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Static Analysis of XML Transformations in Java
Christian Kirkegaard, Anders Møller*, and Michael I. Schwartzbach

Abstract— XML documents generated dynamically by pro-
grams are typically represented as text strings or DOM trees.
This is a low-level approach for several reasons: 1) traversing
and modifying such structures can be tedious and error prone;
2) although schema languages, e.g. DTD, allow classes of XML
documents to be defined, there are generally no automatic
mechanisms for statically checking that a program transforms
from one class to another as intended.

We introduce XACT, a high-level approach for Java using
XML templates as a first-class data type with operations for
manipulating XML values based on XPath. In addition to an
efficient runtime representation, the data type permits static type
checking using DTD schemas as types. By specifying schemas for
the input and output of a program, our analysis algorithm will
statically verify that valid input data is always transformed into
valid output data and that the operations are used consistently.

Index Terms— D.3.3 Language Constructs and Features, I.7.2.f
Markup Languages, D.2.1 Requirements/Specifications

I. INTRODUCTION

Extensible Markup Language, XML [1], has since its intro-
duction in 1998 gained considerable interest from industry and
now plays an important role in the exchange of a wide variety
of data on the Web. Although XML, technically, is merely a
linear syntax for ordered labeled tree structures, it has proven
useful as a notation for structuring information in general.

The syntax of an XML-based language is specified using
a vocabulary of elements and attributes together with rules
for constraining their use. There exists a variety of schema
languages, such as DTD [1], XML Schema [2], or DSD2 [3],
allowing the syntax to be formalized. An XML document is
valid relative to a given schema if all the syntactic require-
ments specified by the schema are satisfied in the document.
The language L(S) of a schema S is the set of XML
documents that are valid relative to S.

A popular XML-based language is XHTML [4], the “XML-
ized” variant of HTML. The XHTML language is widely used
in interactive Web services where the clients are human beings
that use browsers to interact with the servers. A recent trend
is to move from interactive Web services towards application-
to-application Web services, where the clients are not humans
with browsers but general programs. This calls for specialized
XML-based languages to mediate communication between
clients and servers. As an example, Amazon.com now provides
an XML interface [5] that allows other programs to search
for product information. These other programs may combine
that information with data from other sources, extract relevant
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parts and, for example, transform the results into other XML
documents to interact with yet another group of programs.

From this development, it is clear that XML already plays
a central role in representation of information on the Web and
that transformation of XML data is becoming a key aspect of
Web service programming.

Existing general-purpose programming languages do not
provide any special support for XML transformations. With
these languages, the programmer may choose to model XML
data either 1) as text strings, or 2) as DOM [6] tree structures
(or variants of that, such as JDOM [7]). The first approach
is often used for languages as XHTML where documents are
being constructed but rarely deconstructed, whereas the second
is more used for languages and transformation that involve
both construction and deconstruction of documents. We shall
argue that both approaches are low-level in the sense that they
are often error-prone and tedious to use.

Our ultimate goal is to integrate XML into general-purpose
programming languages, in particular Java, to support more
high-level definitions of XML transformations and thereby
make development of Web services easier and safer.

We wish to incorporate XML data as first-class values
in Java. Since an XML schema defines a class of XML
documents, it is natural to view schemas as types alongside
the standard types such as integers and strings. An XML
transformation is defined by a program that as input takes one
or more XML documents xin

1 , . . . , x
in
n and as output produces

a new XML document xout . In the same way the notion of
types is normally used in programming for structuring the
code and detecting programming errors at an early stage, the
program may assume that each input document xin

i is valid
relative to some input schema Sin

i , and it is intended that the
output document xout is always valid relative to some output
schema Sout . In this article we wish to

1) incorporate XML into Java with a family of basic but
high-level operations for defining transformations, and

2) provide static type checking, that is, for the program,
verify at compile-time that xout ∈ L(Sout) given that
xin

i ∈ L(Sin
i ) for each i.

In comparison, the existing approaches of using text strings or
DOM trees do not support static type checking.

We work in the context of JWIG [8], [9], an extension of
Java that, among other features, provides a mechanism for
construction of XML documents using XML templates and
plug operations, which we briefly recapitulate in Section II.
Our previous results included a static analysis for checking
that the constructed documents are always valid relative to a
given DSD2 schema. However, the mechanism only supported
construction of XML documents, not deconstruction. This
has shown to be sufficient for interactive Web services that
dynamically create XHTML documents, but, as explained
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earlier, application-to-application Web services require general
XML transformations, which also includes deconstruction.
Furthermore, the previous results were obtained under the
assumption that XML documents are built from a set of
constant XML templates. This is also a valid assumption for
interactive Web services, but not for application-to-application
Web services, where the constituents of the result of an XML
transformation are often input from other Web services. In the
present article we generalize the previous results to general
XML transformations that also involve deconstruction and
importing of XML templates.

Contributions

Our contributions in this article are the following:

• A novel data type with high-level operations for defining
XML transformations in Java;

• a static analysis technique based on a notion of summary
graphs;

• an algorithm for symbolic evaluation of XPath expres-
sions [10] on summary graphs, which is essential in
the static analysis to model XPath operations that select
fragments of XML values;

• an algorithm for converting DTD schemas into summary
graphs, which is used in the static analysis for modeling
type cast operations;

• experimental evidence that the approach is practically
feasible; and

• a survey of existing techniques for defining XML trans-
formations.

Preliminary results were described in [11]. In a companion
paper [12], we show that our data type also permits an
efficient runtime representation. Although we focus on Java,
our ideas can be applied to other general-purpose high-level
programming languages since we do not depend on any Java-
specific language constructs.

Overview

Section II explains our approach, named XACT. It involves
DTD and XPath for expressing classes of XML values and
selecting fragments of individual values. The operations in
XACT can be performed efficiently with a suitable runtime
representation, which we mention briefly and describe in detail
in a separate paper. In Section III, we describe summary
graphs, a formalism that provides the foundation for the static
program analysis, which we describe in Section IV. This
analysis encompasses techniques for symbolically evaluating
XPath expressions on summary graphs and converting DTD
schemas into summary graphs. Our prototype implementation
and a number of benchmark tests of the analyzer are described
in Section V.

Appendix I contains a comprehensive survey of related work
on language support for XML transformations. In Appendix II,
we show how the basic XACT operations can be extended with
convenient syntactic sugar.

II. XML OPERATIONS USING DTD AND XPATH

We present a technique, XACT, that combines 1) a full
integration of XML values and highly flexible operations for
XML transformation into an existing high-level language, and
2) static guarantees of type safety of the transformations.

We choose to build on Java since this language is already
widely used in development of Web services. Using a general-
purpose language allows mixing XML manipulations with
other functionality, for example, accessing data bases or com-
municating on the Internet. Our starting point is the XML
template mechanism in JWIG. We use XPath for selecting
fragments of XML values. XPath has already proven useful
for this purpose in, e.g., XSLT and XQuery.

Our approach to providing static guarantees is based on
dataflow analysis rather than traditional type systems. Dataflow
analysis works on control-flow graphs, which directly pro-
vides flow sensitivity, whereas type systems typically work
on abstract syntax trees. Our analysis is reminiscent of type
inference since variable declarations do not have explicit types.

By building on an imperative language, our mechanism
is operational and in that respect closer to, for example,
JDOM, than to a declarative language as XQuery. However,
an important design choice is that our data type for XML
templates is immutable [13]. There are several reasons for this
choice: As in pure functional languages, having no side-effects
often permits a cleaner programming style. For example, there
is no need for explicit copying of values, thread safety comes
for free, and the use of value factories is possible. Furthermore,
since side-effects can be difficult to control, having immutable
data avoids a significant class of programming errors. Finally,
the crucial point in our situation is that immutability is a
necessity for development of a feasible program analysis.
It would not be possible to transfer our program analysis
techniques to a mutable data type as, e.g., JDOM.

We represent XML values as XML templates in the style of
JWIG [8]. An XML template is a wellformed XML fragment
that may contain named gaps where other templates or strings
may be inserted. The gaps may appear in place of elements
or attribute values. In JWIG, this has proven to constitute an
intuitive and flexible mechanism for XML document construc-
tion.

Formally, XML templates are derived by xml in the follow-
ing grammar:

xml : str (character data)
| <name atts> xml </name> (element)
| <[g]> (template gap)
| xml xml

atts : name="str" (attribute constant)
| name=[g] (attribute gap)
| atts atts

| ε

Here, str denotes an arbitrary Unicode string, name is an
identifier, and g is a gap name. Actual XML values must of
course be further constrained to be wellformed according to
the XML 1.0 specification [1]. Empty elements may be written
in the usual alternative notation <name atts/>. Moreover, in
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this description we abstract away all inlined DTD information,
comments, and processing instructions.

In this article, we extend the JWIG mechanism with op-
erations for deconstructing and importing XML data. These
operations are based on DTD and XPath, which we briefly
describe in the following to explain the terminology that we
use.

DTD

The DTD formalism is a simple schema language for XML
and is described in the XML specification [1]. A DTD schema
is a grammar for a class of XML documents defining for
each element the required and permitted child elements and
attributes. The contents of an element are the sequence of its
immediate children. It is specified using a restricted form of
regular expressions over element names and #PCDATA, which
refers to arbitrary character data. Attributes can be declared
as required or optional for a given element, and their values
can be constrained to finite collections of fixed strings. We
ignore the special attribute types ID, IDREF, ENTITY, etc. We
consider a DTD schema as a specification of an XML type in
XACT.

The following example, which we use in later examples, is
a DTD schema for collections of recipes:
<!DOCTYPE collection [

<!ELEMENT collection (title,recipe*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT recipe (title,ingredient*,preparation)>
<!ELEMENT ingredient (ingredient*,preparation)?>
<!ATTLIST ingredient name CDATA #REQUIRED

amount CDATA #IMPLIED
unit CDATA #IMPLIED>

<!ELEMENT preparation (step*)>
<!ELEMENT step (#PCDATA)>

]>

This data model support both simple ingredients, consisting of
a name and possibly an amount and a unit, and composite
ingredients, which are described recursively by sub-recipes.

The JWIG validity analysis described in [8] uses a more
powerful schema language, DSD2 [3], which is capable of
capturing more complex syntactic requirements than DTD.
The main reason for using DTD here is that our generalization
of the XML cast operation, as explained in the following
sections, requires translation from schemas into our summary
graphs, which can be done straightforwardly and precisely for
DTD.

XPath

XPath [10] is a simple but versatile DSL for addressing
elements, attribute values, and character data—generally called
nodes—in XML documents. It has proven powerful as a
sub-language, for example in XSLT, for locating document
fragments and as a pattern matching mechanism.

An XPath expression can, relative to an evaluation context,
evaluate to a boolean, a number, a string, or a set of nodes.
A node set expression is called a location path and consists
of a sequence of location steps, each having three parts: 1)
an axis, for example child or following-sibling, which
selects a set of nodes relative to the context node, 2) a

node test, which filters the selected nodes by considering
their type or name, and 3) a number of predicates, which
are boolean expressions that perform a further, potentially
more complex, filtration. Thus, the result of evaluating a
location step on a specific node is a set of nodes. A whole
location path is evaluated compositionally left-to-right. As an
example, the following expression selects all amount attributes
in ingredient elements that have a name="salt" attribute
and occur within recipe elements that have a title child
with contents soup:
child::recipe[string(child::title/child::text())="soup"]/
descendant-or-self::ingredient[string(attribute::name)="salt"]/
attribute::amount

where we assume that the initial context node is a collection
element. The string() function extracts the string value of
a node.

In our application of XPath, we restrict ourselves to the
child, descendant-or-self, and attribute axes. This
means that all evaluation is top-down, which is sufficient for
all the transformations we mention in Section V and simplifies
both the runtime system and the analyzer. (If the need for other
axes should arise, it is trivial to support all axes in the runtime
system, and the analysis could be extended correspondingly
with a manageable loss of precision as consequence.) A similar
approach is taken in the fxt language [14]. Conveniently, XPath
offers some syntactic sugar for these axes: child is the default
axis, /descendant-or-self::node()/ may be written as
//, and attribute may be written as @. The example above
may then be abbreviated as follows:
recipe[title/text()="soup"]//ingredient[@name="salt"]/@amount

where we also use an implicit coercion rule converting nodes
to their textual contents.

An XPath expression is evaluated relative to an XML
template using an implicit template root node as context node,
similarly to the root node in the XPath data model.

Basic XML Operations

The class XML, which represents XML templates, allows
several operations that are shown in Figure 1. The class is
immutable: all operations return new values without changing
the incoming values.

The constant operation constructs an XML template from
the syntax generated by the xml nonterminal in the previously
described grammar; the toString operation translates in the
opposite direction. The argument to constant must be a
constant. The equals operation determines equality of two
templates, and hashCode returns a consistent hash code.

The plug operation is used to insert values into the specified
gaps in a template. The operation is defined in four variants
accepting strings, templates, or arrays of these. In the array
versions, all occurrences of the named gap are plugged in
document order with the values occurring in the array. If the
lengths do not match, then superfluous array values are ignored
and remaining gaps are plugged with the empty string. For the
case where an element contains multiple attribute gaps, these
are ordered lexicographically by attribute name. In the non-
array version, all occurrences of the named gap are plugged
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static XML constant(String s) – creates an XML template from a constant string
String toString() – converts this XML template into its textual representation
boolean equals(Object o) – determines equality of this template and o
int hashCode() – returns the hash code of this template
XML plug(Gap g, XML x) – inserts a copy of x into all g gaps in a copy of this template
XML plug(Gap g, String s) – as the previous, but for a string
XML plug(Gap g, XML[] xs) – inserts the templates in xs into the g gaps in a copy of this template
XML plug(Gap g, String[] ss) – as the previous, but for a string array
XML[] select(XPath p) – returns all sub-templates selected by p
XML gapify(XPath p, Gap g) – converts all sub-templates selected by p into g gaps
XML close() – removes all open template gaps and all attributes with open gaps
static XML[] group(XML[] xs, XPath p) – groups the templates in xs according to p
XML cast(DTD d) – throws a runtime exception if this template is invalid relative to d
static XML get(String s, DTD d) – converts s into a template and checks validity relative to d
XML analyze(DTD d) – instructs the analyzer to verify that this template is valid relative to d

Fig. 1. Methods in the XML interface for performing basic XML template operations.

with the given value. Attempts to plug templates into attribute
gaps will result in runtime errors. A gap that has not been
plugged is said to be open.

As an example, plugging the single template

<ingredient name="salt" amount=[x] unit="teaspoon"/>
<[ingredients]>

into the ingredients gap of the template

<recipe><[title]>
<[ingredients]><[preparation]></recipe>

yields the following template:

<recipe><[title]>
<ingredient name="salt" amount=[x] unit="teaspoon"/>
<[ingredients]><[preparation]></recipe>

The select and gapify operations first find the node set
indicated by the XPath expression using an implicit root node
as initial evaluation context. In select, the subtrees rooted by
nodes in this set are then copied in document order to form
the resulting template array. Attribute gaps in the node set are
ignored, and for normal attributes, their values are converted
into character data. In gapify, the selected nodes and their
sub-trees are each replaced by a gap with the given name;
however, if one selected node is an ancestor of another, then
only the ancestor is considered. The close operation closes
all gaps in a template by removing template gaps and for each
attribute gap, the entire attribute is removed.

To exemplify the gapify operation, if the template pro-
duced by the plug operation above is subjected to a gapify
operation with gap name first and XPath expression
recipe/ingredient, the result is the following:

<recipe><[title]>
<[first]>
<[ingredients]><[preparation]></recipe>

The group operation groups an array of templates according
to a criterion specified by an XPath expression: for each
template, the XPath expression is evaluated, and all templates
where the evaluation gives the same result are merged in
the order of occurrence. As an example, grouping the array
consisting of the following three templates

<city name="Aarhus" country="Denmark" pop="223" />

<city name="New York" country="USA" pop="19,000" />

<city name="Copenhagen" country="Denmark" pop="1,084" />

according to the expression city/@country yields the fol-
lowing two templates:

<city name="Aarhus" country="Denmark" pop="223" />
<city name="Copenhagen" country="Denmark" pop="1,084" />

<city name="New York" country="USA" pop="19,000" />

The cast operation checks that the template is valid ac-
cording to the given DTD schema and throws an exception
otherwise. The get operation converts a non-constant string
into a template that is then validated according to the given
DTD. The analyze operation has no effect at runtime but
instructs the analyzer to verify that the template is valid
relative to the given DTD.

All arguments of types Gap, XPath, and DTD are required
to be constant. However, variables are permitted in the XPath
expressions: all program variables that have a primitive type
and whose declaration scope covers the XPath expression can
be used.

Note that, e.g., most JDOM operations trivially are special
cases of these operations – except that our data type is
immutable, as explained earlier. The parent operation in
JDOM does not have a counterpart in XACT since we always
refer to the roots of the XML templates.

An XML transformation typically has the following form:

String transform(String s) {
XML x = XML.get(s, DTD.make("http://.../input.dtd"));
...
return x.analyze(DTD.make("http://.../output.dtd"))

.close().toString();
}

where input and output XML is represented textually. As a
simple example, consider the following method that sorts the
recipes in a given collection:

String sort(String s) {
XML c = XML.get(s, DTD.make("file:recipes.dtd"));
XML[] r = c.select("/collection/recipe");
Arrays.sort(r, new RecipeComparator());
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c = c.gapify("/collection/recipe","g").plug("g",r);
c.analyze(DTD.make("file:recipes.dtd"));
return c.close().toString();

}

where the criterion for sorting recipes is lexicographic order
of the titles:

public class RecipeComparator implements Comparator {
public int compare(Object o1, Object o2) {
XML x1 = ((XML)o1), x2 = ((XML)o2;
String s1 = x1.select("//title/text()")[0].toString();
String s2 = x2.select("//title/text()")[0].toString();
return s1.compare(s2);

}
}

In Appendix II we show a number of extra operations that
can be added as syntactic sugar on top of the basic XACT
operations. For example, we allow XML constants and XPath
expressions to be written directly in the usual XML and XPath
syntax instead of as Java strings.

The program analysis described later will at compile time
check that 1) each analyze operation is valid in the sense
that the given template at runtime is guaranteed to be valid
relative to the DTD schema, and 2) each plug operation
always succeeds, that is, templates are never plugged into
attribute gaps. Furthermore, if the analysis detects that an
XPath expression in a select, gapify, or group operation
will never select any nodes, or that a plug operation never
has any effect because the specified gap is never present, then
a warning is issued.

Runtime Representation

We show in a separate paper [12] that our data type for XML
templates permits an efficient runtime representation, despite
being immutable. We use a lazy non-copying data structure in
which operations are merely noted to have happened until their
effects are required to be observed. We obtain nearly optimal
asymptotic complexities of the basic operations, since plug

and individual moves from a parent node to its first child and
from a node to its next sibling happen in amortized almost
constant time. The toString operation is performed in linear
time in the size of the resulting string. The complexity of
select and gapify is bounded by the evaluation time for the
associated XPath expression. The time for performing a group
operation is bounded by the time for evaluating the XPath
expression on each array entry and comparing the results. The
analyze operation has no effect at runtime. The cast and
get operations perform a linear time DTD validation. We also
maintain a Java hashCode for XML objects and thus support
a full equals method in constant time in the negative case and
in amortized linear time in the positive case. All this assumes
that we avoid a pathological case where templates containing
only gaps are nested to an unbounded depth. We expect that
a tuned implementation will be comparable to the runtime
performances of dedicated tools such as JDOM and XSLT.

III. SUMMARY GRAPHS

To obtain static guarantees, we apply the standard dataflow
analysis framework [15], [16]. This involves three steps: 1)

obtaining an abstract control-flow graph for the given program;
2) defining a lattice modeling the abstract data that the analysis
manipulates; and 3) describing all operations in the control-
flow graph in terms of transfer functions that operate on the
lattice values.

The construction of control-flow graphs from Java programs
is described in detail in [8]. We use a different family of state-
ments here, but the overall approach is the same and we do not
describe it further—however, we note that arrays are modeled
by merging their entries using weak updating. Our lattice is
a variant of the summary graph lattice defined in [8] – we
here use a notion of normalized summary graphs, as defined
below. We need to modify the definition to accommodate the
modeling of XPath expressions that may address individual
nodes in XML fragments. The transfer functions are described
in Section IV.

Given a program and all DTD schemas it refers to in cast

and get operations, we fix a number of sets and functions
to be used by all summary graphs that occur during the
analysis: The sets E, A, and G contain the element names,
attribute names, and gap names, respectively, that occur in the
program and in the schemas. Let NE , NA, NC , and NT be
finite disjoint sets of element, attribute, chardata, and template
nodes, respectively. Intuitively, the former three sets represent
the possible elements, attributes, and chardata sequences,
respectively, that may arise when running the program. The
template nodes represent sequences of template gaps, which
either occur explicitly in template constants or implicitly due
to XACT operations or DTD schemas. More precisely,

• NE contains a node for each occurrence of an element
in a template constant in the program and one for each
element description in the schemas. The function name :
NE → E returns the corresponding element name.

• NA contains a node for each occurrence of an attribute in
a template constant and one for each attribute description
in the schemas. The function name : NA → A returns
the corresponding attribute name. Each element node is
associated a set of attribute nodes, attr : NE → 2NA

corresponding to the element attributes.
• NC contains a node for each maximal chardata sequence

in a template constant and one for each occurrence of
plug, select, and #PCDATA.

• NT contains a node for each node in NE , one for each
template constant, one for each occurrence of select,
group, or gapify, and one for each sub-expression
of the content model descriptors in the schemas. Each
element node is associated a template node, contents :
NE → NT , corresponding to the element contents. Each
template node has a sequence of gaps, gaps : NT → G∗,
which we define in Section IV.

The set of all nodes is N = NE ∪NA ∪NT ∪NC. Note that
two elements that have identical names but occur in distinct
template constants are modeled by distinct element nodes. This
ensures an important form of polyvariance in the analysis.

A summary graph SG is a structure:

SG = (R, T, S, P )

where
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n ∈ NE SG ` contents(n) ⇒ d name(n) = e

attr(n) = {a1, . . . , ak} SG ` ai ⇒ bi for all i = 1, . . . , k

SG ` n⇒ <e b1 . . . bk> d </e>

n ∈ NC s ∈ S(n)

SG ` n⇒ s

n ∈ NA name(n) = a s ∈ S(n)

SG ` n⇒ a="s"

n ∈ NA name(n) = a n ∈ open(P (g))

SG ` n⇒ a=[g]

n ∈ NA n ∈ removed(P (g))

SG ` n⇒ ε

n ∈ NT gaps(n) = g1 . . . gk SG , gi ` n⇒ di for all i = 1, . . . , k

SG ` n⇒ d1 . . . dk

(n, g,m) ∈ T SG ` m⇒ d

SG , g ` n⇒ d

n ∈ open(P (g))

SG , g ` n⇒ <[g]>

n ∈ removed (P (g))

SG , g ` n⇒ ε

Fig. 2. Inference rules for unfolding of summary graphs.

R ⊆ NE ∪NT is a set of root nodes,
T ⊆ NT ×G× (NT ∪NE ∪NC) is a set of template edges,
S : NC ∪NA → REG is a string edge map, and
P : G→ 2NA∪NT × 2NA∪NT × Γ × Γ is a gap presence map.

Here Γ = 2{OPEN,CLOSED} is the gap presence lattice whose
ordering is set inclusion. The set REG is a finite family of
regular languages over the Unicode alphabet obtained by a
separate analysis of string operations [17].

Intuitively, the language L(SG) of a summary graph SG is
the set of XML templates that can be obtained by “unfolding”
it, starting from a root node and plugging elements, templates,
and strings into gaps according to the edges. A template edge
(n1, g, n2) ∈ T informally means that n2 may be plugged into
the g gaps in n1, and a string edge S(n) = L means that every
string in L may be plugged into the gap in n.

We need the gap presence map to determine where edges
should be added when modeling plug operations, to model
the removal of gaps with the close operation, to detect
when plug operations may fail because the specified gaps
are not open, and to model and check XPath evaluations.
Given that P (g) = (p1, p2, p3, p4), let open(P (g)) = p1,
removed(P (g)) = p2, tgaps(P (g)) = p3, agaps(P (g)) = p4.
Informally, the open and removed components specify which
nodes may contain open or removed g gaps, and tgaps and
agaps describe the presence of template gaps and attribute
gaps, respectively. The value {OPEN} means that one or more
gaps of the given name are present, {CLOSED} means that
none are present, and {OPEN,CLOSED} means that the gaps
are present for some unfoldings but absent for others. (∅ never
occurs here.)

As an example, we can define a summary graph whose
language is the set of ul lists with zero or more li items
that each contain a string from some language L: Assume
that the fixed structure is given by NE = {1, 4}, NA = ∅,
NT = {2, 3, 5}, NC = {6}, contents(1) = 2, contents(4) =
5, attr(1) = attr(4) = ∅, name(1) = ul, name(4) = li,
gaps(2) = items, gaps(3) = g · items, and gaps(5) =
text. Now define the summary graph (R, T, S, P ):

R = {1}
T = {(2,items, 3), (3,items, 3), (3,g, 4), (5,text, 6)}
S(6) = L

P (text) = P (g) = (∅, ∅, {CLOSED}, {CLOSED})
P (items) = ({2, 3}, ∅, {OPEN}, {CLOSED})

This can be illustrated as follows:

items

items

itemsg
g

text
text

Lul li

1 2 3 4 5 6
items

items items

The boxes represent element nodes, rounded boxes are
template nodes, the circle is a chardata node, and the dots
represent potentially open template gaps.

The family of summary graph structures forms a lattice
using a pointwise subset ordering. For a fixed program, the
lattice has finite height.

The unfolding of summary graphs can be formalized as

unfold(SG) = {d | ∃r ∈ R : SG ` r ⇒ d}

where the unfolding relation, ⇒, is defined by induction in
the structure of the summary graph according to Figure 2,
considering only finite terms. The first six rules define how
a node may be unfolded according to the different kinds of
nodes: For element nodes, we look up the element name,
attributes, and contents, and unfold attributes and contents
recursively. For character data nodes, we look up the possible
values in the string edges. For attribute nodes, there are three
rules: one unfolds according to the string edges, one checks
whether the attribute gap may be open according to the gap
presence map, and one checks whether the attribute may have
been removed. For template nodes, we look up the associated
gap sequence and unfold each gap recursively. The last three
rules in the figure define how a gap can be unfolded relative
to a template node: either by following a template edge, by
making an explicit template gap, or by removing the gap.

We define the language of a summary graph as

L(SG) = {close(d) | d ∈ unfold(SG)}

where close(d) removes all occurrences of template gaps and
attribute gaps.

Compared with the definition of summary graphs in [8],
a node now corresponds to at most one chardata sequence,
element, or attribute—corresponding to the possible targets of
XPath evaluation. Furthermore, we have added the removed

component of the gap presence map to model the close

operation. Since every summary graph expressed according
to the old definition can be transformed into one that fits into
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the new definition by splitting templates into individual nodes,
we say that the latter one defines normalized summary graphs.

IV. MODELING XML OPERATIONS
ON SUMMARY GRAPHS

Our dataflow analysis associates a summary graph SG with
every XML variable and expression at every program point. The
analysis is conservative meaning that unfold(SG) contains all
XML templates that may occur at that point at runtime.

The essence of the dataflow analysis is the definition of
transfer functions for the XML operations. Let ∆ denote an
environment that maps each XML variable to a summary graph.
The transfer function for an assignment x=exp is

∆ 7→ ∆[x 7→ ∆̂(exp)]

and for all other statements, it is the identity function. The
function ∆̂ extends ∆ to XML expressions according to the
expression kind:
constant: We show below in Section IV-A how to construct

a summary graph SGxml for a given template constant
[[xml]].

plug: All four variants of plug operations are modeled
essentially as in [8], and the details are deferred to
Appendix III. Intuitively, a template plug invocation
exp1.plug(g, exp2) is modeled by adding template edges
from nodes with open g gaps in ∆̂(exp1) to roots in
∆̂(exp2). A string plug is modeled by collecting the
possible strings into the associated chardata node.

close: To model the removal of gaps, we define
∆̂(exp.close()) = (R, T, S, λh.(∅, removed(P (h)) ∪
open(P (h)), {CLOSED}, {CLOSED})) where ∆̂(exp) =
(R, T, S, P ).

select and gapify: The modeling of these operations is
based on a technique for symbolic XPath evaluation on
summary graphs described in Section IV-C.

group: An array of XML templates is modeled by a single
summary graph that approximates the array entries. To
model an instance of the group operation, let n denote its
template node and define gaps(n) = g1g2 where g1 and
g2 are fresh unique gap names. If ∆̂(exp) = (R, T, S, P )
then we define ∆̂(group(exp,p)) = ({n}, T ′, S, P ′),
where T ′ and P ′ are copies of T and P , respectively, with
the following modifications: we add (n, g1,m) ∈ T ′ for
each m ∈ R, (n, g2, n) ∈ T ′, and n ∈ removed(P (gi))
for i = 1, 2. Intuitively, this models the output of a
group operation as all possible concatenations of the
input templates.

cast and get: The difficult part of modeling these operations
is to construct a summary graph SGD for a given DTD
D such that L(SGD) = L(D). We show below in
Section IV-B how this can be achieved.

All transfer functions can be shown to be monotone.
Once the summary graphs are constructed, the analyze

invocations are checked using a variation of the validation
algorithm from [8], which validates the summary graph for
the XML expression relative to the DTD. The original algo-
rithm works on non-normalized summary graphs and DSD2

schemas, but it is easily adjusted to the present simpler setting.
This is a conservative analysis of the summary graph: if it
returns “valid”, then it is guaranteed that all XML templates
at that point are valid at runtime; otherwise, a useful error
message is provided.

To check that plug invocations always succeed, we inspect
the associated summary graphs as explained in Appendix III.
To check that XPath expressions in select, gapify, and
group invocations may potentially hit some nodes, we inspect
the status maps that are generated by the symbolic evaluation
presented later.

Using similar arguments as in [8], the theoretical worst-case
complexity of the entire analysis can be shown to be O(n8)
where n is the total size of the program and the relevant DTD
schemas. Despite this high theoretical bound, the analysis
appears efficient in practice, as shown in Section V.

A. Summary Graphs for XML Template Constants

For the constant operations, we are given a template
constant xml , and we need to construct a summary graph
SGxml such that unfold(SGxml) = {xml}. This is trivial
for the non-normalized summary graphs in [8] where each
template constant corresponds to an individual summary graph
node. For normalized summary graphs, the desired summary
graph SGxml = (R, T, S, P ) is the least one that satisfies the
constraints generated from the following rules:

• For each element <e . . .>d1 . . . dk</e> in the template,
let n denote the template node of the contents d1 . . . dk

and define gaps(n) = g1 . . . gk where gi = hi if di =
<[hi]> and otherwise gi is a fresh unique gap name. For
each i, add (n, gi,mi) ∈ T where mi is the element node
or chardata node of di.

• For the toplevel template contents corresponding to the
template node r, we define gaps(r) and add template
edges in the same way as for element contents, and we
define R = {r}.

• For every attribute a="s" corresponding to an attribute
node n, add S(n) = {s}, and similarly for chardata.

• For every attribute gap a=[g] corresponding to an at-
tribute node n, add n ∈ open(P (g)) and agaps(P (g)) =
{OPEN}.

• For every template gap <[g]> belonging to a template
node n, add n ∈ open(P (g)), tgaps(P (g)) = {OPEN}.

• Unless defined otherwise above, agaps(P (g)) and
tgaps(P (g)) are set to {CLOSED}.

As an example, the template constant

<head class="main" level=[x]><index/>Hello!</head><[more]>

contains all possible template constructs. It is converted to the
following summary graph:

d1 more

more

d1
head d2 d3

index

d3

{main}

d2

Ø

{Hello!}

x
class level
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Again, boxes represent element nodes, rounded boxes are
template nodes, the circle is a chardata node, and the dots
represent potentially open gaps. The diamonds are attribute
nodes, and d1, d2, and d3 are fresh gap names.

B. Converting DTD Schemas to Summary Graphs

A given DTD D referred to from the program being
analyzed is in Section III associated a subset of the summary
graph nodes. In the following, we derive a summary graph
SGD = (R, T, S, P ) using those nodes such that L(SGD) =
L(D), that is, it is an exact model of D.

As for template constants, we construct the summary graph
as the least solution to a set of constraints. The algorithm runs
in linear time in the size of D. First, define R = {r} where
r is the element node of the DOCTYPE root element. For all
g ∈ G, define agaps(P (g)) = tgaps(P (g)) = {CLOSED}.

For each ELEMENT corresponding to an element node p, we
let n = contents(p) and encode the content model recursively
in its structure using the template node n associated to each
sub-expression. For each rule, g is a fresh gap name, and unless
otherwise mentioned, gaps(n) = g:
#PCDATA: Add (n, g,m) ∈ T where m is the chardata node

for #PCDATA. Let S(m) = Σ∗.
ANY: As the rule for #PCDATA, but we also add (n, g,m) ∈ T

for each element node m.
EMPTY: For the empty content model, we let gaps(n) = ε.
E: A single element name E is modeled by adding

(n, g,m) ∈ T with m being the element node of E.
(C1,...,Ck): A sequence corresponds to defining

gaps(n) = g1 · · · gk and (n, gi,mi) ∈ T where mi

is the template node of Ci.
(C1|...|Ck): A choice corresponds to adding (n, g,m) ∈

T for each template node m of C1, . . . , Ck.
(C)?: For optional contents, let (n, g,m) ∈ T for the

template node m of C and add n ∈ removed (P (g)).
(C)+: A repetition of one or more items is encoded by

defining gaps(n) = g1g2 and adding (n, g1,m) ∈ T

with m being the template node of C, (n, g2, n) ∈ T ,
and n ∈ removed (P (g2)).

(C)*: As the previous rule but adding n ∈ removed (P (g1)).
For each ATTLIST describing an attribute A corresponding
to an attribute node n, let S(n) = {s1, . . . , sk} if the valid
values of A are described by an enumeration s1, . . . , sk, and
let S(n) = Σ∗ otherwise. If A is declared as #IMPLIED, then
add n ∈ removed (P (g)) for some g.

As an example, the DTD schema for recipe collections
from Section II is converted to the following summary graph
(abbreviated with “. . . ”):

Σ*
d1 d2

d3 d4 recipe

titled2 d1

d2
d3

collection
d5

d5

...
d4d4

The gap names d1, . . . , d5 are fresh names.
This construction of summary graphs from DTD schemas

indicates that our analysis can be extended to more expressive

schema languages than DTD. For example, we immediately
support unrestricted regular expressions as content models and
arbitrary regular languages for describing valid character data
and attribute values; however, we defer a full generalization
to, for example, the DSD2 schema language, which, as previ-
ously mentioned, our algorithm for validating summary graphs
relative to schemas already supports.

C. Symbolic XPath Evaluation

To model the XML operations that involve XPath, we
symbolically evaluate a given XPath location path p on a
summary graph SG = (R, T, S, P ). This evaluation is ex-
pressed by a function eval that maps (SG , p) into a status
map of the form NE ∪ NA ∪ NC → S where S = {ALL,
SOME,DEFINITE,NONE,NEVER,DONTKNOW}. For a concrete
unfolding x ∈ L(SG), a given element, attribute, or chardata
node n from SG may correspond to a number of XML tree
nodes in x. A concrete evaluation of p on x may select
only some of those nodes. Informally, the possible values of
eval(SG , p)(n) have the following meaning:
ALL: in every unfolding, every tree node corresponding to n

is selected by p;
SOME: in every unfolding, at least one tree node correspond-

ing to n is selected by p;
DEFINITE: the conditions for ALL and SOME are both satisfied;
NONE: in every unfolding, no tree node corresponding to n is

selected by p;
NEVER: the conditions for ALL and NONE are both satisfied,

that is, in every unfolding, no tree node corresponds to
n; and

DONTKNOW: none of the above can be determined.
These six values form a partial order, v, with DONTKNOW
as top element, ALL and SOME above DEFINITE, and ALL and
NONE above NEVER:

DONTKNOW

ALL SOMENONE

NEVER DEFINITE

To initialize the XPath evaluation, we modify SG by in-
troducing a dummy root element root and a dummy template
node t where contents(root) = t and gaps(t) = g, adding
{(root , g, n) | n ∈ R} to T , and changing R to {root}. In the
following, SG refers to this modified summary graph.

We define eval as an evaluation of the given location path
relative to an initial status map σSG

0 :

eval (SG , p) =
(
pathSG

p (σSG
0 )

)
[root 7→ NONE]

σSG
0 (n) =





DEFINITE if n = root

NONE if root  n

NEVER otherwise

The notation f [x 7→ y] denotes the function that is equal
to f except that it maps x to y. The reachability relation,
 , is defined as the transitive closure of the following rules:
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n contents(n), n a for all a ∈ attr(n), and n m for
all (n, g,m) ∈ T .

A location path p = s1/. . ./sk is evaluated compositionally
on each step:

pathSG
s1/.../sk

= stepSG
sk

◦ · · · ◦ stepSG
s1

where a single step s = axis::test[pred] is evaluated by
considering each of the three constituents:

stepSG
axis::test[pred] = filterSG

pred ◦ filterSG
test ◦ moveSG

axis

Recall that axis is either child, descendant-or-self, or
attribute, test is either text(), node(), *, or an element
or attribute name, and pred is either a nested location path or
an expression of another type.

The function moveSG
axis models the evalution of an axis:

moveSG
axis(σ)(n) =





ALL if ΨSG
axis(σ, n) ∨ σ(n) = NEVER

SOME if ∃m : m
!
.axis n ∧

σ(m) v SOME

DEFINITE if the conditions for ALL and
SOME are both satisfied

NONE if ∀m : m
?
.axis n⇒

σ(m) v NONE

NEVER if the conditions for ALL and
NONE are both satisfied

DONTKNOW otherwise

The relation m
?
.axis n is satisfied if there exists an unfolding

starting from m and considering only the nodes corresponding
to axis such that n is involved. Conversely, m

!
.axis n means

that every unfolding involves n if starting from m and con-
sidering only the nodes that correspond to axis . We omit the
formal definition, which is straightforward but tedious. The
predicate ΨSG

axis models the condition for the ALL status:

ΨSG
axis(σ, n) =





∀m : m
?
.axis n⇒ σ(m) v ALL

∧ n 6= root if axis ∈ {child, attribute}

ψSG
σ (n) if axis = descendant-or-self

where ψSG
σ is the least solution to the equation

ψSG
σ (n) =

σ(n) v ALL ∨
(
n 6= root ∧ ∀m : m

?
.child n⇒ ψSG

σ (m)
)

The function filterSG
test changes the status of a node n to

NONE if the kind and name of n does not match test , unless
the status is already NEVER in which case it is unchanged.

If pred is a location path p′, then we define two families
of status maps, σ′

n and σ′′
n for each n ∈ N , by recursively

applying path :

σ′
n(m) =





σ(n) if m = n

NEVER if σ(m) = NEVER

NONE otherwise

σ′′
n = pathSG

p′ (σ′
n)

From these status maps, we now define the function filterSG
pred ,

which models the predicate filtering:

filterSG
p′ (σ)(n) =





NEVER if σ(n) = NEVER

NONE if σ(n) 6= NEVER ∧

∀m : σ′′
n(m) v NONE

σ(n) if ∃m : σ′′
n(m) v SOME

DONTKNOW otherwise

This definition can be extended to also precisely model negated
predicates and unions of node sets. If pred is not a loca-
tion path, then filterSG

pred changes the status of a node n to
DONTKNOW unless its status is already NONE or NEVER.

From this definition of eval , we can model select:

∆̂(exp.select(p)) =(
{t},
T ∪ {(t, g, c)} ∪ {(t, g, n) | n ∈ HITS ∩NE},

S
[
c 7→

⋃
S(m)

m∈HITS∩(NC∪NA)

]
,

P ′[g 7→ (∅,REMOVE , {CLOSED}, {CLOSED})]
)

The nodes t and c are the associated template node and
chardata node, respectively, where gaps(t) = g for a fresh gap
name g. The summary graph SG = (R, T, S, P ) is obtained
from ∆̂(exp) by adding the dummy root, as explained above.
The sets HITS and REMOVE are defined by

HITS = {n | eval (SG , p)(n) 6v NONE}

REMOVE =

{
∅ if ∀n ∈ HITS : eval (SG , p)(n) v SOME

{t} otherwise

Intuitively, the t node collects all nodes that may be selected,
and the c node collects the values of selected attributes and
character data. The gap g may be removed in t if it is possible
that no element nodes are selected. The modified gap presence
map P ′ models the disappearance of gaps in fragments that
are not selected:

P ′(h) = (open(P (h))\DEAD , removed(P (h))\DEAD ,

GAPS tgaps(h),GAPSagaps(h))

GAPSγ(h) =





{OPEN} if γ(P (h)) = {OPEN} ∧

open(P (h)) ⊆ LIVE

{CLOSED} if γ(P (h)) = {CLOSED} ∨

open(P (h)) ⊆ DEAD

{OPEN,CLOSED} otherwise

where, informally, LIVE ⊆ N contains a node n if for every
unfolding of SG all instances of n are certain to be retained by
the operation; and similarly, DEAD contains the nodes that are
certain to be removed. These sets can be computed by simple
reachability analyses based on the status map eval (SG , p).

The modeling of gapify is defined similarly:

∆̂(exp.gapify(p, g)) =(
R,

T \ {(n, h,m) ∈ T | m ∈ ALL}
∪ {(n, h, t) | (n, h,m) ∈ T ∧m ∈ HITS},

S[n 7→ ∅ for each n ∈ ALL ∩ (NC ∪NA)],
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Example Lines Input Output SGs SG Nodes SG Edges Max Space Total Time SG Space SG Time
ToUpper 26 25 25 13 612 2,045 63 MB 10.8 s 5 MB 1.1 s
Sorting 43 25 25 13 606 2,686 61 MB 8.6 s 6 MB 1.2 s
AddrBook1 32 4 3 31 50 378 56 MB 9.0 s 2 MB 0.2 s
AddrBook2 17 5 4 14 49 215 55 MB 7.6 s 2 MB 0.2 s
BankServlet 88 5 1,201 23 48 1,008 74 MB 8.9 s 2 MB 0.4 s
Country 72 6 1,201 26 73 1,203 74 MB 9.2 s 2 MB 0.5 s
Recipes 137 25 1,201 100 748 10,987 81 MB 13.9 s 7 MB 2.6 s
Article 132 8 1,235 61 114 3,491 77 MB 9.7 s 3 MB 0.7 s
BCedit 190 9 9 46 169 1,945 97 MB 14.2 s 5 MB 0.6 s
Tree 73 15 24 82 183 4,921 61 MB 8.5 s 4 MB 1.0 s
HTML2latex 159 1,201 0 59 2,164 26,910 52 MB 11.9 s 14 MB 3.3 s
CourseAdmin 3,156 195 1,666 1,044 2,615 161,881 228 MB 74.3 s 45 MB 31.2 s

Fig. 3. Experimental results.

P ′
[
g 7→ (open(P (g)) ∪ {t} ∪ (HITS ∩NA),

removed(P (g)),
merge(ANY NE∪NC

, tgaps(P (g))),
merge(ANY NA

, agaps(P (g))))
])

where t is the associated template node, gaps(t) = g, and
ALL and ANY are defined by

ALL = {n | eval (SG , p)(n) v ALL}

ANY M =





{OPEN} if ∃n ∈M :

eval (SG , p)(n) v SOME

{CLOSED} if ∀n ∈M :

eval (SG , p)(n) v NONE

{OPEN,CLOSED} otherwise

and the function merge is the same as in [8]:

merge(γ1, γ2) =

{
{OPEN} if γ1 ={OPEN} ∨ γ2 ={OPEN}

γ1 ∪ γ2 otherwise

Intuitively, the t node represents the newly constructed tem-
plate gaps. Template edges into nodes that are certain to
be selected are removed, and new template edges to the t

node are added in place of all potentially selected nodes.
The string edge map is modified by removing all strings that
belong to chardata and attribute nodes that are certain to be
selected. For the gap presence of g we add t and all potentially
selected attribute nodes to the open component; for the tgaps

component, we consider the possibility that a template gap
has been added; and similarly for the agaps component for
attribute gaps. For other gaps, we use P ′ as in select but
with LIVE and DEAD computed according to the semantics
of gapify instead of select.

It is possible to increase precision for the modeling of
gapify by also considering the property of the semantics
of this operation that an XML tree node is never considered
selected if an ancestor is. We model this property by inserting
an application of a function sharpen to the result of each
application of eval (SG , p). Intuitively, sharpen traverses SG

from the roots and, for instance, converts ALL to NONE for a
node n if it is able to determine that n has an ancestor of
status ALL in every possible unfolding. We omit the formal
definition.

V. IMPLEMENTATION AND EXPERIMENTS

We have developed a prototype implementation of the
runtime system and the analysis algorithms. Our experiments
mainly focus on exposing the expressive power of our lan-
guage design and the feasibility and precision of our analysis.

We have collected a number of small benchmark applica-
tions, inspired by typical tasks performed in other languages
such as XSLT, XQuery, JDOM, and XDuce.

The ToUpper benchmark changes all XML recipe titles to
upper case using the DTD from Section II. The Sorting

benchmark is the application that sorts a recipe collection
in lexicographic order of the titles. The AddrBook1 bench-
mark is the standard XDuce example, and the AddrBook2

benchmark is a variation with a more realistic XML design.
The BankServlet is a Servlet that produces an XHTML
account summary from an XML database. The Country

benchmark implements an XSLT 2.0 use case in which a
collection of cities is grouped according to their country. The
Recipes benchmark emulates an XSLT stylesheet producing
XHTML from XML recipes; however, our version statically
guarantees that the output is valid XHTML. The Article

benchmark manipulates articles represented in XML. The
BCedit benchmark from [18] is originally based on JDOM
and implements a graphical editor on XML business cards. The
Tree benchmark implements all queries in the corresponding
XQuery use case [19]. Both ToUpper, Country, and Tree

are shown in Appendix II. The HTML2latex benchmark is bor-
rowed from the CDuce project [20]. Finally, the CourseAdmin
benchmark is a real application implementing a generic course
administration Web service, using specialized XML languages
for representing data about schedules, students, teachers, and
homeworks.

Figure 3 shows experimental results. “Lines” is the the
number of lines in a desugared self-contained application,
“Input” is the total number of lines of the DTD schemas
involved in cast and get operations, “Output” is the the total
number of lines of the DTD schemas involved in analyze

operations, “SGs” is the total number of summary graphs
computed during analysis, “SG Nodes” is the total number of
summary graphs nodes allocated, “SG Edges” is the number
of summary graph edges allocated. The maximal memory and
overall time consumption are shown in the “Max Space” and
“Total Time” columns, and the memory and time consumption
during summary graph construction and analysis are shown
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in the “SG Space” and “SG Time” columns. The analysis
time is measured in seconds, and the memory consumption in
megabytes. Most of the large difference between “SG Space”
and “Max Space” is consumed by the Soot framework [21],
[22], which we use to construct control flow graphs from class
files. Similarly, Soot has a startup time of around 7 seconds,
which is the main cause of the differences between “SG Time”
and “Total Time”. A possible remedy is to build a more
specialized class analysis tool on top of another framework
such as Recoder [23].

All experiments are performed on a 2.4 GHz Pentium
IV with 1 GB RAM running Linux and J2SE version
1.4.2. The source for all benchmarks is available from
http://www.brics.dk/Xact/.

Most of these benchmarks are small but demonstrate com-
plex XML transformations that are typically expressed in
specialized languages. As indicated by the CourseAdmin

application, the number of lines of code is only a weak
measure of the complexity of the analysis task. The sizes
of the involved DTDs and the computed summary graphs
more truly reflects the “XML complexity” of an application.
Large applications will typically involve a limited number of
XML transformation, each of which will be reminiscent of
the benchmarks given above. A real strength of our analysis
technique is the ability to extract the essential information
from large Java programs and focus the analysis on such
subtasks.

The precision of our analysis is reflected in the number of
false errors flagged during analysis, which in all cases turns
out to be zero. Furthermore, during the programming of the
examples, the analysis found several actual errors that were
subsequently corrected.

The analysis is seen to be quite efficient on a wide range
of benchmarks. On a subjective note, the XACT language is
easy to use. It often results in programs that are as concise
and readable as more specialized notations. For example, the
six queries themselves in the Tree benchmark are written in
33 lines of code, compared to 45 lines in XQuery. At the same
time our solutions are statically validated, in stark contrast to
e.g. XSLT and JDOM solutions.

VI. CONCLUSION

We have presented the XACT system, which provides a
high-level approach for manipulating XML data in Java and
a program analysis for statically validating the generated
documents. Experiments indicate that the language design
allows a concise programming style and that the analysis is
efficient enough to be practically feasible.

In our future work, we will attempt to generalize the present
results in various directions: We believe that XSLT stylesheets
can be statically validated with the summary graph technique
presented here and that it is possible to use a more powerful
schema language, such as DSD2, as XML types. This will
include support for XML namespaces, which is not relevant
when using DTD.

We plan to integrate XACT into frameworks for making
Web services, in particular JWIG and Servlets, and to make

the system available as a stand-alone package for XML trans-
formation in Java. Our prototype implementation is available
online at http://www.brics.dk/Xact/.

APPENDIX I
SURVEY OF RELATED WORK

There exists a wide range of approaches for defining XML
transformations, originating from database, hypertext, and
programming language communities. These approaches are
in the following divided into techniques for general-purpose
programming languages and for tailor-made domain-specific
languages. A general introduction to the XML type checking
problem is given in [24].

XML data may be manipulated in several ways that are not
all supported equally well by every approach. In many actual
XML transformations, the input and output languages are
different, i.e., described by different schemas. However, often
these languages are the same, for example if the transformation
consists of sorting a list of entries in a table but leaving the
rest of the document unmodified. Such transformations are
often described more conveniently as in situ modifications
than as functions from input to output. Also, many programs
involving XML build documents from non-XML sources, ex-
tract information from XML without producing XML output,
or they interact with other systems during the processing.
Developing good support for XML in programming also
requires consideration of these pragmatic issues.

Techniques for general-purpose languages

The approaches of representing XML data as strings or
DOM trees, as mentioned in the introduction, fit into the cat-
egory of techniques for general-purpose languages. Building
XML documents by concatenating string fragments is com-
monly used in the presentation layer of interactive Web ser-
vices, for example with Servlets [25]. This primitive approach
does not assist the programmer in avoiding mismatching tags
or improper escaping of special characters, and it does not
support deconstruction of documents.

Presently, there are XML libraries with parsers and DOM-
like functionality for all major (and also many less widely
used) programming languages. Examples for Java include
JDOM [7], TrAX [26], and JAXP [27]. Such libraries view
XML data as tree structures and provide operations for lo-
cal traversal and manipulation. This is a powerful approach
that permits the full underlying programming language to
be involved in the XML processing. Wellformedness of the
involved XML data comes for free when working on the tree
level. However, it is still a low-level approach for a number of
reasons: 1) traversing or modifying a DOM tree is expressed
via primitive operations, for example taking a single step
in the tree from an element to its first child element. More
complex operations therefore tend to require relatively much
code, compared to e.g. XSLT, which is described below; 2)
there is no tool support for analyzing the programs at compile-
time to verify that transformation output is guaranteed to be
valid at runtime or that the transformations succeed without
runtime errors. XML is regarded as one homogeneous type
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without considering schemas. The processing is completely
independent from the schema information, so, for example, a
schema may contain the information that A elements cannot
occur as children of B elements, but failed attempts to select
an A child element of a B element in a program will not be
detected until runtime.

SAX [28] is event-based rather than tree-based. This ap-
proach is suitable for streaming processing of large documents,
but static validity is not considered.

To attack the problem of statically guaranteeing validity of
the transformation output, a number of systems attempt to
model XML transformation using pre-existing type systems in
general-purpose programming languages. Examples based on
functional languages are HaXml [29] and WASH/CGI [30],
both embedding DTD into Haskell. In contrast to HaXml,
WASH/CGI does not support deconstruction of XML values.
In return, WASH/CGI allows the use of generic combinators,
which the type-safe approach in HaXml does not.

With this approach, type checking of XML transformations
comes for free via the type system in the host language.
However, these type systems are usually not strong enough
to capture all requirements specified in a schema without
sacrificing soundness, performance, or flexibility [31], even
with a simple schema language as DTD. Another problem is
that type errors are reported at the level of the underlying host
language, which can make them difficult to understand for the
programmer.

Other systems are targeted at object-oriented languages,
typically Java. Castor [32] and the more recent JAXB [33]
are XML data binding frameworks for Java. From a schema
written in certain subsets of XML Schema they can generate
a collection of Java classes representing an object model
of the corresponding XML documents. XML data may then
be processed as Java objects at a higher abstraction level
than e.g. JDOM. Methods for marshalling and unmarshalling
are automatically generated, and the mapping between XML
and Java can be controlled by specifying explicit bindings.
Relaxer [34] is a similar tool but for the RELAX schema
language. For all three systems, there is no static guarantee
that a constructed document will satisfy all the requirements
of the given schema.

The SNAQue tool [35] provides a variant of data binding
that does not take schemas into account. From an XML
document and a programming language type, it extracts a pro-
gram value. Projector [36] is a related extension of JavaScript
mixing typed and untyped programming.

The approach described in [37] contains a data binding
system for languages with powerful types with streams, tu-
ples, and unions, which allow schemas to be encoded with
high precision. A type checking algorithm is currently being
implemented but is yet unpublished. Many other data binding
tools are described in [38].

Domain-specific languages

Domain-specific languages (DSLs) are tailor-made for spe-
cialized classes of tasks, such as XML transformation. Al-
though the formal expressive power of these language of

course does not exceed that of general-purpose languages, the
advantages of DSLs are generally considered to be 1) high
levels of abstraction with language constructs and customized
syntax that closely match the concepts in the problem domain,
and 2) specialized analyses for reasoning about the behavior
of programs.

The predominant DSL for XML transformation is
XSLT [39], a declarative language based on pattern matching
and template instantiation. Although designed primarily for
hypertext stylesheet applications, it is more widely applicable,
for example, for simple database operations. XSLT uses XPath
for pointing and pattern matching. Schemas for the input and
output languages are ignored by XSLT 1.0 processors, so no
type checking is performed. XSLT 2.0 [40] is currently being
designed. It uses types from XML Schema but only supports
dynamic validation. (“It is implementation-defined whether
type errors are signaled statically.” [40]) XSLT stylesheets can
to a large extent easily be converted into XACT programs by
turning XSLT templates into methods that return XACT tem-
plates. The XSLT pattern matching feature, which determines
the templates to instantiate, does not have a direct counterpart
in XACT where the control-flow is more explicit.

Although DSLs for XML transformation certainly do have
a raison d’être, many have difficulties with the kinds of
transformation mentioned earlier that involve non-XML values
or need to interact with other systems. XSLT is extensible, but
only in the sense that individual implementors may add their
own extra functionality.

XQuery [41] can be viewed as a generalization of SQL to
the richer data model of XML. It is a functional language with
optional types using a considerable subset of XML Schema
as basis for its type system [42], which supports static type
inference and checking. Although still at working draft level
with many open issues, XQuery is an ambitious project and
receives much attention.

XDuce [31] is a simplistic functional language based on
regular expression types, which are a natural generalization
of DTD schemas, and a corresponding mechanism for pat-
tern matching. It supports a local form of type inference
where types are specified explicitly for function arguments
but inferred for pattern matching. In its current version,
XDuce does not have higher-order functions or parametric
polymorphism, and the type system does not model element
attributes or unordered data. CDuce [20] extends XDuce into
a full programming language and adds higher-order functions
and other language features. The ideas from XDuce, which
have also influenced the design of the XQuery type system,
are currently being integrated into C# in the Xtatic project with
similar goals as ours [43]. Another related language is Circus-
DTE [44], which is a simple transformation language with
pattern matching and type-checking mechanisms reminiscent
of those in XDuce.

XMλ [45] is a functional language related to HaXml and
WASH/CGI. Its type system uses a notion of type-indexed
rows to model DTD. Whereas subtyping is an essential as-
pect in XDuce, XMλ is based on parametric polymorphism.
Apparently, no implementation of XMλ is available.

The language fxt [14] is closely related to XSLT but uses
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a strictly top-down processing model and a clean pattern
matching mechanism that corresponds to regular languages.
Another attempt to redesign XSLT is SXSLT [46], based on
Scheme. Both fxt and SXSLT focus on language design and,
as XSLT, do not provide type checking.

The type checking problem has been studied at a more the-
oretical level for k-pebble tree transducers [47], a framework
for modeling decidable tree transformations in, for example,
fragments of XQuery and XSLT. A less expressive formalism
for top-down transformations is investigated in [48], and
another related approach is proposed in [49] for type checking
a subset of XSLT using tree automata. In [50], a simple XML
transformation system based on macro expansion is described,
and it is shown that exact type checking with DTD is decidable
for this system. The query language loto-ql permits inference
of output schemas from input schemas using a generalization
of DTD to context-free languages [51].

Finally, we mention the recent XOBE language [52], which
is closely related to our approach. XOBE is also an extension
of Java, it has a notion of XML templates resembling that
of JWIG and XACT, and it too uses XPath to select parts
of XML trees. XOBE uses a type system based on regular
hedge grammars, whereas we rely on dataflow analysis using
summary graphs to obtain static guarantees. However, there
are a number of more essential differences: XOBE requires
all XML variables to be explicitly typed with element names,
unlike our approach. Lists of mixed elements can be described
by unordered content models, not by general regular expres-
sions. XML trees in XOBE can only be constructed bottom-
up. In contrast, the template mechanism in JWIG and XACT
is higher-order in the sense that templates can contain named
gaps that can be filled in any order, possibly with templates
containing other gaps. Finally, our gapify construct has no
counterpart in XOBE. These issues make XACT more flexible
in practice.

APPENDIX II
SYNTACTIC SUGAR FOR XACT

The XACT language permits some syntactic sugar on top
of the basic operations. First, we allow special syntax for
template constants, which may be written in [[...]] without
the otherwise mandatory escape characters. Similarly, argu-
ments of types Gap and XPath may be written directly without
explicit calls to constructors, and DTD references can be written
as strings. Additionally, we allow some simple abbreviations
for common operations:

smash(xs) ≡ xs.length>0 ? group(xs,.[false()])[0] : [[]]
x.roots() ≡ x.select(*)
x.text() ≡ smash(x.select(text())).toString()
x.attribute(a) ≡ smash(x.select(@a)).toString()
x.has(p) ≡ x.select(p).length>0
x.size() ≡ x.roots().length
x.delete(p) ≡ x.gapify(p,g)
x.apply(p,f) ≡ x.gapify(p,g).plug(g,[]f(x.select(p)))

The smash operation concatenates an array of templates into
a single template; roots builds an array with one entry for
each root element in the given template; text extracts the
top-level character data of a template; attribute extracts

the value of an attribute; has checks whether specific nodes
are present; size counts the number of root elements in a
template; and delete effectively removes the specified nodes
from a template. The apply operation applies a transformation
to the specified nodes, under the assumption that these nodes
have disjoint subtrees. If f is a local method accepting exactly
one argument of type XML and whose result is also of type
XML, then []f abbreviates a new local method that accepts
and returns arguments of type XML[] and applies f to each
array entry. A recursive variant of apply works without the
disjointness restriction.

Finally, a code gap is syntactic sugar for a gap and a plug
operation: <{c}>, where c is an expression of type String or
XML, abbreviates a gap <[g]> and a plug operation where the
value of c is plugged into g. Alternatively, c can be a statement
returning a value of type String or XML. Code gaps can also
occur as attributes using the notation name={c}.

Consider a method upperTitle that creates a copy of a
recipe collection in which all titles are raised to upper case.
We use the DTD schema from Section II to model recipes.
The following sugared syntax

XML toUpper(XML x) {
return [[<title><{x.text().toUpperCase()}></title>]];

}
XML upperTitle(XML x) {

return x.apply(//title, toUpper);
}

then abbreviates the more cumbersome basic syntax:

XML toUpper(XML x) {
return XML.constant("<title><[t]></title>")

.plug(new Gap("t"),
XML.smash(x.select("text()"))

.toString().toUpperCase());
}
XML toUpperArray(XML[] x) {

XML[] y = new XML[x.length];
for (int i=0; i<x.length; i++) y[i]=toUpper(x[i]);
return y;

}
XML upperTitle(XML x) {

return x.gapify("//title", new Gap("n"))
.plug(new Gap("n"),

toUpperArray(x.select("//title")));
}

These syntactic extension to Java can be implemented using
the Metafront tool [53].

The following complete example implements the recursive
TREE Q6 query from the XQuery use cases [19]:

XML summary(XML[] x) {
XML y[] = new XML[x.length];
for (int i=0; i<x.length; i++)
y[i] =

[[<section id={x[i].attribute(id)}
difficulty={x[i].attribute(difficulty)}>

<title><{x[i].select(section/title)}></title>
<figcount>
<{x[i].select(section/figure).length}>

</figcount>
<{summary(x[i].select(section/section))}>

</section>]];
return XML.smash(y);

}
String Q6(String s) {

XML x = XML.get(s, "book.dtd");
return [[<toc>
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<{summary(x.select(book/section))}>
</toc>]]

.analyze("Q6.dtd").toString();
}

The structure of this code is similar to the XQuery version.
The next example shows how a group-like transformation

task inspired by use cases in the XSLT 2.0 requirement
specification [54] can be solved with XACT. The task is to
produce an XHTML document where cities are grouped in a
table according to their country, and with the total population
computed for each group. The format for cities is the one
exemplified in Section II. Since XHTML documents have the
same basic structure it is beneficial to provide the following
template:

XML xhtml = [[
<html>
<head><title><[title]></title></head>
<body><[body]></body>
</html>

]];

The transformation task is accomplished by

XML getRows(XML[] xs) {
XML[] rs = new XML[xs.length];
for (int i=0; i<xs.length; i++) {
XML[] cities = xs[i].select("city");
String country="", names="";
int pop=0;
for (int j=0; j<cities.length; j++) {

country=cities[j].attribute("country");
names+=cities[j].attribute("name")+" ";
pop+=Integer.parseInt(cities[j].attribute("pop"));

}
rs[i] = [[<tr>

<td><{country}></td>
<td><{names}></td>
<td><{pop}></td>

</tr>]];
}
return XML.smash(rs);

}
XML getXHTML(String s) {

XML table = xhtml.plug(head,"Groups of Cities");
.plug(body,[[<table><[rows]></table>]]);

XML x = XML.get(s,"cities.dtd");
XML[] cs = x.select("/cities/city");
XML[] gs = XML.group(cs,"city/@country");
return table.plug(rows,getRows(gs));

.analyze("xhtml1-transitional.dtd");
}

Note how the result is constructed in a top-down fashion using
the plug operation. This programming style is appropriate
when sub-templates of the transformation, such as xhtml and
table in the above example, are candidates for reuse within
the transformation.

APPENDIX III
MODELING AND CHECKING PLUG OPERATIONS

This appendix shows the transfer function for plug opera-
tions and the compile-time test for absence of runtime errors
at these operations.

A template plug invocation, x.plug(g, y) where y has type
XML, is modeled by adding template edges from nodes with
open g gaps in ∆̂(x) to roots in ∆̂(y). A string plug, that
is, where y has type String, is modeled by collecting the

possible strings of y at the program point ` into the associated
chardata node:

∆̂(x.plug(g, y))

=

{
tplug(∆̂(x), g, ∆̂(y)) if y has type XML

splug(∆̂(x), g, string`(y)) if y has type String

We use the auxiliary functions tplug , splug , and string `:

tplug((R1, T1, S1, P1), g, (R2, T2, S2, P2)) =
(R1,

T1 ∪ T2 ∪ {(n, g,m) | n ∈ open(P1(g)) ∧ m ∈ R2)},
λm.S1(m) ∪ S2(m),
λh.if h=g

then (o2, r1 ∪ r2, t2, a2)
else (o1 ∪ o2, r1 ∪ r2,merge(t1, t2),merge(a1, a2)))

where P1(h) = (o1, r1, t1, a1), P2(h) = (o2, r2, t2, a2),
merge is as defined in Section IV-C, and:

splug((R, T, S, P ), g, L) =
(R,
T ∪ {(n, g, c) | n ∈ open(P (g)) ∩NT },
S[n 7→ S(n) ∪ L for n ∈ (open(P (g)) ∩NA) ∪ {c}]
P [g 7→ (∅, removed(P (g)), {CLOSED}, {CLOSED})])

where c is the chardata node corresponding to the occurrence
of the plug operation.

A separate program analysis, see [17], provides a regular
string language over the Unicode alphabet for each occurrence
of a string expression in the program. The set string `(y) thus
contains an upper approximation of the set of strings that the
expression y may evaluate to at the program point ` at runtime.

The tplug function models plug operations where the
second operand is an XML template expression. It finds the
summary graphs for the two sub-expressions and combines
them as follows: The roots are those of the first graph since it
represents the outermost template. The template edges become
the union of those in the two graphs plus a new edge from
each node that may have open gaps of the given name to
each root in the second graph. The string edge sets are simply
joined without adding new information. For the gaps that are
plugged into, we take the gap presence information from the
second graph, except for the removed component, which is
joined from the two summary graphs. For the other gaps we
use the merge function to mark gaps as “definitely open” if
they are so in one of the graphs and otherwise take the least
upper bound.

The splug function models plug operations where the
second operand is a string expression. It adds an edge from
each template node with an open gap of the given name to
the chardata node that corresponds to the operation. The string
edge map is updated by adding the set of strings obtained by
the string analysis for the string expression to the chardata
node and to each attribute with an open gap of the given
name. The gap presence map is updated to mark the gaps
as “definitely closed”.

The array variants of plug are modeled as above, except
that we need to model the case where the given array is shorter
than the number of gaps of the given name and the remaining
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gaps are filled with the empty string. This is accomplished by
adding the empty string to the string edge map for the chardata
node corresponding to the operation and, for the template
array variant, also adding a template edge from each template
node with an open gap of the given name to the chardata node.

As mentioned in Section II, one of the compile-time guaran-
tees that our analysis can provide is that plug XML templates
are never plugged into attribute gaps. A safe approximation of
this information can be extracted from the summary graphs:
For a specific plug operation x.plug(g, y) where y has type
XML or XML[], consider the summary graph (R, T, S, P ) given
by the data-flow analysis for the expression x. We now check
the plug operation simply by inspecting that the following
condition is satisfied:

agaps(P (g)) = {CLOSED}

If a violation is detected, a helpful error message can be
generated. Additionally, if

agaps(P (g)) ∪ tgaps(P (g)) = {CLOSED}

then the plug operation will never have any effect because the
g gap is never present in the x template. In this case, a warning
is generated.
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