Inference and Evolution of
TypeScript Declaration Files

Erik Krogh Kristensen and Anders Mgller

Aarhus University, Denmark
{erik,amoeller}@cs.au.dk

Abstract. TypeScript is a typed extension of JavaScript that has be-
come widely used. More than 2000 JavaScript libraries now have pub-
licly available TypeScript declaration files, which allows the libraries to
be used when programming TypeScript applications. Such declaration
files are written manually, however, and they are often lagging behind
the continuous development of the libraries, thereby hindering their us-
ability. The existing tool TSCHECK is capable of detecting mismatches
between the libraries and their declaration files, but it is less suitable
when creating and evolving declaration files.

In this work we present the tools TSINFER and TSEVOLVE that are de-
signed to assist the construction of new TypeScript declaration files
and support the co-evolution of the declaration files as the underly-
ing JavaScript libraries evolve. Our experimental results involving ma-
jor libraries demonstrate that TSINFER and TSEVOLVE are superior to
TSCHECK regarding these tasks and that the tools are sufficiently fast
and precise for practical use.

1 Introduction

The TypeScript [I3] programming language has become a widely used alter-
native to JavaScript for developing web applications. TypeScript is a super-
set of JavaScript adding language features that are important when developing
and maintaining larger applications. Most notably, TypeScript provides optional
types, which not only allows many type errors to be detected statically, but also
enables powerful IDE support for code navigation, auto-completion, and refac-
toring. To allow TypeScript applications to use existing JavaScript libraries, the
typed APIs of such libraries can be described in separate declaration files. A
public repository exists containing declaration files for more than 2 000 libraries,
and they are a critical component of the TypeScript software ecosystemEI
Unfortunately, the declaration files are written and maintained manually,
which is tedious and error prone. Mismatches between declaration files and the
corresponding JavaScript implementations of libraries affect the TypeScript ap-
plication programmers. The type checker produces incorrect type error messages,
and code navigation and auto-completion are misguided, which may cause pro-
gramming errors and increase development costs. The tool TSCHECK [8] has

! https://github.com/DefinitelyTyped/DefinitelyTyped

https://github.com/DefinitelyTyped/DefinitelyTyped

been designed to detect such mismatches, but three central challenges remain.
First, the process of constructing the initial version of a declaration file is still
manual. Although TypeScript has become popular, many new libraries are still
being written in JavaScript, so the need for constructing new declaration files
is not diminishing. We need tool support not only for checking correctness of
declaration files, but also for assisting the programmers creating them from the
JavaScript implementations. Second, JavaScript libraries evolve, as other soft-
ware, and when their APIs change, the declaration files must be updated. We
observe that the evolution of many declaration files lag considerably behind the
libraries, which causes the same problems with unreliable type checking and IDE
support as with erroneous declaration files, and it may make application pro-
grammers reluctant or unable to use the newest versions of the libraries. With the
increasing adaptation of TypeScript and the profusion of libraries, this problem
will likely grow in the future. For these reasons, we need tools to support the pro-
grammers in this co-evolution of libraries and declaration files. Third, TSCHECK
is not sufficiently scalable to handle modern JavaScript libraries, which are often
significantly larger than a couple of years ago.
The contributions of this paper are as follows.

— To further motivate our work, we demonstrate why the state-of-the-art tool
TSCHECK is inadequate for inference and evolution of declaration files, and we
describe a small study that uncovers to what extent the evolution of Type-
Script declaration files typically lag behind the evolution of the underlying
JavaScript libraries (Section [2)).

— We present the tool TSINFER, which is based on TSCHECK but specifically
designed to address the challenge of supporting programmers when writing
new TypeScript declaration files for JavaScript libraries, and to scale to even
the largest libraries (Section .

— Next, we present the tool TSEVOLVE, which builds on top of TSINFER to
support the task of co-evolving TypeScript declaration files as the underlying
JavaScript libraries evolve (Section [d).

— We report on an experimental evaluation, which shows that TSINFER is bet-
ter suited than TSCHECK for assisting the developer in creating the initial
versions of declaration files, and that TSEVOLVE is superior to both TSCHECK
and TSINFER for supporting the co-evolution of declaration files (Section .

2 DMotivating Examples

The PixiJS library PixiJSEI is a powerful JavaScript library for 2D rendering
that has been under development since 2013. A TypeScript declaration ﬁleE|
was written manually for version 2.2 (after some incomplete attempts), and the
authors have since then made numerous changes to try to keep up-to-date with
the rapid evolution of the library. At the time of writing, the current version
of PixiJS is 4.0, and the co-evolution of the declaration file continues to require

2 http://www.pixijs.com/
3 https://github.com/pixijs/pixi-typescript

http://www.pixijs.com/
https://github.com/pixijs/pixi-typescript

1 export class Sprite extends PIXI.DisplayObjectContainer {

2 constructor (texture: PIXI.Texture);

3 static fromFrame: (frameld: string | number) => PIXI.Sprite;
4 static fromImage: (imageld: string, crossorigin: any,

5 scaleMode: any) => PIXI.Sprite;

6 _height: number;

7 _width: number;

8 anchor: PIXI.Point;

9 blendMode: number;

10 onTextureUpdate: () => void;

11 setTexture: (texture: PIXI.Texture) => void;
12 shader: any;

13 texture: PIXI.Texture;

14 tint: number;

15 }

Fig. 1. Example output from TSINFER, when run on PixiJS version 2.2.

substantial manual effort as testified by the numerous commits and issues in the
repository. Hundreds of library developers face similar challenges with building
TypeScript declaration files and updating them as the libraries evolve.

From checking to inferring declaration files To our knowledge, only one tool
exists that may alleviate the manual effort required: TSCHECK [§]. This tool
detects mismatches between a JavaScript library and a TypeScript declaration
file. It works in three phases: (1) it executes the library’s initialization code and
takes a snapshot of the resulting runtime state; (2) it then type checks the objects
in the snapshot, which represent the structure of the library API, with respect
to the TypeScript type declarations; (3) it finally performs a light-weight static
analysis of each library function to type check the return value of each function
signature. This works well for detecting errors, but not for inferring and evolving
the declaration files. For example, running TSCHECK on PixiJS version 2.2 and a
declaration file with an empty PIXI module (mimicking the situation where the
module is known to exist but its API has not yet been declared) reports nothing
but the missing properties of the PIXI module, which is practically useless. In
comparison, our new tool TSINFER is able to infer a declaration file that is quite
close to the manually written one. Figure [I| shows the automatically inferred
declaration for one of the classes in PixiJS version 2.2. The declaration is not
perfect (the types of frameld, crossorigin, scaleMode, and shader could be more
precise), but evidently such output is a better starting point when creating the
initial version of a declaration file than starting completely from scratch.

Evolving declaration files The PixiJS library has recently been updated from
version 3 to version 4. Using TSCHECK as a help to update the declaration file
would not be particularly helpful. For example, running TSCHECK on version 4 of
the JavaScript file and the existing version 3 of the declaration file reports that
38 properties are missing on the PIXI object, without any information about their
types. Moreover, 15 of these properties are also reported if running TSCHECK on

Property PrimitiveShader removed from object on window.PIXI

Property FXAAFilter removed from object on window.PIXI

Property TransformManual added to object on window.PIXI
Type: typeof PIXI.TransformBase

Property TransformBase added to object on window.PIXI

Type: class TransformBase { ... }
Property Transform added to object on window.PIXI
Type: class Transform extends PIXI.TransformBase { ... }

(a) Some of the added or removed properties.

Type changed on
window.PIXI.RenderTarget. [constructor]. [return].stencilMaskStack
from StencilMaskStack to PIXI.Graphics[]

(b) A modified property.

Fig. 2. Example output from TSEVOLVE, when run on PixiJS versions 3 and 4.

version 3 of the JavaScript file, since they are due to the developers intentionally
leaving some properties undocumented. Our experiments presented in Section
show that many libraries have such intentionally undocumented features, and
some also have properties that intentionally exist in the declaration file but not
in the libraryﬁ While TSINFER does suggest a type for each of the new properties,
it does not have any way to handle the intentional discrepancies. Our other tool
TSEVOLVE attempts to solve that problem by looking only at differences between
two versions of the JavaScript implementation and is thereby better at only
reporting actual changes. When running TSEVOLVE on PixiJS version 3 and 4, it
reports (see Figure (a)) that 8 properties have been removed and 24 properties
have been added on the PIXI object. All of these correctly reflect an actual
change in the library implementation, and the declaration file should therefore
be updated accordingly. This update inevitably requires manual intervention,
though; in this specific case, PrimitiveShader has been removed from the PIXI
object but the developers want to keep it in the declarations as an internal class,
and TransformManual, although it is new to version 4, is a deprecated alias for
the also added TransformBase.

Changes in a library API from one version to the next often consist of ex-
tensions, but features are also sometimes removed, or types are changed. As an
example of the latter, one of the changes from version 3 to 4 for PixiJS was
changing the type of the field stencilMaskStack in the class RenderTarget from
type PIXI.StencilMaskStack to type PIXI.Graphics[]. The developer updating
the declaration file noticed that the field was now an array, but not that the
elements were changed to type PIXI.Graphics, so the type was erroneously up-
dated to PIXI.StencilMaskStack[]. In comparison, TSINFER reports the change
correctly as shown in Figure 2{(b).

4 This situation is rare, but can happen if, for example, documentation is needed for a
class that is not exported, see e.g. https://github.com/pixijs/pixi.js/issues/
2312/#issuecomment-174608951.

https://github.com/pixijs/pixi.js/issues/2312/#issuecomment-174608951
https://github.com/pixijs/pixi.js/issues/2312/#issuecomment-174608951

A study of evolution of type declarations To further motivate the need for new
tools to support the co-evolution of declaration files as the libraries evolve, we
have measured to what extent existing declaration files lag behind the libraries
We collected every JavaScript library that satisfies the following conditions: it
is being actively developed and has a declaration file in the the DefinitelyTyped
repository, the declaration file contains a recognizable version number, and the
library uses git tags for marking new versions, where we study the commits from
January 2014 to August 2016. This resulted in 49 libraries. By then comparing
the timestamps of the version changes for each library and its declaration file,
respectively (where we ignore patch releases and only consider major.minor ver-
sioning), we find that for more than half of the libraries, the declaration file is
lagging behind by at least a couple of months, and for some more than a year.
This is notable, given that all the libraries are widely used according to the
github ratings, and it seriously affects the usefulness of the declaration files in
TypeScript application development.

Interestingly, we also find many cases where the version number found in
the declaration file has not been updated correctly along with the contents of
the ﬁleﬁ Not being able to trust version numbers of course also affects the
usability of the declaration files. For some high-profile libraries, such as jQuery
and AngularJS, the declaration files are kept up-to-date, which demonstrates
that the developers find it necessary to invest the effort required, despite the
lack of tool support. We hope our new tools can help not only those developers
but also ones who do not have the same level of manual resources available.

Scalability In addition to the limitations of TSCHECK described above, we find
that its static analysis component, which we use as a foundation also for TSINFER
and TSEVOLVE, is not sufficiently scalable to handle the sizes and complexity of
contemporary JavaScript libraries. In Section [3.2] we explain how we replace
the unification-based analysis technique used by TSCHECK with a more precise
subset-based one, and in Section [5| we demonstrate that this modification, per-
haps counterintuitively, leads to a significant improvement in scalability. As an
example, the time required to analyze Moment.js is improved from 873 seconds
to 12 seconds, while other libraries simply are not analyzable in reasonable time
with the unification-based approach.

3 TSINFER: Inference of Initial Type Declarations

Our inference tool TSINFER works in three phases: (1) it concretely initializes the
library in a browser and records a snapshot of the resulting runtime state, much
like the first phase of TSCHECK (see Section ; (2) it performs a static analysis
of all the functions in that snapshot, similarly to the third phase of TSCHECK;
(3) lastly it emits a TypeScript declaration file. As two of the phases are quite
similar to the approach used by TSCHECK, we here focus on what TSINFER does
differently.

5 Our data material from this study is available at http://www.brics.dk/tstools/.
5 An example is Backbone.js, until our patch https://github.com/DefinitelyTyped/
DefinitelyTyped/pull/10462.

http://www.brics.dk/tstools/
https://github.com/DefinitelyTyped/DefinitelyTyped/pull/10462
https://github.com/DefinitelyTyped/DefinitelyTyped/pull/10462

3.1 The Snapshot Phase

In JavaScript, library code needs to actively put entry points into the heap in
order for it to be callable by application code. This initialization, however, often
involves complex metaprogramming, and statically analyzing the initialization of
a library like jQuery can therefore be extremely complicated [2]. We sidestep this
challenge by concretely initializing the library in a real browser and recording
a snapshot of the heap after the top-level code has finished executing. This is
done in the same way as described by TSCHECK, and we work under the same
assumptions, notably, that the library API has been established after the top-
level code has executed. We have, however, changed a few things.

For all functions in the returned snapshot, we record two extra pieces of
information compared to TSCHECK: (1) the result of calling the function with
the new operator (if the call returned normally), which helps us determine the
structure of a class if the function is found to be a constructor; (2) all calls to
the function that occur during the initialization, which we use to seed the static
analysis phase.

The last step is to create a class hierarchy. JavaScript libraries use many
different and complicated ways of creating their internal class structures, but
after the initialization is done, the vast majority of libraries end up with con-
structor functions and prototype chains. The class hierarchy is therefore created
by making a straightforward inspection of the prototype chains.

3.2 The Static Analysis Phase

The static analysis phase takes the produced snapshot as input and performs a
static analysis of each of the functions. It produces types for the parameters and
the return value of each function.

The analysis is an unsound, flow-insensitive, context-insensitive analysis that
has all the features described in previous work [§], including the treatment of
properties and native functions. There are, however, some important changes.

TSCHECK analyzes each function separately, meaning that if a function f calls
a function g, this information is ignored when analyzing function g. This works
well for creating an analysis such as TSCHECK that only infers the return type of
functions. When creating an analysis that also infers function parameter types,
the information gained by observing calls to a function is important. Our analysis
therefore does not analyze each function separately, but instead performs a single
analysis that covers all the functions.

While TSCHECK opts for a unification-based analysis, we find that switching
to a subset-based analysis is necessary to gain the scalability needed to infer
types for the bigger JavaScript libraries, as discussed in Section [2| The subset-
based analysis is similar to the one described by Pottier [15], as it keeps separate
constraint variables for upper-bounds and lower-bounds. After the analysis, the
types for the upper-bound and lower-bound constraint variables are merged to
form a single resulting type for each expression.

Compared to TSCHECK, some constraints have been added to improve preci-
sion for parameter types, for example, so that the arguments to operators such

as - and * are treated as numbers. (Due to the page limit, we omit the actual
analysis constraints used by TSINFER.)

A subset-based analysis gives more precise dataflow information compared
to a unification-based analysis, however, more precise dataflow information does
not necessarily result in more precise type inference. For example, consider the
expression foo = bar || "", where bar is a parameter to a function that is never
called within the library. A unification-based analysis, such as TSCHECK, will
unify the types of foo, bar and "", and thereby conclude that the type of bar is
possibly a string. A more precise subset-based analysis will only constrain the
possible types of foo to be a superset of the types of bar and "", and thereby
conclude that the type of bar is unconstrained. In a subset-based analysis with
both upper-bound and lower-bound constraint variables, the example becomes
more complicated, but the result remains the same. This shows that changing
from unification-based to subset-based analysis does not necessarily improve the
precision of the type inference. We investigate this experimentally in Section

3.3 The Emitting Phase

The last phase of TSINFER uses the results of the preceding phases to emit a
declaration for the library. A declaration can be seen as a tree structure that
resembles the heap snapshot, so we create the declaration by traversing the heap
snapshot and converting the JavaScript values to TypeScript types, using the
results from the static analysis when a function is encountered.

Implementing this phase is conceptually straightforward, although it does
involve some technical complications, for example, handling cycles in the heap
snapshot and how to combine a set of recursive types into a single type.

4 TSEVOLVE: Evolution of Type Declarations

The goal of TSEVOLVE is to create a list of changes between an old and a new
version of a JavaScript library. To do this it has access to three input files: the
JavaScript files for the old version old.js and the new version new.js and an
existing TypeScript declaration file for the old version old.d.ts.

To find the needed changes for the declaration file, a naive first approach
would be to compare old.d.ts with the output of running TSINFER on new. js.
However, this will result in a lot of spurious warnings, both due to imprecisions in
the analysis of new. js, but also because of intentional discrepancies in old.d.ts,
as discussed in Section

Instead we choose a less obvious approach, where TSEVOLVE uses TSINFER
to generate declarations for both old.js and new.js. These declarations are
then traversed as trees, and any location where the two disagree is marked as
a change. The output of this process will still contain spurious changes, but
unchanged features in the implementation should rarely appear as changes, as
imprecisions in unchanged features are likely the same in both versions. We
then use old.d.ts to filter out the changes that concern features that are not
declared in old.d.ts, which removes many of the remaining spurious changes.

Relevant function sources code from old.js and new.js are also printed as
part of the output, which allows for easy manual identification of many of the
remaining spurious changes. As the analysis does not have perfect precision, it
is necessary to manually inspect and potentially adjust the suggested changes
before modifying the declaration file.

As an extra feature, in case a partially updated declaration file for the new
version is available, TSEVOLVE can use that file to filter out some of the changes
that have already been made.

5 Experimental Evaluation

Our implementations of TSINFER and TSEVOLVE, which together contain around
20000 lines of Java code and 1000 lines of JavaScript code, are available at
http://www.brics.dk/tstools/.

We evaluate the tools using the following research questions.

— RQ1: Does the subset-based approach used by TSINFER improve analysis
speed and precision compared to the unification-based alternative?

— RQ2: A tool such as TSCHECK that only aims to check existing declarations
may blindly assume that some parts of the declarations are correct, whereas
a tool such as TSINFER must aim to infer complete declarations. For this
reason, it is relevant to ask: How much information in declarations is blindly
ignored by TSCHECK but potentially inferred by TSINFER?

— RQ3: Can TSINFER infer useful declarations for libraries? That is, how accu-
rate is the structure of the declarations and the quality of the types compared
to handwritten declarations?

— RQ4: Is TSEVOLVE useful in the process of co-evolving declaration files as
the underlying libraries evolve? In particular, does the tool make it possible
to correctly update a declaration file in a short amount of time?

We answer these questions by running the tools on randomly selected
JavaScript libraries, all of which have more than 5000 stars on GitHub and
a TypeScript declaration file of at least 100 LOC. Our tools do not yet support
the require function from Node.jsm so we exclude Node.js libraries from this
evaluation. All experiments have been executed on a Windows 10 laptop with
16GB of RAM and an Intel i7-4712MQ processor running at 1.5GHz.

RQ1 (subset-based vs. unification-based static analysis)

To compare the subset-based and unification-based approaches, we ran TSINFER
on 20 libraries. The results can be found in the left half of Table [[l The Funcs
column shows the number of functions analyzed for each library. The Unification
and Subset columns show the analysis time for the unification-based and subset-
based analysis, respectively, using a timeout of 30 minutes.

" https://nodejs.org/

http://www.brics.dk/tstools/
https://nodejs.org/

Table 1. Analysis speed and precision.

Speed Precision

Library Funcs[Unification] Subset|| Unification]Subset] Equal] Unclear
Ace 1249 timeout| 13.8s - - - -
AngularJS 609 193.3s 7.8s 1 14 17 0
async 169 28.2s 4.9s 2 22 20 6
Backbone. js 176 28.7s 4.8s 1 9 44 0
D3.js 1030 181.7s| 15.8s 4 19 44 2
Ember.js 2902 timeout| 319.7s - - - -
Fabric.js 1032 timeout| 15.7s - - - -
Hammer.js 122 32.5s 3.2s 0 2 61 3
Handlebars.js 280 9.2s 6.9s 0 3 12 1
Jasmine 51 135.4s 4.6s 2 4 71 0
jQuery 500 timeout| 41.2s - - - -
Knockout 325 168.8s 14.4s 2 7 41 8
Leaflet 758 timeout| 11.6s - - - -
Moment.js 446 872.6s 12.4s 1 27 21 2
PixiJS 1527 timeout| 308.0s - - - -
Polymer.js 748 424.2s 8.5s 1 10 41 3
React 1261 timeout 14.0s - - - -
three.js 1243 timeout| 208.8s - - - -
Underscore.js 298 81.2s 4.2s 0 4 47

vue.js 433 timeout 6.2s - - -

Total [[15159] -[1026.5s]] 14] 121] 419] 25

The results show that our subset-based analysis is significantly faster than the
unification-based approach. This is perhaps counterintuitive for readers familiar
with Andersen-style [I] (subset-based) and Steengaard-style [20] (unification-
based) pointer analysis for e.g. C or Java. However, it has been observed before
for JavaScript, where the call graph is usually inferred as part of the analysis,
that increased precision often boosts performance [I92].

We compared the precision of the two approaches by their ability to infer
function signatures on the libraries where the unification-based approach does
not reach a timeout. Determining which of two machine generated function sig-
natures is the most precise is difficult to do objectively, so we randomly sampled
some of the function signatures and manually determined their precision. To
minimize bias, each pair of generated function signatures was shown randomly.

The results from these tests are shown in the right half of Table [I] where
the function signatures have been grouped into four categories: Unification (the
unification-based analysis inferred the most precise signature), Subset (the subset-
based analysis was the most precise), Fqual (the two approaches were equally
precise), and Unclear (no clear winner). The results show that the subset-based
approach in general infers better types than the unification-based approach. The
unification-based did in some cases infer the best type, which is due to the fact
that a more precise analysis does not necessarily result in a more precise type
inference, as explained in Section

RQ2 (information ignored by TSCHECK but considered by TSINFER)

TSCHECK only checks the return types of the functions where the corresponding
signature in the declaration file do not have a void/any return type, which may

Table 2. Features in handwritten declaration files ignored by TSCHECK but taken into
account by TSINFER.

Library ||void/any functions (all)| Parameters|Classes| Fields
Ace 301 (460) 370 2 1
AngularJS 8 (26) 39 0 0
async 64 (30 222 0 0
Backbone.js 67 (149) 210 7 31
D3js 7 (219) 271 5 12
Ember Js 270 (629) 991 58] 103
Fabric.js 93 (330) 382 B 17
Hammer.js 33 (53) 53 6] 24
Handlebars.js 20 (20) 19 1 0
Jasmine 1 (D) 1 1 0
JjQuery 19 (53) 88 1 0
Knockout 68 (125) 226 6 0
Leaflet 48 (325) 435 26 17
Moment.js 0 (70) 71 0 0
PixiJS 338 (522) 639 86| 584
Polymer.js 3 (4) 3 0 0
React 3 20 30 1 1
three.js 328 (993) 1295 180| 632
Underscore.js 36 (121) 241 0 0
vue.js 7 (23) 42 1 8
Total m 1714 (4224)] 5628] 416] 1436

detect many errors, but the rest of the declaration file is blindly assumed to
be correct. In contrast, TSINFER infers types for all functions, including their
parameters, and it also infers classes and fields.

Table [2| gives an indication of the amount of extra information that TSINFER
can reason about compared to TSCHECK. For each library, we show the number of
functions that have return type void or any (and in parentheses the total number
of functions), and the number of parameters, classes, and fields, respectively. The
numbers are based on the existing handwritten declaration files.

We see that on the 20 benchmarks, TSCHECK ignores 1714 of the 4 224 func-
tions, silently assumes 5628 parameter types to be correct, and ignores 1436
instance fields spread over 416 classes. In contrast TSINFER, and thereby also
TSEVOLVE, does consider all these kinds of information.

RQ3 (usefulness of TSINFER)

As mentioned in Section [2 TSCHECK is effective for checking declarations, but
not for inferring them. We are not aware of any other existing tool that could be
considered as an alternative to TSINFER. To evaluate the usefulness of TSINFER,
we therefore evaluate against existing handwritten declaration files, knowing that
these contain imprecise information.

We first investigate the ability of TSINFER to identify classes, modules, in-
stance fields, methods, and module functions (but without considering inheri-
tance relationships between the classes and types of the fields, methods, and
functions). These features form a hierarchy in a declaration file. For example,

10

Table 3. Precision of inferring various features of a declaration file.

Class Class Module
Classes Modules fields methods functions
Library TP[FP[FN||[TP[FP[FN]|| TP[FP[FN|[TP[FP[FN|[TP] FP|FN
Ace ol 2 0 1] 0 1 0] 0] O 0] 0] O 3 21 0
AngularJS 0ol O] Off 2/ 1] O 0] 0] O 0| 0| Off 22 20 4
async 0l 0] O 1] 1| 0 0] 0] O 0| O] Off 88 6] O
Backbone.js 5/ 0] 2 1] 1] O 18] 3] 12| 183] 8| 3 12| 10| 2
Da3.js 5/ 13| O 11 9] 9 12| 4] O 15| 4] 2 56| 247| 12
Ember.js 62| 64| 54| 16| 32| 7 8[187| 35 40| 54| 74| 333| 678|112
Fabric.js 25| 21| O 7 3 1 16(193 1|| 248|402 8| 165| 24| 3
Hammer.js 8l 8 7 20 0 1 7| 64] O 39 6| O 16 9] 9
Handlebars.js 20 4/ 0 4| 3| 2 0o 3] O 200 4] O 28 8 3
Jasmine 21 22] O 1] 4| 0 [o] 8| off 28] 33] 3
jQuery 2| 6] O] 4| 29] 2 0] 6/ O 0| 6| Off 90] 59| 6
Knockout 5 3 1| 14| 11 1 of 4, 0 14 3] O 91| 63| 2
Leaflet 33| 10| 0] 22| 21 1 5| 75| 12|| 241|248| 2|| 137| 135 1
Moment.js ol 2/ O 1] 0] O 0ol 0] O 0] O] off 89 25| 6
PixiJS 700 2] 16|| 31| 8| 2|| 812| 46| 52|| 450| 37| 7| 128| 14| 16
Polymer.js ol 2] O 1] 19| 0 ol 0] O o] 0] O 2 9] 0
React 1| 0] oOff 4] 3] 0 3 7] 1 2 0] 1 26 6[130
three.js 169| 12| 11| 12| 18] 0([2348] 71| 33|| 907|105| 24|| 241 26| 8
Underscore.js ol 1] 0 1] 0] O o] 0] O 0] O] off 117 1] 3
vue.js 1 1 0 21 4| 0 8 22| O 23| 21| O 12 1 1
Total [[390]173] 91][128]167] 27][3237]685[146][2182]906][121][1684][1358[321
Precision,/Recall Prec: 69.3%]|[Prec: 43.4%]|] Prec: 82.5% || Prec: 70.7% || Prec: 55.36%
Rec: 80.9% || Rec: 82.6% || Rec: 95.7% Rec: 94.8% Rec: 84.0%

PIXI.Matrix.invert identifies the invert method in the Matrix class in the PIXI
module of PixiJS. When comparing the inferred features with the ones in the
handwritten declaration files, a true positive (7P) is one that appears in both,
a false positive (FP) exists only in the inferred declaration, and a false nega-
tive (FIN) exists only in the handwritten declaration. In case of FP or FN we
exclude the sub-features from the counts. The quality of the types of the fields
and methods is investigated later in this section; for now we only consider their
existence.

The counts are shown in Table|3] together with the resulting precision (Prec)
and recall (Rec). We see that TSINFER successfully infers most of the structure
of the declaration files, although some manual post-processing is evidently nec-
essary. For example, 80.9% of the classes and 95.7% of the fields are found by
TSINFER. Having false positives in an inferred declaration (i.e., low precision)
is less problematic than false negatives (i.e., low recall): it is usually easier to
manually filter away extra unneeded information than adding information that
is missing in the automatically generated declarations.

The identification of classes, modules, methods, and module functions in
TSINFER is based entirely on the snapshots (Section , so one might expect
100% precision for those counts. (Identification of fields is partly also based on
the static analysis.) The main reason for the non-optimal precision is that many
features are undocumented in the manually written declarations. By manually
inspecting these cases, we find that most of these are likely intentional: although

11

Table 4. Measuring the quality of inferred types of fields and methods.

Class fields Class methods and module functions
Library Perfect] Good] Any[Bad]| Perfect] Good] Any[Bad] No params
Ace 0 0 0 0 0 3 0 0 0
AngularJS 0 0 0 0 10 10 2 0 0
async 0 0 0 0 0 26| 18 0 6
Backbone.js 14 2 2 0 12 6| 30 0 7
D3.js 3 0 9 0 11 36 5 2 1
Ember.js 3 3 2 0 42 37| 11 5 5
Fabric.js 13 0 3 0 22 18| 10 3 22
Hammer.js 0 0 1 0 7 17 9 0 8
Handlebars.js 0 0 0 0 6 22 9 2 7
Jasmine 0 0 0 0 1 12 6 0 9
7Query 0 o] o o 5[21| 20| 1 0
Knockout 0 0 0 0 5 25| 24 0 1
Leaflet 3 2 0 0 14 36 7 0 19
Moment.js 0 0 0 0 8 15| 21 0 6
PixiJS 32 5| 13 0 38 401 21 1 0
Polymer 0 0 0 0 1 1 2 0 0
React 2 0 1 0 0 32 5 0 0
three.js 37 3| 10 0 44| 46| 10 0 0
Underscore. js 0 0 0 0 0 11] 35 3 1
vue.js 2 0 6 0 6 15 2 1 0
Total [109] 15] 47] O] 232] 429] 247] 18] 92

they are technically exposed to the applications, the features are meant for inter-
nal use in the libraries and not for use by applications. Non-optimal recall is often
caused by intentional discrepancies as discussed in Section [2] or by libraries that
violate our assumption explained in Section about the API being fully estab-
lished after the initialization code has finished. Other reasons for non-optimal
precision or recall are simply that the handwritten declaration files contain er-
rors or, in cases where the version number is not clearly stated in declaration
file, we were unable to correctly determine which library version it is supposed
to match.

To measure the quality of the inferred types of fields and methods, we again
used the handwritten declaration files as gold standard and this time manually
compared the types, in places where the inferred and handwritten declaration
files agreed about the existence of a field or method. Such a comparison requires
some manual work, so we settled for sampling: for each library, we compared 50
fields and 100 methods (thereof 50 that were classified as constructors), or fewer
if not that many were found in the library.

The result of this comparison can be seen in Table[d] where Perfect means that
the inferred and handwritten type are identical, Good means that the inferred
type is better than having nothing, Any means that the main reason for the
sample not being perfect is that either the inferred or the handwritten type
is any, Bad means that the inferred type is far from correct, and No params
means that the inferred type has no parameters while the handwritten does.
Obviously, this categorization to some extent relies on human judgement, but
we believe it nevertheless gives an indication of the quality of the inferred types.

12

Table 5. Classification of TSEVOLVE output.

Library || TP|FP|FP*| Unclear
async 1.4 — 2.0 38| 0| 52 2
Backbone.js 1.0 — 1.3 || 34| 0] 42 2
Ember.js 1.13 — 2.0 55| 24| 40 0
Ember.js 2.0 — 2.7 44| 0| 54 0
Handlebars.js 3 — 4 370 3 8 59
Moment.js 2.11 — 2.14|| 10| 0] 54 2
PixiJS 3 — 4 270| 13| 41 2
Total [[488] 40] 291] 67

An example in the Good category is in PixiJS where TSINFER infers a perfect type
for the PIXI.Matrix() .applyInverse method, except for the first argument where
it infers the type {x: number, y: number} instead of the correct PIXI.Point.

As can be seen in Table [] the types inferred for fields are perfect in most
cases, and none of them are categorized as Bad. The story is more mixed for
method types. Here, there are relatively fewer perfect types, but function signa-
tures are also much more complex, given that they often contain multiple pa-
rameters as well as a return type, and parameters can sometimes be extremely
difficult to infer correctly. For many method types categorized as Good, the over-
all structure of the inferred type is correct but some spurious types appear in
type unions for some of the parameters or the return type, or, as in the example
with applyInverse, an object type is inferred whose properties is a subset of the
properties in the handwritten type. The main reason that some method types
are categorized as No params is that our analysis is unable to reason precisely
about the built-in function Function.prototype.apply and the arguments object.
We leave it as future work to explore more precise abstractions of these features.

RQ4 (usefulness of TSEVOLVE)

To evaluate if TSEVOLVE can assist in evolving declaration files, we performed a
case study where TSEVOLVE was used for updating declaration files in 7 different
evolution scenarios. In each case, we used the output from TSEVOLVE to make
a pull request to the relevant repository. All of these libraries have more than
10000 stars on GitHub and had a need for the declaration file to be updated,
but were otherwise randomly selected. We had no prior experience in using any
of the libraries.

The output from TSEVOLVE is a list of changes for each declaration file. We
took the output lists from each of the 7 updates and classified each entry in each
list based upon how useful it was in the process of evolving the specific library.

The result of this can be seen in Table[f|where each change listed by TSEVOLVE
is counted in one of the four columns. TP counts true positives, i.e. changes that
reflect an actual change in the library that should be reflected in the declaration
file. Both FP and FP* count false positives, the difference being that changes
counted in FP* could easily be identified as spurious by looking at the output

13

Table 6. Pull requests sent based in TSEVOLVE outputﬂ

Library HLines addedlLines removedlLibmry author response

asvc “pretty thorough and seems to follow

1 Z_} 20 46 13|the 2.x API much better than what we
’ ’ currently have”

Backbone.js

1.0 - 13 27 3

Ember.js « of L.»

1.13—2.0 8 508 "LGTML=

Ember‘js e

2.0—2.7 %6 92"

Handlebars.js

34 49 2

Moment.js « . "

211 — 214 4 0|“thank you, looks good

PixiJs 158 261|“Awesome PR”

3 — 4 (pre-release)

PixiJS 19 4 “I went through all of your changes

3—+4 and can confirm everything is perfect”

from TSEVOLVE, as explained in Section [l Unclear counts the listed changes
that could not be easily categorized.

In the update from Ember.js version 1.13 to version 2.0, all of the 24 in the
Bad category are due to Ember.js breaking our assumption about the API being
fully established after the top-level code has executed. None of the other libraries
violate that assumption.

In the update of Handlebars.js from version 3 to 4, all the 59 in the Un-
clear category are due to the structures of the handwritten and the inferred
declaration files being substantially different. TSEVOLVE is therefore not able to
automatically filter out undocumented features, and all 59 entries are therefore
filtered out manually.

From Table [5] we can see that the output from TSEVOLVE mostly points out
changes that should be reflected in the corresponding declaration file. Among
the spuriously reported changes, most of them can easily be identified as being
spurious and are therefore not a big problem.

These outputs of TSEVOLVE were used to create pull requests, which are de-
scribed in Table[6] For each pull request, we show how many lines the pull request
added and removed in the declaration ﬁch along with a response from a library
developer, if one was given. For Handlebars.js, the pull request additionally con-
tains a few corrections of errors in the declaration file that were spotted while

8 The pull requests: https://gist.github.com/webbiesdk/£82c135fc5£67b0c7£175e985dd0c889

9 An acronym for “Looks Good To Me”.

10 The complete pull requests in some cases contain more lines changed, due to minor
refactorings or copying and renaming of files to match the version numbers.

14

https://gist.github.com/webbiesdk/f82c135fc5f67b0c7f175e985dd0c889

reviewing the report from TSINFER. All 7 pull requests were accepted without
any modifications to the changes derived from the TSEVOLVE output.

The total working time spent going from TSEVOLVE output to finished pull
requests was approximately one day, despite having no prior experience using
any of the libraries. Without tool support, creating such pull requests, involving
a total of 407 lines added and 883 lines removed, for libraries that contain a
total of 129 365 lines of JavaScript code across versions and declaration files
containing 3938 lines (after the updates), clearly could not have been done in
the same amount of time.

6 Related Work

The new tools TSINFER and TSEVOLVE build on the previous work on TSCHECK [§],
as explained in detail in the preceding sections. Other research on TypeScript
includes formalization and variations of its type system [AI7T822], and sev-
eral alternative techniques for JavaScript type inference exist [I6I1116], however,
none of that work addresses the challenges that arise when integrating JavaScript
libraries into typed application code.

The need for co-evolving declaration files as the underlying libraries evolve
can be viewed as a variant of collateral evolution [14]. By using our tools to
increase confidence that the declaration files are consistent with the libraries,
the TypeScript type checker becomes more helpful when developers upgrade
applications to use new versions of libraries.

Our approach to analyze the JavaScript libraries differs from most existing
dataflow and type analysis tools for JavaScript, such as, TAJS [92] and SAFE [3],
which are whole-program analyzers and not sufficiently scalable and precise for
typical JavaScript library code. We circumvent those limitations by concretely
executing the library initialization code and using a subset-based analysis that
is inspired by Pottier [15], Rastogi et al. [I7], and Chandra et al. [6].

Other languages, such as typed dialects of Python [23[10], Scheme [21], Clo-
jure [B], Ruby [12], and Flow for JavaScript[7], have similar challenges with types
and cross-language library interoperability, though not (yet) at the same scale
as TypeScript. Although TSINFER and TSEVOLVE are designed specifically for
TypeScript, we believe our solutions may be more broadly applicable.

7 Conclusion

We have presented the tools TSINFER and TSEVOLVE and demonstrated how
they can help programmers create and maintain TypeScript declaration files.
By making the tools publicly available, we hope that the general quality of
declaration files will improve, and that further use of the tools will provide
opportunities for fine-tuning the analyses towards the intentional discrepancies
found in real-world declarations.

Acknowledgments This work was supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation
program (grant agreement No 647544).

15

References

1.

2.

N

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

Lars Ole Andersen. Program analysis and specialization for the C programming
language. PhD thesis, University of Copenhagen, 1994.

Esben Andreasen and Anders Mgller. Determinacy in static analysis for jQuery.
In Proc. ACM International Conference on Object Oriented Programming Systems
Languages & Applications, 2014.

. SungGyeong Bae, Hyunghun Cho, Inho Lim, and Sukyoung Ryu. SAFEwapr:

web API misuse detector for web applications. In Proc. 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2014.

. Gavin M. Bierman, Martin Abadi, and Mads Torgersen. Understanding Type-

Script. In Proc. 28th European Conference on Object-Oriented Programming, 2014.

. Ambrose Bonnaire-Sergeant, Rowan Davies, and Sam Tobin-Hochstadt. Practical

optional types for Clojure. In Programming Languages and Systems - 25th Eu-
ropean Symposium on Programming, volume 9632 of Lecture Notes in Computer
Science. Springer, 2016.

. Satish Chandra, Colin S. Gordon, Jean-Baptiste Jeannin, Cole Schlesinger, Manu

Sridharan, Frank Tip, and Young-Il Choi. Type inference for static compilation
of JavaScript. In Proc. ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, 2016.

. Facebook. Flow, 2016. http://flowtype.org/.
. Asger Feldthaus and Anders Mgller. Checking correctness of TypeScript interfaces

for JavaScript libraries. In Proc. ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2014.

. Simon Holm Jensen, Anders Mgller, and Peter Thiemann. Type analysis for

JavaScript. In Proc. 16th International Static Analysis Symposium, 2009.

Jukka Lehtosalo et al. Mypy, 2016. http://www.mypy-lang.org/.

Benjamin S. Lerner, Joe Gibbs Politz, Arjun Guha, and Shriram Krishnamurthi.
TeJaS: retrofitting type systems for JavaScript. In Proc. 9th Symposium on Dy-
namic Languages, 2013.

Yukihiro ‘Matz’ Matsumoto. RubyConf 2014 — opening keynote, 2014. http:
//confreaks.tv/videos/rubyconf2014-opening-keynote.

Microsoft. TypeScript language specification, February 2015. https://github.
com/Microsoft/TypeScript/blob/master/doc/spec.md.

Yoann Padioleau, Julia L. Lawall, René Rydhof Hansen, and Gilles Muller. Doc-
umenting and automating collateral evolutions in Linux device drivers. In Proc.
EuroSys Conference. ACM, 2008.

Francgois Pottier. A framework for type inference with subtyping. In Proc. 3rd
ACM SIGPLAN International Conference on Functional Programming, 1998.
Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. The ins and outs of gradual
type inference. In Proc. 89th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 2012.

Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin M. Bierman, and Panagi-
otis Vekris. Safe & efficient gradual typing for TypeScript. In Proc. 42nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2015.
Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. In Proc. 29th European
Conference on Object-Oriented Programming, 2015.

Manu Sridharan, Julian Dolby, Satish Chandra, Max Schéfer, and Frank Tip. Cor-
relation tracking for points-to analysis of JavaScript. In Proc. 26th European Con-
ference on Object-Oriented Programming, volume 7313 of Lecture Notes in Com-
puter Science. Springer, 2012.

16

http://flowtype.org/
http://www.mypy-lang.org/
http://confreaks.tv/videos/rubyconf2014-opening-keynote
http://confreaks.tv/videos/rubyconf2014-opening-keynote
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md

20.

21.

22.

23.

Bjarne Steensgaard. Points-to analysis in almost linear time. In Proc. 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1996.
Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of
typed Scheme. 2008.

Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. Refinement types for
TypeScript. In Proc. 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2016.

Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. Design
and evaluation of gradual typing for Python. In Proc. 10th ACM Symposium on
Dynamic Languages, 2014.

17

	Inference and Evolution of TypeScript Declaration Files

