the server, resulting in a star−shaped connection
topology. One may interact with each of the clients, and the clients in turn interact with the server.

The fragment commandCategory is used to distinguish different types of commands. The
command language is very simple: anything starting with the letter q is a Quit command, anything
starting with an a is an Answer command, and anything starting with an A is an AnswerWait
command. Anything else is a Default command. Enter commands as any piece of text at the

6 The Demo Files 17

prompt, ending with RETURN. Please note that leading whitespace is significant.

All commands are immediately forwarded to the server. Then, if the command was a Quit
command, the client closes down the connection and terminates. If it was an Answer command, the
client notifies the user of that fact by printing a message containing the sequence number of this
Answer command. Some time later, the server will return an answer, and the sequence number of
the answer makes it possible to match up outgoing requests with incoming answers. In case of an
AnswerWait command, the client blocks until the answer from the server arrives. For Default
commands, the contents are just echoed at the server.

For each command received, the server echoes the identification number of the client which sent
that command and the contents of the command. You may wish to examine the source code in
repChatServer to see how nonblockingScope enables the server to (semi−)simultaneously receive
incoming messages, accept connections from new clients, and do other work.

 Process Libraries − Reference Manual

6 The Demo Files 18

7 Known Bugs and Inconveniences

7.1 General

 Eos on pipes seems to fail on some systems.

Certain operations take as enter parameter a timeout value, which does not affect the execution of
the operation, because timing out makes no sense − the operation is not possibly lenghty. An
example is close of a Socket.

In portableMultiAddress, members are deleted by identity, i.e. entering a reference to some
portablePortAddress in an invocation of the delete operation will delete that exact instance, if
present. It would make more sense to delete every portablePortAddress contained by this
portableMultiAddress, which specifies the same communication port as the one entered. That is, it
would be better if members were deleted by value equality.

portableMultiAddress ought to have means for iterating through all its members, such as a scan
operation. There should also be a way to test for equality and for subset−relations between
portablePortAddresses, and between portableMultiAddresses.

In the fragment commpool, in the pattern communication in binaryConnectionPool, the operation
removeSock does not remove the connection denoted by sock as it should. Workaround: Use
sock[]−>markAsDead whereever removeSock should have been used.

The proxy demo is undocumented and probably not quite working

7.2 Windows

 Redirecting output through redirectFromFile has not yet been implemented on systems running
Windows 95/NT. The same limitation exists for reading and writing to a pipe. Using a pipe to
connect to external programs has been implemented, though.

UsageTimeStamp has not yet been implemented. Commpool therefore selects a random socket
when choosing a connection to break, not the least recently used.

7.3 Macintosh

 Processmanager has no implementation on Macintosh.

UsageTimeStamp has not yet been implemented.

7 Known Bugs and Inconveniences 19

8.1 Basicsocket Interface
ORIGIN '~beta/basiclib/basicsystemenv';
LIB_DEF 'processbasic' '../lib';

(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics 1995−97
 * All rights reserved.
 *)
INCLUDE 'errorcallback';
INCLUDE 'commaddress';

−−− systemlib:attributes −−−
(* Used for timeouts *)
waitForever: (# exit −1 #);

(* Used to make it checkable whether something is uninitialized *)
assignGuard: (# assigned: @Boolean do true −> assigned #);

(* The number 127.0.0.1 by convention is 'this host' *)
localHost_IP_number: (# exit 2130706433 #);

BasicSocket:
 (# <<SLOT socketlib:attributes>>;

 (* OPERATIONS
 * ==========
 *)

 (* do 'this' and 'other' wrap the same OS level connection? *)
sameConnection: booleanValue

 (# other: ^basicSocket;
 enter other[]
 ...
 #);

 (* construct portable address for this connection *)
getPortableAddress:

 (# addr: ^portablePortAddress;
 ...
 exit addr[]
 #);

 (* Initiator of socket communication.
 * Pass 'host' and 'port' to 'connect' to connect
 * to a passive socket to establish communication.
 * If you need to control the local port number,
 * use firstLocalPort and lastLocalPort. These are then
 * tried one at a time starting with first and ending
 * with last. None of them can be zero.
 *)

connect: open
 (# accessError:< loErrCB(# do INNER #);
 resourceError:< loErrCB(# do INNER #);
 addressError:< loErrCB(# do INNER #);
 refusedError:< loErrCB(# do INNER #);
 intrError:< loErrCB(# do INNER #);
 getHostError:< loErrCB(# do INNER #);
 firstLocalPort:<IntegerValue;
 lastLocalPort:<IntegerValue;
 aHost: ^Text;
 aPort: @Integer;
 enter (aHost[],aPort)

8.1 Basicsocket Interface 20

 ...
 #);

 (* provoke a timeout error in the current operation *)
forceTimeout:< (# ... #);

 (* return timestamp of latest operation on this socket *)
usageTimestamp:< integerValue

 (# ... #);

 (* return true iff no data is
 * immediately available for reading
 *)

endOfDataPattern:
 (# error:< hiErrCB (* operation level error callback *)
 (#
 do INNER;
 (if value=errCB_initialValue then
 (value,cleanup[])−>this(basicSocket).error−>value;
 if);
 #);
 loErrCB: errCB (* superpattern for
 * concrete error callbacks *)
 (#
 do INNER;
 (if value=errCB_initialValue then
 (value,cleanup[])−>error−>value;
 if);
 #);
 connBrokenError:< loErrCB(# do INNER #);
 internalError:< loErrCB(# do INNER #);
 unknownError:< loErrCB(# do INNER #);
 value: @boolean;
 ...
 exit value
 #);

 (* Close socket completely. Any further operations are
 * disallowed and the other end gets EOS if it tries *)

close: withIdle(# ... #);

 (* Close socket partially. closeRead makes further reads
 * at this end of the socket and further writes at
 * the other end fail with EOS. *)

closeRead: (# ... #);

 (* Close socket partially. closeWrite makes further writes
 * at this end of the socket and further reads at
 * the other end fail with EOS. *)

closeWrite: (# ... #);

 (* CALLBACKS
 * =========
 *)

 (* every local 'idle' executes this global one *)
idle:< Object;

 (* socket level error callback *)
error:< hiErrCB(# do INNER #);

 (* EXPLICIT SCHEDULING
 * ===================
 *)

 Process Libraries − Reference Manual

8.1 Basicsocket Interface 21

 (* NB: don`t 'leave' a 'nonBlockingScope'. Use 'leaveNBScope'. *)
nonBlockingScope: (# ... #);
leaveNBScope: (# ... #);

 (* ATTRIBUTES
 * ==========
 *)

host: @assignGuard(# t: @text; enter t exit t #);
port: @assignGuard(# rep: @integer enter rep exit rep #);
inetAddr: @assignGuard(# rep: @integer enter rep exit rep #);

 (* AUXILIARY PATTERNS
 * ==================
 *)

withPE:
 (# error:< hiErrCB (* operation level error callback *)
 (#
 do INNER;
 (if value=errCB_initialValue then
 (value,cleanup[])−>this(basicSocket).error−>value;
 if);
 #);
 loErrCB: errCB (* superpattern for
 * concrete error callbacks *)
 (#
 do INNER;
 (if value=errCB_initialValue then
 (value,cleanup[])−>error−>value;
 if);
 #);
 timedOut:< loErrCB(# do INNER #);
 timedOutInTransfer:< loErrCB(# do INNER #);
 internalError:< loErrCB(# do INNER #);
 connBrokenError:< loErrCB(# do INNER #);
 usageError:< loErrCB(# do INNER #);
 unknownError:< loErrCB(# do INNER #);
 resourceError:< loErrCB(# do INNER #);
 badMsgError:< loErrCB(# do INNER #);
 timeout: @integer;
 enter timeout
 do INNER
 #);

withIdle: withPE
 (# idle:< (# do INNER; this(basicSocket).idle #);
 blocking:<
 (# continue: (# do true−>doContinue #);
 doContinue: @boolean;
 do INNER;
 (if not doContinue then leaveNBScope if);
 idle;
 #);
 do INNER
 #);

open: withIdle(# ... #);
init:< (# ... #);

private: @...;
 #)

 Process Libraries − Reference Manual

8.1 Basicsocket Interface 22

8.2 Binarygenerator Interface
ORIGIN 'socketgenerator';
LIB_DEF 'processbinarygen' '../lib';

INCLUDE 'binarysocket';
BODY 'private/binarygenbody';

−− socketgeneratorlib:attributes −−
(* accept a connection and return a binarySocket on it *)
getBinaryConnection: withIdleAndPE
 (# sockType:< BinarySocket;

sock: ^sockType;
timeout: @integer;

 enter timeout
 ...
 exit sock[]
 #)

8.2 Binarygenerator Interface 23

8.3 Binarysocket Interface
ORIGIN 'basicsocket';
LIB_DEF 'processbinary' '../lib';

(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics 1995−97
 * All rights reserved.
 *)

BODY 'private/binarysocketbody';
INCLUDE '~beta/sysutils/RepetitionObject';
INCLUDE 'repstream/extendedRepstream';

−−− systemlib: attributes −−−
BinarySocket: basicSocket
 (# <<SLOT binarysocketlib: attributes>>;

 (* send an integer *)
putIntPattern: withIdle

 (# i: @integer;
 enter i
 ...
 #);

 (* receive an integer *)
getIntPattern: withIdle

 (# i: @integer;
 ...
 exit i
 #);

 (* send contents of an ExtendedRepstream *)
putRepPattern: repIO

 (#
 enter header
 ...
 #);

 (* receive contents to an ExtendedRepstream *)
getRepPattern: repIO

 (#
 ...
 exit header
 #);

 (* send contents from RepetitionObject *)
putRepObjPattern: repObjIO

 (#
 ...
 #);

 (* receive contents to RepetitionObject.
 * Furtherbinding maxLongs can be used to limit the size of
 * packets being received, which is useful in particular when
 * the sender cannot be trusted.
 *)

getRepObjPattern: repObjIO
 (# maxLongs:< IntegerValue
 (# do MaxInt div 4 −> value; INNER #);
 MaxlongsExceeded:< Object;
 ...
 #);

8.3 Binarysocket Interface 24

repIO: withIdle
 (* Read/write a block to/from 'rep',
 * returning/using 'header'. The length of the block is
 * stored in/retrived from 'rep.end'.
 *)
 (# rep: ^ExtendedRepstream;
 header: @integer;
 enter rep[]
 do INNER
 #);

repObjIO: withIdle
 (#
 (* Read/write a block to/from 'rep'.
 * The length of the block is stored
 * in/retrived from 'rep.end'.
 *)
 rep: ^RepetitionObject;
 enter rep[]
 do INNER
 #);

endOfData: @endOfDataPattern;
putInt: @putIntPattern;
getInt: @getIntPattern;
putRep: @putRepPattern;
getRep: @getRepPattern;
putRepObj: @putRepObjPattern;
getRepObj: @getRepObjPattern;

binpriv: @...;
 #)

 Process Libraries − Reference Manual

8.3 Binarysocket Interface 25

8.4 Commaddress Interface
ORIGIN '~beta/basiclib/betaenv';
LIB_DEF 'processaddress' '../lib';

(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics 1994−97
 * All rights reserved.
 *)

BODY 'private/commaddressbody';

(* CONTENTS
 * ========
 *
 * Defines patterns for representing communication addresses.
 *
 * The most abstract pattern, portableCommAddress, models a
 * portable communication address. This specifies the address
 * of a single destination or the address(es) of a group of
 * destinations.
 *
 * The patterns portableMultiAddress and portablePortAddress
 * specialize portableCommAddress into concrete patterns for
 * the multiple−destination case and one−destination case,
 * respectively.
 *
 * The pattern concretePortAddress and its specializations
 * represent non−portable, protocol specific communication
 * port addresses. These are kept in portableCommAddresses
 * and selected according to protocol specifications, given
 * as protocolSpec objects.
 *
 * As a best−fit addition, there are also some patterns
 * to aid the process of looking up TCP/IP hosts, getting the
 * hostname of this machine, etc.
 *
 *)

−−− lib:attributes −−−
(* Reliability
 * ===========
 *
 * Used to specify the reliability proporties
 * required for a transfer (in a protocolSpec).
 * The proporties are additive.
 *)

commRely_dontcare: (# exit 0 #);
commRely_loss: (# exit 2 #); (* packets are not lost *)
commRely_dup: (# exit 4 #); (* packets are not duplicated *)
commRely_order: (# exit 8 #); (* packets arrive
 * in correct order *)
commRely_contents: (# exit 16 #); (* corrupt data unlikely
 * (e.g. checksum) *)

commRely_unreliable: (# exit 1 #); (* ensures none of the above *)
commRely_reliable: (# exit 31 #); (* ensure loss, dup,
 * order & contents *)

(* Type of connection protocol
 * ===========================

8.4 Commaddress Interface 26

 *
 * OS level category of connection. An implementation
 * level description of an individual connection
 * managed by a connectionPool. Weird numbers chosen
 * to make data containing these constants recognizable
 * in a raw communication dump.
 *)

commProtocol_dontcare: (# exit 0 #);
commProtocol_tcp: (# exit 72301 #); (* TCP/IP *)
commProtocol_udp: (# exit 72302 #); (* UDP/IP *)
commProtocol_unix: (# exit 72303 #); (* UNIX domain
 * (socket as file) *)
commProtocol_ppc: (# exit 72304 #); (* Mac PPC ToolBox *)
commProtocol_mem: (# exit 72305 #); (* Shared memory buffer *)

(* Mnemonic names of the protocols *)
commProtName_tcp: (# exit 'TCP' #);
commProtName_udp: (# exit 'UDP' #);
commProtName_unix: (# exit 'UNIX' #);
commProtName_ppc: (# exit 'PPC' #);
commProtName_mem: (# exit 'MEM' #);

(* Specification of connection requirements
 * ==
 *
 * Used to package spec. of requirements to a communication
 * transfer, and then given to a portablePortAddress, which
 * will use it when choosing an appropriate channel.
 *)
protocolSpec:
 (#

cType: @integer; (* one of 'commProtocol_.*'
 * dontcare is default *)

rType: @integer; (* one of 'commRely_.*'
 * dontcare is default *)
 (* bandwidth/r−rr−rra/etc *)
 enter (cType, rType)
 exit cType
 #);

(* Portable communication address
 * ==============================
 *
 * Specifies identity of an abstract communication address.
 * This pattern is abstract, and no instances of it are
 * expected to exist. The patterns portableMultiAddress and
 * portablePortAddress are non−abstract specializations.
 *
 * Any portableCommAddress is able to express its value
 * in textual form, by 'asText'.
 *
 * Tell a portableCommAddress what proporties are required
 * of the communications associated with it by entering
 * a protocolSpec object. This affects its choice of
 * concrete communication port(s) in subsequent
 * communications.
 *)
portableCommAddress:
 (#

init:< Object;
asText: @asTextPattern;

 (* private *)

 Process Libraries − Reference Manual

8.4 Commaddress Interface 27

asTextPattern:< (# t: ^text do INNER exit t[] #);
enterSpec: @...;
private: @...;

 enter enterSpec
 #);

(* Portable communication address constructor
 * ==
 *
 * Function. Takes a text value, which is expected to have
 * been produced by some instance X of a specialization of
 * portableCommAddress using its 'asText'. Returns an object
 * with the same value as X.
 *
 * Problems are reported by invoking 'parseError'. The
 * application will then terminate with an exception,
 * unless you furtherbind parseError to leave it.
 *)
portableCommAddressFromText:
 (#

parseError:<
 (# msg: ^text;
 enter msg[]
 ...
 #);

txt: ^text;
addr: ^portableCommAddress;

 <<SLOT portableCommAddressFromTextLib:attributes>>;
 enter txt[]
 ...
 exit addr[]
 #);

(* Portable multicast address
 * ==========================
 *
 * Specifies identities of the members of a group of
 * communication destinations.
 *
 * The group can be built from scratch or enhanced
 * by 'insert'ing members. It can be reduced by
 * 'delete'ing members.
 *)
portableMultiAddress: portableCommAddress
 (#

init::< (# ... #);

insert:
 (# addr: ^portablePortAddress;
 enter addr[]
 ...
 #);

delete:
 (# addr: ^portablePortAddress;
 enter addr[]
 ...
 #);

 (* private *)
asTextPattern::< (# ... #);
private2: @...;

 #);

 Process Libraries − Reference Manual

8.4 Commaddress Interface 28

(* Portable communication port address
 * ===================================
 *
 * Specifies identity of one logical communication destination.
 * A logical destination corresponds to a number of concrete
 * communication ports, represented by instances of
 * specializations of concretePortAddress.
 *
 * A portablePortAddress can be built from scratch by
 * by 'insert'ing such instances. Only one concrete address
 * is allowed for each known type − inserting a second instance
 * overrides the previously inserted one.
 *)
portablePortAddress: portableCommAddress
 (#

insert:
 (# addr: ^concretePortAddress;
 addrHasUnknownType:< exception;
 enter addr[]
 ...
 #);

delete:
 (# prot: @integer; (* one of 'commProtocol_.*' *)
 addrHasUnknownType:< exception;
 enter prot
 ...
 #);

getTcpPort:
 (# addr: ^tcpPortAddress;
 ...
 exit addr[] (* NONE if not present *)
 #);

getUdpPort:
 (# addr: ^udpPortAddress;
 ...
 exit addr[] (* NONE if not present *)
 #);

getUnixPort:
 (# addr: ^unixPortAddress;
 ...
 exit addr[] (* NONE if not present *)
 #);

getPpcPort:
 (# addr: ^ppcPortAddress;
 ...
 exit addr[] (* NONE if not present *)
 #);

getMemPort:
 (# addr: ^memPortAddress;
 ...
 exit addr[] (* NONE if not present *)
 #);

 (* private *)
asTextPattern::< (# ... #);
private2: @...;

 #);

(* Concrete communication port address
 * ===================================
 *
 * Abstract superpattern for specifying the address
 * of a concrete communication port, such as a UN*X
 * stream socket, a Mac PPC ToolBox session, a shared

 Process Libraries − Reference Manual

8.4 Commaddress Interface 29

 * memory buffer etc.
 *
 * Is able to express its value textually with 'asText',
 * and to characterize its communication protocol
 * with 'commType'.
 *)
concretePortAddress:
 (#

asText: @asTextPattern;
asTextPattern:< (# t: ^text do INNER exit t[] #);

protocol:< integerValue; (* one of 'commProtocol_.*' *)
protName:< (# t: ^text do &text[] −> t[]; INNER exit t[] #);
conformsTo: BooleanValue

 (# p: @integer;
 enter p
 ...
 #);

private: @...;
 #);

(* Unix communication port address types
 * =====================================
 *
 * The pattern unixAbstractPortAddress captures similarities
 * between TCP and UDP ports, represented by
 * tcpPortAddress and udpPortAddress.
 *
 * The pattern unixPortAddress represents an AF_UNIX address
 * family socket, i.e. it appears as a name in some directory,
 * just like a file.
 *
 * NB: The tcpPortAddress also fits a MacTCP port.
 *)
unixAbstractPortAddress: concretePortAddress
 (#

inetAddr: @integer;
portNo: @integer;
asTextPattern::< (# ... #);

 #);

tcpPortAddress: unixAbstractPortAddress
 (#

protocol::< (# do commProtocol_tcp −> value #);
protName::< (# do commProtName_tcp −> t #);

 #);

udpPortAddress: unixAbstractPortAddress
 (#

protocol::< (# do commProtocol_udp −> value #);
protName::< (# do commProtName_udp −> t #);

 #);

unixPortAddress: concretePortAddress
 (#

asTextPattern::< (# ... #);
pathName: @text;
protocol::< (# do commProtocol_unix −> value #);
protName::< (# do commProtName_unix −> t #);

 #);

(* Mac communication port address
 * ==============================
 *

 Process Libraries − Reference Manual

8.4 Commaddress Interface 30

 * Represents a PPC ToolBox session.
 *)
ppcPortAddress: concretePortAddress
 (#

host: @text;
portNo: @integer;
sessionId: @integer;
asTextPattern::< (# ... #);
protocol::< (# do commProtocol_ppc −> value #);
protName::< (# do commProtName_ppc −> t #);

 #);

(* Shared memory buffer port address
 * =================================
 *
 * Corresponding communication support NOT IMPLEMENTED.
 * Could be very fast, perhaps for communicating within
 * one process, using the same source code as for remote
 * communication.
 *)
memPortAddress: concretePortAddress
 (#

bufferID: @integer; (* !!! This may have to change *)
asTextPattern::< (# ... #);
protocol::< (# do commProtocol_mem −> value #);
protName::< (# do commProtName_mem −> t #);

 #);

(* IPv4 Miscellaneous address conversions *)

(* Look up the IPv4 address of a given host. *)
gethostbyname:
 (#

notfound:< Exception;
name: ^Text;
inadr: @Integer;

 enter name[]
 ...
 exit inadr
 #);

(* Look up the name of a given IPv4 address. *)
gethostbyaddr:
 (#

notfound:< Exception;
name: ^Text;
inadr: @Integer;

 enter inadr
 ...
 exit name[]
 #);

(* Find the name and IPv4 address of this host. *)
thisHost:
 (# name: ^Text;

inadr: @Integer;
err: @Integer; (* Private *)

 ...
 exit (name[], inadr)
 #)

 Process Libraries − Reference Manual

8.4 Commaddress Interface 31

8.5 Commpipe Interface
ORIGIN '~beta/basiclib/basicsystemenv';
LIB_DEF 'processpipe' '../lib';

(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics 1995−97
 * All rights reserved.
 *)

MDBODY default 'private/commpipe_unix'
 ppcmac 'private/commpipe_mac'
 nti 'private/commpipe_nt';

INCLUDE 'private/sysFdStream';

−−− systemlib:attributes −−−
propagateException: (# msg: ^Text enter msg[] do INNER #);

pipe:
 (# <<SLOT pipelib:attributes>>;

 (* OPERATIONS *)
init:<(# error:< propagateException

 (# do INNER; msg −> pipeError #);
 ...
 #);

close:< (# ... #);

pipeException: Exception
 (#
 enter msg
 do (if not msg.empty then msg.newline if);
 INNER;
 #);

pipeError:< PipeException;

 (* ATTRIBUTES *)
readEnd: ^fdStream;
writeEnd: ^fdStream;

private: @...;
#)

8.5 Commpipe Interface 32

8.6 Commpool Interface
ORIGIN 'binarysocket';
LIB_DEF 'processpool' '../lib';

(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics 1995−97
 * All rights reserved.
 *)

BODY 'private/commpoolbody';
INCLUDE 'commaddress';
INCLUDE '~beta/containers/list';

−−− systemlib:attributes −−−

BinaryConnectionPool:
 (#
 <<SLOT binaryconnectionpoollib:attributes>>;

 (* TYPES
 * =====
 *)

socketType:< BinarySocket;

 (* OPERATIONS
 * ==========
 *)

init:< (# ... #);

communication:
 (#
 (* OPERATIONS
 * ==========
 *)

 (* remove sock from this pool *)
 removeSock:
 (#
 ...
 #);

 (* NB: always wrap leave/restart out of
 * this(communication) in a specialization
 * of 'leaving' *)
 leaving: (# ... #);

 (* CALLBACKS
 * =========
 *)

 onNewConnection:<
 (* executed when a new connection has been created *)
 (# sock: ^socketType; (* The new connection *)
 context: ^object; (* NB: Should`ve been private *)
 actor: ^|system; (* process to associate with sock *)
 enter (sock[],context[])

8.6 Commpool Interface 33

 do INNER
 exit actor[]
 #);

 error:< hiErrCB (* operation level error callback *)
 (#
 do INNER;
 (if errCB_initialValue=value then
 (value,cleanup[])−>
 this(BinaryConnectionPool).error−>value;
 if);
 #);

 concrErrCB: hiErrCB (* superpattern for
 * concrete error callbacks *)
 (#
 do INNER;
 (if errCB_initialValue=value then
 (value,cleanup[])−>error−>value;
 if);
 #);

 addrHasUnknownType:< exception; (* Considered fatal,
 * for now *)
 internalError:< concrErrCB(# do INNER #);
 unknownError:< concrErrCB(# do INNER #);
 accessError:< concrErrCB(# do INNER #);
 resourceError:< concrErrCB(# do INNER #);
 addressError:< concrErrCB(# do INNER #);
 refusedError:< concrErrCB(# do INNER #);
 intrError:< concrErrCB(# do INNER #);
 getHostError:< concrErrCB(# do INNER #);

 (* ATTRIBUTES
 * ==========
 *)

 addr: ^portableCommAddress;
 sock: ^socketType;

 (* PRIVATE
 * =======
 *)

 priv: @...;

 enter addr[]
 ...
 #);

markAsDead:
 (# sock: ^socketType;
 enter sock[]
 ...
 #);

removeSomeConnection:
 (* Removes least recently used currently unused connection *)
 (# noConnectionsRemovable:< object;
 ...
 #);

close:< (# ... #);

 Process Libraries − Reference Manual

8.6 Commpool Interface 34

 (* CALLBACKS
 * =========
 *)

error:< hiErrCB(# do INNER #);

 (* PRIVATE
 * =======
 *)

private: @...;
 #)

 Process Libraries − Reference Manual

8.6 Commpool Interface 35

8.7 Errorcallback Interface
ORIGIN '~beta/basiclib/betaenv';
LIB_DEF 'processerrcb' '../lib/';

(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics 1995−97
 * All rights reserved.
 *)

BODY 'private/errorcallbackbody';

−−− lib:attributes −−−

errCB_initialValue: (# exit −1 #);
errCB_abortProgram: (# exit 0 #);
errCB_abortOperation: (# exit 1 #);
errCB_continueOperation: (# exit 2 #);

errCB: IntegerValue
 (# abort: (# ... #);

continue: (# ... #);
fatal: (# ... #);
addMsg: (# t: ^text enter t[] ... #);
exceptionType:< exception;
cleanup: ^object;
private: @...;

 enter cleanup[]
 ...
 #);

hiErrCB: IntegerObject
 (# abort: (# ... #);

continue: (# ... #);
fatal: (# ... #);
cleanup: ^object;

 enter cleanup[]
 do INNER
 #)

8.7 Errorcallback Interface 36

8.8 Processmanager Interface
ORIGIN '~beta/basiclib/basicsystemenv';
LIB_DEF 'processmanager' '../lib';

(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics, 1992−97
 * All rights reserved.
 *)

BODY 'private/processmanagerbody';
INCLUDE '~beta/basiclib/file';

−−− systemlib:attributes −−−
BetaEnvStop: (# T: ^Text; I: @Integer;
 enter (I,T[])
 do (I,T[]) −> Stop;
 #);

Process:
 (* Notice, this(Process) can only be executed once.
 *
 * Two program executions of the same Process,
 * can be executed by instantiating and executing two different BETA
 * objects from the same Process.
 *)
 (#
 <<SLOT ProcessLib:attributes>>;

name: ^Text;
init:< (# enter name[] ... #);

argType:
 (# argument: @Text;
 putArg:
 (# t: ^Text;
 enter t[]
 ...
 #);
 append: @putArg;
 scanArguments: (* calls INNER for each argument *)
 (# current: @Text;
 ...
 #);
 #);

argument: @argType; (* arguments to this(Process) *)

 (* operations *)

start: (* starts this(Process)'s program execution *)
 (# error:< ProcessManagerException;
 twoCurrent:< ProcessManagerException;
 ...
 #);

stop: (* stops this(Process)'s program execution *)
 (# error:< ProcessManagerException;
 ...
 #);

awaitStopped: (* Returns when THIS(Process) stops *)
 (# error:< ProcessManagerException;

8.8 Processmanager Interface 37

 ...
 #);

stillRunning: (* Returns true if
 * THIS(Process) is still running
 *)
 (# error:< ProcessManagerException;
 value: @Boolean;
 ...
 exit value
 #);

 (* input/output redirection *)

connectToProcess: (* connect output of this(process)
 * to toProcess's input
 * In Unix shell terms:
 * this(Process) | toProcess
 *)
 (# error:< ProcessManagerException;
 toProcess: ^Process;
 enter toProcess[]
 ...
 #);

connectErrToProcess: (* connect stdout of this(process)
 * to toProcess's input
 * In Unix shell terms:
 * this(Process) |2 toProcess
 *)
 (# error:< ProcessManagerException;
 toProcess: ^Process;
 enter toProcess[]
 ...
 #);

connectInPipe: (* connect output of fromProcess
 * to input of this(process)
 * In Unix shell terms:
 * fromProcess | this(Process)
 *)
 (# error:< ProcessManagerException;
 fromProcess: ^Process;
 enter fromProcess[]
 ...
 #);

redirectFromFile: (* redirect input to this(process)
 * from inputFile
 * In Unix shell terms:
 * this(Process) < inputFile
 *)
 (# error:< ProcessManagerException;
 inputFile: ^File;
 enter inputFile[]
 ...
 #);

redirectToFile: (* redirect output of this(process)
 * to outputFile
 * In Unix shell terms:
 * this(Process) > outputFile
 *)
 (# error:< ProcessManagerException;
 outputFile: ^File;
 enter outputFile[]

 Process Libraries − Reference Manual

8.8 Processmanager Interface 38

 ...
 #);

redirectErrToFile: (* redirect stderr output of this(process)
 * to outputFile
 * In Unix shell terms:
 * this(Process) >2 outputFile
 *)
 (# error:< ProcessManagerException;
 outputFile: ^File;
 enter outputFile[]
 ...
 #);

redirectFromChannel: (* redirect input to this(process)
 * from inputChannel
 *)
 (# error:< ProcessManagerException;
 inputChannel: ^Stream;
 enter inputChannel[]
 ...
 #);

redirectToChannel: (* redirect output of this(process)
 * to outputChannel
 *)
 (# error:< ProcessManagerException;
 outputChannel: ^Stream;
 enter outputChannel[]
 ...
 #);

redirectErrToChannel: (* redirect stderr output of this(process)
 * to outputChannel
 *)
 (# error:< ProcessManagerException;
 outputChannel: ^Stream;
 enter outputChannel[]
 ...
 #);

 (* Callbacks: called when the proper action has occurred *)

onStart:< (# do INNER #);
onStop:< (# do INNER #);

doDebug: @Boolean;
private: @...;

 #);

ProcessManagerException: Exception
 (# message: ^Text;
 enter message[]
 ...
 #)

 Process Libraries − Reference Manual

8.8 Processmanager Interface 39

8.9 Socketgenerator Interface
ORIGIN '~beta/basiclib/basicsystemenv';
LIB_DEF 'processsockgen' '../lib';

(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics 1995−97
 * All rights reserved.
 *)

INCLUDE 'basicsocket';
BODY 'private/socketgenbody';

−−− systemlib:attributes −−−

SocketGenerator:
 (# <<SLOT socketgeneratorlib:attributes>>;

 (* OPERATIONS
 * ==========
 *)

 (* Setting 'port'=0 and executing 'bind' gives you
 * a SocketGeneratorthat accepts connections on a
 * randomly chosen portnumer, which may be found in 'port'.
 *)

bind: withIdleAndPE
 (#
 enter port
 ...
 #);

 (* construct portable address for this generator *)
getPortableAddress:

 (# addr: ^portablePortAddress;
 ...
 exit addr[]
 #);

 (* De−register the bind *)
close: withIdleAndPE

 (#
 ...
 #);

 (* provoke a timeout error in the current operation *)
forceTimeout: @

 (#
 ...
 #);

 (* return timestamp of latest operation on this generator *)
usageTimestamp: @integerValue

 (#
 ...
 #);

 (* CALLBACKS
 * =========
 *)

 (* every local 'idle' executes this global one *)

8.9 Socketgenerator Interface 40

idle:< object;

 (* socket level error callback *)
error:< hiErrCB(# do INNER #);

 (* EXPLICIT SCHEDULING
 * ===================
 *)

 (* NB: don`t 'leave' a 'nonBlockingScope'.
 * Use 'leaveNBScope'.
 *)

nonBlockingScope: (# ... #);
leaveNBScope: (# ... #);

 (* ATTRIBUTES
 * ==========
 *)

port: @assignGuard(# rep: @integer enter rep exit rep #);

 (* AUXILIARY PATTERNS
 * ==================
 *)

withIdleAndPE:
 (# error:< hiErrCB (* operation level error callback *)
 (#
 do INNER;
 (if errCB_initialValue=value then
 (value,cleanup[])−>
 this(socketGenerator).error−>value;
 if);
 #);
 loErrCB: errCB (* superpattern for
 * concrete error callbacks
 *)
 (#
 do INNER;
 (if errCB_initialValue=value then
 (value,cleanup[])−>error−>value;
 if);
 #);
 usageError:< loErrCB(# do INNER #);
 resourceError:< loErrCB(# do INNER #);
 accessError:< loErrCB(# do INNER #);
 addressError:< loErrCB(# do INNER #);
 connBrokenError:< loErrCB(# do INNER #);
 intrError:< loErrCB(# do INNER #);
 internalError:< loErrCB(# do INNER #);
 unknownError:< loErrCB(# do INNER #);
 timedOut:< loErrCB(# do INNER #);
 Idle:< (# do INNER; this(socketGenerator).Idle #);
 Blocking:<
 (# continue: (# do true−>doContinue #);
 doContinue: @boolean;
 do
 INNER;
 (if not doContinue then leaveNBScope if);
 Idle;
 #);
 do INNER
 #);

 Process Libraries − Reference Manual

8.9 Socketgenerator Interface 41

 (* PRIVATE
 * =======
 *)

private: @...;
 #)

 Process Libraries − Reference Manual

8.9 Socketgenerator Interface 42

8.10 Streamgenerator Interface
ORIGIN 'socketgenerator';
LIB_DEF 'processstreamgen' '../lib';

INCLUDE 'streamsocket';
BODY 'private/streamgenbody';

−− socketgeneratorlib:attributes −−
(* accept a connection and return a streamSocket on it *)
getStreamConnection: withIdleAndPE
 (# sockType:< StreamSocket;

sock: ^sockType;
timeout: @integer;

 enter timeout
 ...
 exit sock[]
 #)

8.10 Streamgenerator Interface 43

8.11 Streamsocket Interface
ORIGIN '~beta/basiclib/basicsystemenv';
LIB_DEF 'processstream' '../lib';

(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics 1995−97
 * All rights reserved.
 *)

INCLUDE 'basicsocket';
BODY 'private/streamsocketbody';

−−− systemlib:attributes −−−
StreamSocket: Stream
 (# <<SLOT streamsocketlib:attributes>>;

theSocket: @basicSocket
 (* The socket communication goes through *)
 (# error::
 (#
 do (if value=errCB_initialValue then
 (* Error not handled yet *)
 (value,cleanup[])−>this(StreamSocket).error−>value;
 (if value=errCB_initialValue then
 this(StreamSocket).otherError;
 (* If otherError did not terminate the
 * program, let it continue here as well
 *)
 errCB_continueOperation−>value;
 if)
 if)
 #)
 #);

 (* basics *)
timeoutValue:<

 (* Length in seconds.
 * All operations that do not enter a timeout
 * themselves uses this timeout.
 *)
 integerValue(# do waitForever−>value; INNER #);

 (* operations *)
sameConnection: booleanValue

 (* do 'this' and 'other' wrap
 * the same OS level connection?
 *)
 (# other: ^StreamSocket;
 enter other[]
 ...
 #);

flush: theSocket.withIdle
 (#
 ...
 #);

close: theSocket.withPE
 (* Close socket completely. Any further operations are
 * disallowed and the other end gets EOS if it tries *)
 (# ... #);

8.11 Streamsocket Interface 44

closeRead: theSocket.closeRead
 (* Close socket partially. closeRead makes further reads
 * at this end of the socket and further writes at
 * the other end fail with EOS. *)
 (# #);

closeWrite: theSocket.closeWrite
 (* Close socket partially. closeWrite makes further writes
 * at this end of the socket and further reads at
 * the other end fail with EOS. *)
 (# #);

put::
 (# Idle:< (# do INNER #);
 Blocking:< (# do INNER #);
 ...
 #);

puttext::
 (# Idle:< (# do INNER #);
 Blocking:< (# do INNER #);
 ...
 #);

get::
 (# theIdle: @theSocket.withIdle
 (# connBrokenError::
 (# do errCB_abortOperation −> value;
 this(Stream).EOSerror;
 #)
 #);
 Idle:< (# do INNER #);
 Blocking:< (# do INNER #);
 ...
 #);

peek::
 (# theIdle: @theSocket.withIdle
 (# connBrokenError::
 (# do errCB_abortOperation −> value;
 this(Stream).EOSerror;
 #)
 #);
 Idle:< (# do INNER #);
 Blocking:< (# do INNER #);
 ...
 #);

getline::
 (# priv: @...;
 Idle:< (# do INNER #);
 Blocking:< (# do INNER #);
 timedOut: @Boolean;
 do priv;
 #);

getAtom::
 (# ch: @Char;
 Idle:< (# do INNER #);
 Blocking:< (# do INNER #);
 ...
 #);

eos::
 (# priv: @...
 do priv;

 Process Libraries − Reference Manual

8.11 Streamsocket Interface 45

 #);

getPos::
 (#
 do −1 −> value;
 #);

setPos::
 (#
 do this(Stream).otherError;
 #);

init:< (# do theSocket.init; INNER #);
forceTimeout:< (# do theSocket.forceTimeout #);
usageTimestamp:< integerValue

 (# do theSocket.usageTimestamp −> value #);

 (* nonBlockingScope support *)
 (* Note: don`t 'leave' a 'nonBlockingScope'.
 * Use 'leaveNBScope'
 *)

nonBlockingScope: theSocket.nonBlockingScope(# do INNER #);
leaveNBScope: theSocket.nonBlockingScope(# do INNER #);

connect: theSocket.connect(# do INNER #);

Idle:< Object; (* every local 'Idle' executes this global one *)

 (* socket level error callback *)
error:< hiErrCB(# do INNER #);

 (* attributes *)
host: (# enter theSocket.host exit theSocket.host #);
port: (# enter theSocket.port exit theSocket.port #);
inetAddr: (# enter theSocket.inetAddr exit theSocket.inetAddr #);

 (* private *)
private: @...;

 #)

 Process Libraries − Reference Manual

8.11 Streamsocket Interface 46

8.12 Systemcomm Interface
ORIGIN '~beta/basiclib/basicsystemenv';

(*
 * COPYRIGHT
 * Copyright (C) Mjolner Informatics 1994−97
 * All rights reserved.
 *)

INCLUDE 'streamgenerator';
INCLUDE 'binarygenerator';

8.12 Systemcomm Interface 47

Index
The entries in the alphabetic index consists of selected words and symbols from the body files of
this manual − these are in bold font − as well as the identifiers defined in the public interfaces of
the libraries − set in regular font.
In the manual, the entries, which can be found in the index are typeset like this. This can help
localizing the identifier, when the link from the index if followed − especially in the case where the
browser does not scroll the line to the top, e.g. because there is less than a page of text left.
In the small table of letters and symbols below, each entry links directly to the section of the index
containing entries starting with the corresponding letter or symbol.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A

abort [2]
Abstract Level
addMsg
addr
Addresses

addresses
argType
argument
assigned
AssignGuard

assignGuard
assigned

asText [2]
asTextPattern [2] [3] [4] [5] [6] [7] [8]
awaitStopped [2]

B

BasicSocket
close
closeRead
closeWrite
connect
endOfDataPattern
error
forceTimeout
getPortableAddress
host
idle
inetAddr
init
leaveNBScope
nonBlockingScope
open
port
private
sameConnection

usageTimestamp
withIdle
withPE

BetaEnvStop
I
T

binaryConnectionPool
BinaryConnectionPool

close
communication
error
init
markAsDead
private
removeSomeConnection
socketType

binarycounterserver and
binarycounterclient
BinarySocket [2]

binpriv

endOfData
getInt
getIntPattern
getRep
getRepObj
getRepObjPattern
getRepPattern
putInt
putIntPattern
putRep
putRepObj
putRepObjPattern
putRepPattern
repIO
repObjIO

bind
binpriv
bufferID

C

Child Processes
cleanup [2]
close [2] [3] [4] [5]
closeRead [2]

commProtocol_udp
commProtocol_unix
commRely_contents
commRely_dontcare

asTextPattern
conformsTo
private
protName

Index 48

closeWrite [2]
commaddress
commProtName_mem
commProtName_ppc
commProtName_tcp
commProtName_udp
commProtName_unix
commProtocol_dontcare
commProtocol_mem
commProtocol_ppc
commProtocol_tcp

commRely_dup
commRely_loss
commRely_order
commRely_reliable
commRely_unreliable
Communicating with other
Processes
Communication Concepts
communication [2]
ConcretePortAddress
concretePortAddress

asText

protocol
conformsTo
connect [2]
ConnectErrToProcess
connectErrToProcess
connectInPipe [2]
ConnectToProcess
connectToProcess
continue [2]
control
cType

D

delete [2]
Demo Files

demo
doDebug

E

endOfData
endOfDataPattern
enterSpec
eos
err
errCB

abort
addMsg

cleanup
continue
exceptionType
fatal
private

errCB_abortOperation
errCB_abortProgram
errCB_continueOperation

errCB_initialValue
Error Handling
error [2] [3] [4] [5]
errorCallback
Errors
exceptionType

F

Families of Sockets
fatal [2]
firstProgram and
otherProgram

flush
forceTimeout [2] [3]
Fragment basicsocket

Fragment commpipe

G

General
get
getAtom [2]
getBinaryConnection

sock
sockType
timeout

gethostbyaddr
inadr
name
notfound

gethostbyname

inadr
name
notfound

getInt
getIntPattern
getLine
getline
getMemPort
getPortableAddress [2]
getPos
getPpcPort
getRep

getRepObj
getRepObjPattern
getRepPattern
getStreamConnection

sock
sockType
timeout

getTcpPort
getUdpPort
getUnixPort

 Process Libraries − Reference Manual

D 49

H

hiErrCB
abort

cleanup
continue

fatal
host [2] [3]

I

I
idle [2]
Idle

inadr [2] [3]
inetAddr [2] [3]
init [2] [3] [4] [5] [6] [7]

insert [2]
Introduction

K

Known Bugs and
Inconveniences

L

leaveNBScope [2] [3] [4] localHost_IP_number

M

Macintosh
MacTCP
Managing a Pool of
Connections
markAsDead [2]

memPortAddress
asTextPattern
bufferID
protName

protocol
message
monitor
msg

N

name [2] [3] [4] nonBlockingScope [2] [3] notfound [2]

O

onStart [2] onStop open

P

parseError
pathName
Patterns of basicsocket
patterns of socketgenerator
peek
pipe [2]

close
init
pipeError
pipeException
private
readEnd
writeEnd

insert
private2

portablePortAddress [2]
asTextPattern
delete
getMemPort
getPpcPort
getTcpPort
getUdpPort
getUnixPort
insert
private2

portNo [2]

init
name
onStart
onStop
private
redirectErrToChannel
redirectErrToFile
redirectFromChannel
redirectFromFile
redirectToChannel
redirectToFile
start
stillRunning

 Process Libraries − Reference Manual

H 50

pipeError
pipeException
pipeline, consumer and
producer
port [2] [3]
portableCommAddress [2]

asText
asTextPattern
enterSpec
init
private

portableCommAddressFromText
addr
parseError
txt

portableCommunicationAddress
portableMultiAddress [2]

asTextPattern
delete
init

ppcPortAddress
asTextPattern
host
portNo
protName
protocol
sessionId

private [2] [3] [4] [5] [6] [7] [8] [9]
private2 [2]
Process and its Environment
process
Process

argType
argument
awaitStopped
connectErrToProcess
connectInPipe
connectToProcess
doDebug

stop
ProcessManagerException

message
propagateException

msg
protName [2] [3] [4] [5] [6]
protocol [2] [3] [4] [5] [6]
protocolSpec [2]

cType
rType

put
putInt
putIntPattern
putRep
putRepObj
putRepObjPattern
putRepPattern
PutText
puttext

R

readEnd
redirectErrToChannel [2]
redirectErrToFile [2]
RedirectFromChannel
redirectFromChannel

redirectFromFile [2]
redirectToChannel [2]
redirectToFile [2]
removeSomeConnection [2]
repChatClient and
repChatServer

repIO
repObjIO
routines
rType

S

sameConnection [2]
semaphore
sessionId
setPos
sock [2]
SocketGenerator [2]

bind
close
error
forceTimeout
getPortableAddress
idle
leaveNBScope
nonBlockingScope
port
private
usageTimestamp
withIdleAndPE

SocketGenerators

socketType
sockType [2]
Specification of Connection
Requirements
start [2]
stillRunning [2]
stop
streamcounterserver and
streamcounterclient
StreamSocket [2]

close
closeRead
closeWrite
connect
eos
error
flush
forceTimeout
get
getAtom
getline

getPos
host
Idle
inetAddr
init
leaveNBScope
nonBlockingScope
peek
port
private
put
puttext
sameConnection
setPos
theSocket
timeoutValue
usageTimestamp

systemEnv

 Process Libraries − Reference Manual

R 51

T

T
TCP
TCP/IP
tcpPortAddress [2]

protName

protocol
theSocket
thisHost [2]

err
inadr

name
Timeout Management
timeout [2] [3]
timeoutValue
txt

U

UDP
udpPortAddress [2]

protName
protocol

unixAbstractPortAddress [2]

asTextPattern
inetAddr
portNo

unixPortAddress
asTextPattern

pathName
protName
protocol

usageTimeStamp
usageTimestamp [2] [3]

W

WaitForever
waitForever
Windows

withIdle
withIdleAndPE
withPE

writeEnd

 Process Libraries − Reference Manual

T 52

	Table of Contents
	1 Introduction
	2 Manipulating Processes
	2.1 Child Processes
	2.2 This Process and its Environment

	3 Communicating with other Processes
	3.1 Communication Concepts
	3.2 Scheduling
	3.3 The Two Families of Sockets
	3.4 The Fragment basicsocket
	3.4.1 The Patterns of basicsocket

	3.5 The Fragment binarysocket
	3.6 The Fragment streamsocket
	3.7 The Fragment commpipe
	3.8 SocketGenerators
	3.8.1 The patterns of socketgenerator
	3.8.2 The patterns of streamgenerator and binarygenerator

	3.9 Error Handling
	3.9.1 Error Callbacks
	3.9.2 Error Propagation
	3.9.3 Categories of Errors

	3.10 Timeout Management

	4 Addresses
	4.1 Specification of Connection Requirements
	4.2 The Abstract Level
	4.3 The Concrete Level

	5 Managing a Pool of Connections
	6 The Demo Files
	6.1 pipeline, consumer and producer
	6.2 firstProgram and otherProgram
	6.3 streamcounterserver and streamcounterclient
	6.4 binarycounterserver and binarycounterclient
	6.5 xpilotgames
	6.6 repChatClient and repChatServer

	7 Known Bugs and Inconveniences
	7.1 General
	7.2 Windows
	7.3 Macintosh

	8.1 Basicsocket Interface
	8.2 Binarygenerator Interface
	8.3 Binarysocket Interface
	8.4 Commaddress Interface
	8.5 Commpipe Interface
	8.6 Commpool Interface
	8.7 Errorcallback Interface
	8.8 Processmanager Interface
	8.9 Socketgenerator Interface
	8.10 Streamgenerator Interface
	8.11 Streamsocket Interface
	8.12 Systemcomm Interface
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

