Type Test Scripts for TypeScript Testing

ERIK KROGH KRISTENSEN, Aarhus University, Denmark
ANDERS MOLLER, Aarhus University, Denmark

TypeScript applications often use untyped JavaScript libraries. To support static type checking of such
applications, the typed APIs of the libraries are expressed as separate declaration files. This raises the challenge
of checking that the declaration files are correct with respect to the library implementations. Previous work
has shown that mismatches are frequent and cause TypeScript’s type checker to misguide the programmers
by rejecting correct applications and accepting incorrect ones.

This paper shows how feedback-directed random testing, which is an automated testing technique that has
mostly been used for testing Java libraries, can be adapted to effectively detect such type mismatches. Given a
JavaScript library with a TypeScript declaration file, our tool TSTEST generates a type test script, which is an
application that interacts with the library and tests that it behaves according to the type declarations. Compared
to alternative solutions that involve static analysis, this approach finds significantly more mismatches in
a large collection of real-world JavaScript libraries with TypeScript declaration files, and with fewer false
positives. It also has the advantage that reported mismatches are easily reproducible with concrete executions,

which aids diagnosis and debugging.
CCS Concepts: » Software and its engineering — Software testing and debugging;
Additional Key Words and Phrases: feedback-directed random testing, JavaScript, types

ACM Reference Format:

Erik Krogh Kristensen and Anders Mgller. 2017. Type Test Scripts for TypeScript Testing. Proc. ACM Program.
Lang. 1, OOPSLA, Article 90 (October 2017), 25 pages.

https://doi.org/10.1145/3133914

1 INTRODUCTION

The TypeScript programming language [Microsoft 2015] is an extension of JavaScript with optional
type annotations, which enables static type checking and other forms of type-directed IDE support.
To facilitate use of untyped JavaScript libraries in TypeScript applications, the typed API of a
JavaScript library can be described in a TypeScript declaration file. A public repository of more
than 3000 such declaration files exists' and is an important part of the TypeScript ecosystem.
These declaration files are, however, written and maintained manually, which leads to many
errors. The TypeScript type checker blindly trusts the declaration files, without any static or
dynamic checking of the library code. Previous work has addressed this problem by automatically
checking for mismatches between the declaration file and the implementation [Feldthaus and Meller
2014], and assisting in the creation of declaration files and in updating the declarations as the

https://github.com/DefinitelyTyped/DefinitelyTyped

Authors’ email addresses: {erik,amoeller}@cs.au.dk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
2475-1421/2017/10-ART90

https://doi.org/10.1145/3133914

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

https://doi.org/10.1145/3133914
https://github.com/DefinitelyTyped/DefinitelyTyped
https://doi.org/10.1145/3133914

90:2 Erik Krogh Kristensen and Anders Meller

JavaScript implementations evolve [Kristensen and Moller 2017]. However, those techniques rely
on unsound static analysis and consequently often overlook errors and report spurious warnings.

Gradual typing [Siek and Taha 2006] provides another approach to find this kind of type errors.
Type annotations are ignored in ordinary TypeScript program execution, but with gradual typing,
runtime type checks are performed at the boundaries between dynamically and statically typed
code [Rastogi et al. 2015]. This can be adapted to check TypeScript declaration files [Williams
et al. 2017] by wrapping the JavaScript implementation in a higher-order contract [Keil and
Thiemann 2015b], which is then tested by executing application code against the wrapped JavaScript
implementation. That approach has a significant performance overhead and is therefore unlikely to
be used in production. For use in a development setting, a type error can only be found if a test case
provokes it. The results by Williams et al. [2017] also question whether it is feasible to implement a
higher-order contract system that guarantees non-interference.

In this work we present a new method for detecting mismatches between JavaScript libraries and
their TypeScript declaration files. Compared to the approaches by Feldthaus and Meller [2014] and
Kristensen and Meller [2017] that rely on static analysis, our method finds more actual errors and
also reports fewer false positives. It additionally has the advantage that each reported mismatch
is witnessed by a concrete execution, which aids diagnosis and debugging. In contrast to the
approach by Williams et al. [2017], our method does not require existing test cases, and it avoids the
performance overhead and interference problems of higher-order contract systems for JavaScript.

Our method is based on the idea of feedback-directed random testing as pioneered by the Randoop
tool by Pacheco et al. [2007]. With Randoop, a (Java) library is tested automatically by using the
methods of the library itself to produce values, which are then fed back as parameters to other
methods in the library. The properties being tested in Randoop are determined by user-provided
contracts that are checked after each method invocation. In this way, method call sequences that
violate the contracts are detected, whereas sequences that exhibit acceptable behavior are used
for driving the further exploration. Adapting that technique to our setting is not trivial, however.
Randoop heavily relies on Java’s type system, which uses nominal typing, and does not support
reflection, whereas TypeScript has structural typing and the libraries often use reflection. Moreover,
higher-order functions in TypeScript, generic types, and the fact that the type system of TypeScript
is unsound cause further complications.

Our tool TSTEST takes as input a JavaScript library and a corresponding TypeScript declaration
file. It then builds a type test script, which is a JavaScript program that exercises the library, inspired
by the Randoop approach, using the type declarations as contracts that are checked after each
invocation of a library method. As in gradual typing, the type test scripts thus perform runtime
type checking at the boundary between typed code (TypeScript applications) and untyped code
(JavaScript libraries), and additionally, they automatically exercise the library code by mimicking
the behavior of potential applications.

In summary, our contributions are the following.

e We demonstrate that type test scripts provide a viable approach to detect mismatches between
JavaScript libraries and their TypeScript declaration files, using feedback-directed random
testing.

e TypeScript has many features, including structural types, higher-order functions, and gener-
ics, that are challenging for automated testing. We describe the essential design choices and
present our solutions. As part of this, we discuss theoretical properties of our approach, in par-
ticular the main reasons for unsoundness (that false positives may occur) and incompleteness
(that some mismatches cannot be found by our approach).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

Type Test Scripts for TypeScript Testing 90:3

11 var Path = {

12 root: function (path) {
1 declare var Path: { 13 Path.routes.root = path;
2 root(path: string): void; 14 b
5 routes: { 15 routes: {
4 root: IPathRoute, 16 root: null
5 1 17 }
6 3 18 };
7 L .
s interf IPathRoute { (b) A part of the JavaScript implementation.
interface IPathRoute
? run():void; 19 *** Type error
0} 20 property access: Path.routes.root
. . 21 expected: object
(a) A part of the TypeScript declaration. P 3¢
22 observed: string

(c) Output from the type test script generated by TSTEST.

Fig. 1. Motivating example from the Path/S library.

e Based on an experimental evaluation of our implementation TSTEST involving 54 real-world
libraries, we show that our approach is capable of automatically finding many type mis-
matches that are unnoticed by alternative approaches. Mismatches are found in 49 of the 54
libraries. A manual investigation of a representative subset of the mismatches shows that
51% (or 89% if using the non-nullable types feature of TypeScript) indicate actual errors in
the type declarations that programmers would want to fix. The experimental evaluation also
investigates the pros and cons of the various design choices. In particular, it supports our
unconventional choice of using potentially type-incorrect values as feedback.

The paper is structured as follows. Section 2 shows two examples that motivate TSTEST. Section 3
describes the basic structure of the type test scripts generated by TSTEST, and Section 4 explains how
to handle the various challenging features of TypeScript. Section 5 describes the main theoretical
properties, Section 6 presents our experimental results, Section 7 discusses related work, and
Section 8 concludes.

2 MOTIVATING EXAMPLES

We present two examples that illustrate typical mismatches and motivate our approach.

2.1 The PathJS Library

PathjS” is a small JavaScript library used for creating single-page web applications. The implemen-
tation consists of just 183 LOC. A TypeScript declaration file describing the library was created in
2015 and has since received a couple of bug fixes. As of now, the declaration file is 38 LOC.?

Even though the library is quite simple, the declaration file contains errors. Figures 1a and 1b
contain parts of the declaration file and the implementation, respectively. The Path.root method
(line 12) can be used by applications to set the variable Path.routes.root. According to the type
declaration, the parameter path of the method should be a string (line 2), which does not match the
type of the variable Path.routes.root (line 4). By inspecting how the variable is used elsewhere

2https://githubAcom/mtrpcic/pathjs
3https://githubAcom/DeﬁnitelyTyped/Deﬁni’[elyTyped/blob/3540ecéZOdaccfaOadl(>7be1046(>5 1fbsfef69e8a/types/pathjs/index.d.ts

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

https://github.com/mtrpcic/pathjs
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/354cec620daccfa0ad167ba046651fb5fef69e8a/types/pathjs/index.d.ts

90:4 Erik Krogh Kristensen and Anders Meller

23 function reflect(fn) {

24 return initialParams(function (args, rflc) { 45 interface AsyncFunction<T, E> {

25 args.push(rest(function (err, cbArgs) { 16 (callback:

26 if (err) { 47 (err?: E, result?: T) => void

27 rflc(null, { 48 y: void;

28 error: err © 3}

29 B 50 reflect<T, E>(fn: AsyncFunction<T, E>):
30 } else { 51 (callback:

31 var value = null; 52 (err: void, result:

32 if (cbArgs.length === 1) { 53 {error?: Error, value?: T}

33 value = cbArgs[0]; 54) => void) => void;

34 } else if (cbArgs.length > 1) {

35 value = cbArgs; (b) Declaration of the reflect function.

36 }

37 rflc(null, {

38 value: value 55 *** Type error

39 b 56 property access:

40 } 57 async.reflect().[argl].[arg2].error
41 s 58 expected: undefined or Error

42 return fn.apply(this, args); 59 observed: object {"_generic":true}

43 1);

44} (c) Sample output from running the type test script.

(a) A part of the JavaScript implementation.

Fig. 2. Motivating example from the Async library.

in the program, it is evident that the value should be a string. Thus, a possible consequence of the
error is that the TypeScript type checker may misguide the application programmer to access the
variable incorrectly.

This error is not found by the existing TypeScript declaration file checker TSCHECK, since it is
not able to relate the side effects of a method with a variable. Type systems such as TypeScript or
Flow [Facebook 2017] also cannot find the error, because the types only appear in the declaration
file, not as annotations in the library implementation.

Our approach instead uses dynamic analysis. The type test script generated by TSTEST auto-
matically detects that invoking the root method with a string as argument, as prescribed by the
declaration file, and then reading Path.routes.root yields a value whose type does not match
the declaration file. Figure 1c shows the actual output of running the type test script. It describes
where a mismatch was found, in this case that an object was expected but a string was observed at
a property access type check.

2.2 The Async Library

The following example is more complex, involving higher-order functions and generics. The Async®
library is a big collection of helper functions for working with asynchronous functions in JavaScript.
It is extremely popular, with more than 20 000 stars on GitHub and over 1.5 million daily downloads
through NPM.”

One of the functions provided by Asyncis reflect. It transforms a given asynchronous function,
which returns either an error or a result value, into another asynchronous function, which returns

4https://github.com/caolan/async
Shttps://www.npmjs.com/package/async

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

https://github.com/caolan/async
https://www.npmjs.com/package/async

Type Test Scripts for TypeScript Testing 90:5

a special value that represents the error or the result value. In the declared type of reflect (see
Figure 2b), the error type for the input function is the generic type E, while the error type for the
output function is the concrete type Error. The implementation (see Figure 2a) does not transform
the error value in any way but merely passes it from the input function to the output function, so
the two error types should be the same.

The type test script generated by TSTEST automatically finds this mismatch. The error report,
which can be seen in Figure 2c, shows a type error involving the error property of an object that
was the second argument (arg2) in a function that was the first argument (argl) in a function
returned by reflect. (The actual arguments that were used in the call to reflect have been
elided.) The value is expected to be undefined or an Error object, but the observed value is an
object where calling JSON. stringify results in the shown value. In this example, the observed
value is a special marker object used by TSTEST to represent unbound generic types.

Because of the complexity of the library implementation (Figure 2a), it is unlikely that any
existing static analysis is capable of finding this mismatch. In contrast, TSTEST finds in seconds.
Whenever a type test script detects a mismatch, the error may be in the declaration file or in the
library implementation. When inspecting the mismatch manually it is usually clear which of the
two is at fault. Although the type test script uses randomization, detected type mismatches can
usually be reproduced simply by running the script with a fixed random seed, which is useful for
understanding and debugging the errors that cause the mismatches.

3 BASIC APPROACH

The key idea in our approach is, given a JavaScript library and its TypeScript declaration, to generate
a type test script that dynamically tests conformance between the library implementation and the
type declarations by the use of feedback-directed random testing [Pacheco et al. 2007]. This section
describes the basics of how this is done in TSTEST.

To test a library, feedback-directed random testing incrementally builds sequences of calls to the
library, using values returned from one call as parameters at subsequent calls. In each step, if a call
to the library is unsuccessful (in our case, the resulting values do not have the expected types), an
error is reported, and the sequence of calls is not extended further. Unlike the Randoop tool from
the original work on feedback-directed random testing [Pacheco et al. 2007], our tool TSTEST does
not directly perform this process but generates a script, called a type test script, that is specialized
to the declaration file and performs the testing when executed. Generating the script only requires
the declaration file, not the library implementation.

The basic structure of the generated type test script is as follows. When executed, it first loads
the library implementation and then enters a loop where it repeatedly selects a random test to
perform until a timeout is reached. Each test contains a call to a library function. The value being
returned is checked to have the right type according to the type declaration, in which case the value
is stored for later use, and otherwise an error is reported. The arguments to the library functions
can be generated randomly or taken from those produced by the library in previous actions, of
course only using values that match the function parameter type declarations. Applications may
also interact with libraries by accessing library object properties (such as Path.routes.root in
Figure 1). To simplify the discussion, we can view reading from and writing to object properties as
invoking getters and setters, respectively, so such interactions can be treated as special kinds of
function calls.

The strategy for choosing which tests to perform and which values to generate greatly affects
the quality of the testing. For example, aggressively injecting random (but type correct) values may
break internal library invariants and thereby cause false positives, while having too little variety
in the random value construction may lead to poor testing coverage and false negatives. Other

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

90:6 Erik Krogh Kristensen and Anders Meller

60 declare module async {

61 function memoize(

62 fn: Function, 87 var vals = initializevVals(Q);

63 hasher?: Function 88 function makeValuel() {

64): Function; 89 return selectVal(vals[1], vals[2],
65 function unmemoize(fn: Function): 90 mkFunction());

66 Function; 91 }

67} 92 var lib = require("./async.js");

93 if (assertType(lib, "async"))
94 vals[0] = 1lib;
95 while (!timeout()) {

(a) A snippet of the declaration file for Async.

68 var async = { 96 try {

69 memoize: function(fn, hasher) { 97 switch (selectTest()) {

70 hasher = hasher || 98 case 0: // testing async.unmemoize
71 function (a) { 99 var result =

79 return JSON.stringify(a)}; 100 vals[0] .unmemoize (makeValuel());
73 var cache = {}; 101 if (assertType(result, "Function"))
74 var result = function() { 102 vals[1] = result;

75 var key = hasher(arguments); 103 break;

76 return cachelkey] || 104 case 1: // testing async.memoize

77 (cache[key] = 105 var result =

78 fn.apply(this, arguments)); 106 vals[0] .memoize(makeValuel(),

79 }; 107 makeValuel());

80 result.unmemoized = fn; 108 if (assertType(result, "Function"))
81 return result 109 vals[2] = result;

82 1, 110 break;

83 unmemoize: function(fn) { 1 } } catch(e) {}

84 return fn.unmemoized || fn; 1z}

85 }

56 3 (c) The type test script for the declaration in Figure 3a.

(b) A simplified implementation.

Fig. 3. The type test script generated by TSTEST for a subset of the Async library.

complications arise from the dynamic nature of the JavaScript language, compared to Java that has
been the focus on previous work on feedback-directed random testing. We discuss such challenges
and design choices in Section 4 and present results from an empirical evaluation in Section 6.
Figure 3 contains a small example of a type test script generated by TSTEST for a simplified
version of the Async library that we also discussed in Section 2.2. Figures 3a and 3b show the
declaration file and the implementation, respectively, and Figure 3¢ shows the main code of the
type test script (simplified for presentation). This library contains two functions, memoize and
unmemoize, that both take functions as arguments and also return functions. The memoize function
(lines 69-82) uses JavaScript’s meta-programming capabilities to implement function memoization,
as its name suggests. The unmemoize function (lines 83-85) is overloaded, such that it returns the
original function if given a memoized function and otherwise behaves as the identity function.
This example contains no type errors, but it illustrates the use of feedback-directed testing
for covering the interesting cases. In this example unmemoize is overloaded by the use of the
property unmemoized, which can only be inferred by exercising the implementation. Note that

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

Type Test Scripts for TypeScript Testing 90:7

the TypeScript type system only specifies that unmemoize takes a function as argument (line 65).
It is important to test both overloaded variants of unmemoize, one of which requires a function
produced by memoize. The generated script first initializes an array named vals (line 87) for
storing values returned later by the library. It then loads the library, checks that the resulting
value matches the type declaration, and stores the object (lines 92-94). The main loop proceeds
until a timeout is reached (line 95), which is determined either by the time spent or the number of
iterations, according to a user provided configuration. The selectTest helper function (line 97)
picks a test to run, based on which entries of the vals array have been filled in. The assertType
helper function (lines 93, 101 and 108) checks if the first argument has the type specified by the
second argument according to the declaration file. For example, line 93 checks that 1ib is an object
and that its memoize and unmemoize properties are functions. The declaration file in this simple
example contains only one type, Function, that we need to generate values for. The function
makeValuel makes such a value by randomly selecting between the relevant entries in vals and
a simple dummy function (lines 88-91). Testing unmemoize now amounts to invoking it with a
base object and an argument of the right type (which are obtained from vals[0] and makeValuel,
respectively), checking the type of the returned value, and storing it for later use (lines 98-103).
Testing memoize is done similarly. Raising an exception is never a type error in TypeScript, so we
wrap all of the tests in a try-catch, to allow the execution to continue even if an exception is
raised.

After a few iterations, both library functions are tested with different values of the right types as
arguments. In particular, the feedback mechanism ensures that unmemoize is tested with a function
that has been memoized by a preceding call to memoize.

4 CHALLENGES AND DESIGN CHOICES

As mentioned in the preceding section, it is not obvious what strategy the type test script should
use for generating and type checking values (specifically, how the makeValue, selectVal and
assertType functions in Figure 3¢ work). The traditional approach to feedback-directed random
testing, as in e.g. Randoop, heavily relies on Java’s type system and common practice of structuring
libraries and application code in Java. For example, in Java, if a class C is defined in the library, then
the usual way for the application to obtain an object of type C is by invoking the class constructor
or a library method that returns such an object (assuming that no subclasses of C are defined by
the application). In contrast, TypeScript uses structural typing, so an object has type C if it has the
right properties, independently of how the object has been constructed. As an example, the main
entry point of the Chart.js° library takes as an argument a complex object structure (see line 116
in Figure 4), which is expected to be constructed entirely by the application. This complex object
structure includes primitive values, arrays, and functions, all of which must be constructed by our
type test script in order to thoroughly test the library. If the script only constructs primitive values
and otherwise relies on the library itself to supply more complex values, then testing Chart.js would
not even get beyond its main entry point.

JavaScript libraries with TypeScript declarations also often use generic types, callbacks, and
reflection, and such features have mostly been ignored in previous work on feedback-directed
random testing for Java. Furthermore, Java provides strong encapsulation properties, such as private
fields and private classes, whereas JavaScript libraries often do not have a clear separation between
public and private. Evidently, adapting the ideas of feedback-directed testing to TypeScript involves
many interesting design choices and requires novel solutions, which we discuss in the remainder
of this section.

6https://github.com/DeﬁnitelyTyped/DeﬁnitelyTyped/blob/c1 6£53396ee3cf728364a64582627262eaa92bf0/chart.js/index.d.ts

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

https://github.com/DefinitelyTyped/DefinitelyTyped/blob/c16f53396ee3cf728364a64582627262eaa92bf0/chart.js/index.d.ts

90:8 Erik Krogh Kristensen and Anders Meller

126 export interface ChartOptions
113 declare class Chart { P P {

127 events?: string[];
114 constructor(.
X 128 onClick?: (any?: any) => any;
115 context: string | JQuery | ..., i . .
i i . 129 title?: ChartTitleOptions;
116 options: Chart.ChartConfiguration .
w7) 130 legend?: ChartLegendOptions;
8 131
132}
119 }

133

134 export interface ChartTitleOptions {
135 fontSize?: number;

136 fontFamily?: string;

137 fontColor?: ChartColor;

138

139}

Fig. 4. An example of structural typing in Chart.js.

120

121 export interface ChartConfiguration {
122 type?: ChartType | string;

123 data?: ChartData;

124 options?: ChartOptions;

125 }

4.1 Structural Types

As argued above, the type test script needs to generate values that match a given structural type, as
supplement to the values obtained from the library itself. The selectVal helper function (Figure 3c)
picks randomly (50/50) between these two sources of values. In TypeScript, types can be declared
with interface or class (see examples in Figure 4), one difference being that objects created as
class instances use JavaScript’s prototype mechanism to mimic inheritance at runtime. TypeScript’s
type system uses structural typing for both interface and class types, but some libraries rely on the
prototype mechanism at runtime via instanceof checks. For this reason, for function arguments
with a class type, we do not generate random values but only use previously returned values from
the library. Likewise, base objects at method calls are only taken from values originating from the
library (see lines 100 and 107), and are never generated randomly, since we need the actual methods
of the library implementation for the testing.

The makeValue functions generate random values according to the types in the declaration
file. For primitive types, e.g. booleans, strings, and numbers, it is trivial to generate values (the
details are not important; for example, random strings are generated in increasing length with
exponentially decreasing probability). We assume that the non-nullable types feature of TypeScript
2.0 is enabled, so a value of type e.g. number cannot be null, and null becomes a primitive type
with a single value. For object types, we randomly either generate a new object with properties
according to the type declaration or reuse a previously generated one. In this way, the resulting
object structures may contain aliases, and, if the types are recursive, also loops. The generated
object structures therefore resemble the memory graphs of CUTE [Sen et al. 2005]. Creation of
values for function types is explained in Section 4.2.

Structural typing also affects how assertType performs the type checking. When checking
that a value v returned from the library has the expected type, ideally all objects reachable from v
should be checked. However, perhaps counterintuitively, it is sometimes better to perform a more
shallow check. For an example, consider the following declaration, which is a simplified version of
the declaration file for the Handlebars’ library.

140 declare module Handlebars {

141 function K(Q): void;

142 function parse(input: string): hbs.AST.Program;

143 function compile(input: any, options?: CompileOptions): HandlebarsTemplateDelegate;
144 }

7https://github.com/DeﬁnitelyTyped/DeﬁnitelyTyped/blob/354ce<:6ZOdaccfaOadl 67ba046651fb5fef69e8a/types/handlebars/index.d.ts

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

https://github.com/DefinitelyTyped/DefinitelyTyped/blob/354cec620daccfa0ad167ba046651fb5fef69e8a/types/handlebars/index.d.ts

Type Test Scripts for TypeScript Testing 90:9

156 foo.twice(mkStringOrNumber(),

145 var foo = { 157 function(arg) {
146 twice: function (x, ©) { 158 if (assertType(arg, "string"))
147 return c(x) + c(x) + ""; 159 vals[3] = arg;
148 } 160 return selectVal(
9} 161 vals[2],
)) 162 vals[3],
(a) The implementation. 163 mkString ()
150 export module foo { 164)5
151 function twice(165 1);
152 x: number | string, (c) Testing the twice function.
153 c: (s: string) => strin
154 y: sti‘ing' 9 9 166 *** Type error
- : ’ 167 argument: foo.twice.[arg2].[argl]
168 expected: string
(b) The declaration. 169 observed: number

(d) An error reported by the generated type test script.

Fig. 5. Testing higher-order functions.

The corresponding implementation does not have a K function on the Handlebars module object.
This mismatch is immediately detected by the type test script. In traditional feedback-directed
random testing, only values that pass the contract check are used for further testing. With that
strategy, as the Handlebars module object fails the type check, the methods parse and compile
will never be executed as part of the testing because no suitable base object is available. Thus,
any additional errors arising from calling these method will remain undetected until the first
mismatch is fixed. Some mismatches are introduced intentionally by the programmer, for example
to circumvent limitations in the expressiveness of TypeScript’s type system, as observed in previous
work [Feldthaus and Meller 2014; Kristensen and Meller 2017], so it is important that we do not
stop testing at the first mismatch we find and require the programmer to fix that mismatch before
proceeding. For this reason, we let assertType perform the deep type check on all the reachable
objects and report a mismatch if the check fails, but the decision whether the value shall be stored
for feedback testing is based on a shallow check.® In this specific case, invoking assertType
on the Handlebars module object and the type Handlebars will trigger a type error message
that the K property is missing, but assertType nevertheless returns true (so the object is not
discarded) because the value is, after all, an object, not a primitive type. The object is then available
for subsequently testing the parse and compile functions.

4.2 Higher-Order Functions

One of the challenges in gradual typing is how to check the types of values at the boundary of
typed and untyped code in presence of higher-order functions [Siek and Taha 2006; Siek et al.
2015]. In gradual typing, type annotated code (in our case, the TypeScript application code) is type
checked statically, whereas untyped code (in our case, the library code) is type checked dynamically.
TypeScript itself does not perform any dynamic type checking, which is why our type test scripts
need to perform the type checking of the values received from the library code. The challenge with

8Since we thereby allow the use of a type incorrect value in subsequent tests, those tests may result in mismatches being
reported later in the testing. Such mismatches may seem spurious since they can be reported far from the actual type error,
but we find that this situation is rare in practice.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

90:10 Erik Krogh Kristensen and Anders Meller

higher-order functions is that the types of functions cannot be checked immediately when they are
passed between typed and untyped code, but the type checks must be postponed until the functions
are invoked. The blame calculus [Wadler and Findler 2009] provides a powerful foundation for
tracking function contracts (e.g. types) dynamically and deciding whether to blame the library or
the application code if violations are detected.

TypeScript applications and JavaScript libraries frequently use higher-order functions, mostly in
the form of library functions that take callback functions as arguments. However, we can exploit
the fact that well-typed applications can’t be blamed. In our case, the application code consists of
the type test scripts, which are generated automatically from the declaration files and can therefore
be assumed to be well typed. (In Section 6.1 we validate that the type test scripts generated by
our implementation TSTEST are indeed well typed, in the sense that the construction of values
is consistent with the dynamic type checking.) This means that runtime type checks are only
needed when the library passes values to the application, not in the other direction. A simple case
is when library functions are called from the application, for example when a value is returned
from the memoize function in the Async library (Figure 3), but it also happens when the library
calls a function that originates from the application, for example when the memoized function is
invoked from within the Async library (line 78 in Figure 3).

When testing a library function whose parameter types contain function types (either directly
as a parameter or indirectly as a property of an object passed to the library function), the type test
scripts produced by TSTEST generate dummy callback functions, which accept any arguments and
have no side-effects except that they produce a return value of the specified type.

To demonstrate how TSTEST handles higher-order functions, consider the simple library and
declaration file in Figures 5a and 5b, respectively. In this library, the function twice takes two
arguments, a number or string x and a callback function c, and then invokes c(x) twice and
converts the result to a string (line 147). The type declaration of the callback function, however,
requires its argument to be a string (line 153). This mismatch is detected by the test shown in
Figure 5c¢, which is a part of the type test script generated by TSTEST. A function is constructed
(lines 157-165) according to the type declared on line 153. This function first checks if the argument
matches the declared type, just like when receiving a value from the library. On line 160 a value
satisfying the return type string is returned. Thus, the roles of arguments and return values are
reversed for callback functions, as usual in contract checking [Wadler and Findler 2009]. When
running the type test script, the report in Figure 5d is produced. Similar to the report from Section 3
it pinpoints the type mismatch at the first argument to the callback function, which is the second
argument to the twice function in module foo.

TypeScript supports type-overloaded function signatures, so that the return type of a function can
depend on the types of the arguments. Testing an overloaded library function is straightforward; we
simply generate a separate test for each signature. The only minor complication is that TypeScript
uses a first-match policy, so to avoid false positives, when generating arguments for one signature
it is important to avoid values that match the earlier signatures.

Overloaded callback functions are a bit more involved. The callback generated by TSTEST first
checks the argument types with respect to each of the signatures in turn. If exactly one of the
signatures match, a value of the corresponding return type is produced, as for a non-overloaded
callback. If none of the signatures match, our callback must have been invoked with incorrect
arguments, so it reports a type error and aborts the ordinary control flow by throwing an exception
(corresponding to returning the bottom type). However, if multiple signatures match, we cannot
simply pick the first one like TypeScript’s static type checker does. The reason is that our runtime
type checks are necessarily incomplete in presence of higher-order functions, since function types
are not checked until the corresponding functions are invoked, as explained above. If the overloaded

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

Type Test Scripts for TypeScript Testing 90:11

3 175 interface _Chain<T> {
170 declare var cl: Cell<string>;

176 artition(...): _Chain<T[]>;
171 declare var c2: Cell<number>; 7 P 1 * t) (T[]) —-hai U
values(): ;
172 interface Cell<T> { s
173 value: T;
179 }
174 }

180 declare var foo: _Chain<boolean>;

(a) A simple declaration with a generic type. (b) A recursively defined generic type.

Fig. 6. Examples for explaining how generic types are handled by TSTEST.

callback itself takes a function as argument, we cannot tell simply by inspecting the argument at
runtime which overloaded variant applies. For this reason, in case multiple signatures match, we
let the constructed callback throw an exception (similar to the case where none of the signatures
match, but without reporting a type error). Although the situation is not common in practice, this
design choice may cause errors to be missed by the type test script, but it avoids false positives.
To solve this without throwing an exception we would need higher-order intersections that delay
testing [Keil and Thiemann 2015a].

4.3 Generic Types

Generics is an extensively used feature of the TypeScript type system, and TSTEST needs to support
this feature to be able to find errors like the one discussed in Section 2.2. Figure 6a shows a simple
example where the type of the value fields depends on the type arguments provided for the type
parameter T. In this particular case, we add one test case to check that reading c1.value yields a
string and one to check that c2.value yields a number.

Naively adding a test case for every instantiation of the type parameters is not always pos-
sible, because generics may be used recursively. As an example, consider the type _Chain in
Figure 6b from the Underscore.js’ library. We test that foo yields a value of type _Chain<boolean>
and that foo.values() returns a value of type boolean[]. However, notice that invocations of
foo.partition(...).values() should return values of type boolean[] [], and with additional
successive invocations of partition we obtain arbitrarily deeply nested array types. For this
reason, we choose to restrict the testing of such recursively defined generic types: at the recursive
type instantiation, in this case _Chain<T[]> (line 176), we treat the type parameter T as Type-
Script’s built-in type any that matches any value (see also Section 4.4). Since we then test that
the value has type _Chain<any[]> rather than _Chain<boolean[]> we may miss errors, but
(due to TypeScript’s covariant generics) we do not introduce false positives. The resulting value,
which now has type _Chain<any[]>, can be used as base object for further testing the methods of
_Chain, so the type test script can explore arbitrarily long successive invocations of partition
with a bounded number of test cases.

Recursively defined generic types affect not only the type checks but also the construction
of random values of a given type. To this end, we follow the same principle as above, treating
type parameters that are involved in recursion as any. For example, if a library function takes a
parameter of type _Chain<boolean>, we need to generate an object of that type, which ideally
would require construction of partition functions that return arbitrarily deeply nested array
types. By breaking the recursion using any, we ensure that it is only necessary to produce random
values for a bounded number of different types. The drawback, however, is that this design choice
may result in false positives, which we return to in Section 5.

9https: //github.com/DefinitelyTyped/DefinitelyTyped/blob/354cec620daccfa0ad167ba046651fb5fef69e8a/types/underscore/index.d.ts#L5046

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

https://github.com/DefinitelyTyped/DefinitelyTyped/blob/354cec620daccfa0ad167ba046651fb5fef69e8a/types/underscore/index.d.ts#L5046

90:12 Erik Krogh Kristensen and Anders Meller

TypeScript also supports generic functions. In recent work on TypeScript, Williams et al. [2017]
have chosen to enforce parametricity [Wadler 1989] of generic functions. With their interpretation,
a generic function should act identically on its arguments irrespective of their types. As an example,
Williams et al. insist that the only total function that matches the following TypeScript declaration
is the identity function.

181 declare function weird<X>(x: X): X

Parametricity is useful in purely functional languages, but we argue it is a poor match with a highly
dynamic imperative language like TypeScript where e.g. reflection is commonly used. A simple
real-world example, which resembles the weird function by Williams et al., is the function extend
in the Lodash'’ library:

182 declare function extend<A, B>(obj: A, src: B): A & B;

According to its return type, A & B, the returned value has both types A and B. The implementation
of extend copies all properties from src to obj and returns obj, which then indeed has the type A
& B, but this implementation would be disallowed if parametricity were enforced. For this reason,
we do not treat a generic function as erroneous just because it fails to satisfy parametricity.

Williams et al. [2017] type check generic functions using dynamic sealing based on proxy
objects. That approach is unsuitable as we do not want to enforce parametricity, and additionally
Williams et al. report that it sometimes causes interference with the library implementation.
Instead, we choose to test generic functions by the use of simple dummy objects. For example,
as arguments to the extend function we could provide the two objects {_genericl:true} and
{_generic2:true} (representing objects of type A and B, respectively), and then test that the
returned value matches the object type'! {_genericl:true, _generic2:true} (corresponding
totypeA & B).This approach obviously fits nicely with the extend example, but due to TypeScript’s
structural typing (specifically, its use of width-subtyping), it is sound also more generally to supply
arbitrary objects for function parameters with generic types and then test that the returned value
is an object with the right properties. If the type parameters have bounds (e.g. A extends Foo),
we simply use the bound type (Foo) augmented with the special _generic property.

Using different dummy objects for different type parameters does not always work, though.
Consider the following example.

183 class Foo<T> {...}
184 function foo<T1>(t: T1): Foo<T1l>;
185 function bar<T2>(foo: Foo<T2>): T2;

If T1 and T2 were instantiated with different concrete types, then a result of calling foo could not
be used as feedback for a call to bar, and thus any error that only happens when bar is called with
an argument produced by foo is missed. In that situation it is better to use only a single object
type, {_generic:true} (as in the error report in Figure 2c), for all the type parameters. In either
case, we may miss errors. We choose the latter approach, and we experimentally evaluate whether
one approach finds more mismatches than the other (see Section 6.3). Previous work on testing
for Java [Fraser and Arcuri 2014] exploits casts and instanceof checks in the program under test
as hints for generating values for generic types, however, the lack of an explicit cast operation in
JavaScript and the common use of structural typing in JavaScript libraries makes that that approach
less applicable in our setting.

1Ohttps://github.com/DeﬁnitelyTyped/Def‘initely’l‘yped/blob/354cecGZOdaccfaOadl67[)3046(:51befef()‘)e8a/types/lodash/inclexAdAts#L14903
11Object literals like these are also valid types since TypeScript 2.0.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

https://github.com/DefinitelyTyped/DefinitelyTyped/blob/354cec620daccfa0ad167ba046651fb5fef69e8a/types/lodash/index.d.ts#L14903

Type Test Scripts for TypeScript Testing 90:13

4.4 Other Design Choices Involving Types

TypeScript has, as other languages with optional types, the special type any that effectively disables
static type checking [Bierman et al. 2014]. The type system not only allows any value to be written
to a variable or property of type any, it also allows any method call or property access on such a
variable or property. For a type test script, checking if a value returned from the library is of type
any is trivial: the answer is always yes. However, when type test scripts need to generate values of
type any as input to the library, instead of generating arbitrary values, we choose to construct a
single special object: {_any: true}. This allows the users of TSTEST to easily recognize instances
of the any type in the output when type mismatches are detected. A possible drawback of this
design choice is discussed in Section 5.

In TypeScript, static fields in super-classes are inherited by sub-classes. When checking that
a value matches a class, we choose to ignore inherited static fields, because some libraries are
intentionally not implementing this feature. Libraries that do implement inheritance of static
fields normally do so using a special “createClass” method, and such central methods are likely
thoroughly tested already.

We described in Section 4.1 our motivation for performing only a shallow structural type check
when deciding whether a value shall be used for feedback. However, union types are treated
differently. If a value with declared type A | B is returned from the library, then we can use it as
feedback in subsequent tests as a value of type A or as a value of type B, but only if we can determine
which of the two types the value actually has. A shallow type check is sometimes insufficient to
make the distinction, so in this situation we use a deep type check, similar to the choice described
in Section 4.2 for overloaded function signatures.

5 SOUNDNESS AND (CONDITIONAL) COMPLETENESS

Type test scripts perform purely dynamic analysis, so obviously they may be able to detect errors
but they cannot show absence of errors.'” Two interesting questions remain, however:

(1) Whenever a mismatch between a TypeScript declaration file and its JavaScript implementation
is reported by the type test script that is generated by TSTEST, is there necessarily a mismatch
in practice? If this is the case, we say that testing is sound.'® If not, what are the possible
reasons for false positive? Furthermore, how does the fact that TypeScript’s type system is
unsound affect the soundness of type testing?

(2) Whether a specific mismatch is detected naturally depends on the random choices made by
the type test scripts. But is it the case that for every mismatch, there exist random choices that
will lead to the mismatch being revealed? If so, we say that testing is conditionally complete.'*
If not, what are the possible reasons for some mismatches being undetectable by the type
test scripts generated by TSTEST?

The testing conducted by TSTEST is neither sound nor conditionally complete. There is one cause
of unsoundness: as explained in Section 4.3, the way we break recursion in generic types using type
any may cause type tests to fail even in situations where there is no actual mismatch. Specifically, if
the input to a library function involves a type parameter that we treat as any, then we may generate
invalid values that later trigger a spurious type mismatch. This is mostly a theoretical issue; we
have never encountered false positives in practice. We do, however, encounter mismatches that are

12Cf. the well-known quote by Dijkstra [1970].

13As customary in the software testing literature, we use the term soundness with respect to errors reported; from a static
analysis or verification point of view, this property would be called completeness.

41n contrast to “full” completeness, this notion of conditional completeness does not require that all errors are found, only
that they can be found with the right random choices.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

90:14 Erik Krogh Kristensen and Anders Meller

technically true positives but can be categorized as benign, in the sense that the programmers are
likely not willing to fix them. We show a representative example in Section 6.4.

The discussion about soundness of the testing is complicated by the fact that TypeScript’s type
system is intentionally unsound, which is well documented [Bierman et al. 2014]. It is possible
to have a library implementation, an application (e.g. a type test script), and a declaration file
where the implementation is correct with respect to the declaration file and the application is well-
typed (according to TypeScript’s type system) when using the declaration file, yet the application
encounters type errors at runtime. We consider such runtime type errors as true positives, because
the testing technique is not to blame. Nevertheless, we have not encountered this situation in our
experiments.

Regarding the conditional completeness question, there are indeed mismatches that cannot be
detected by even the luckiest series of random choices made by the type test scripts. The main
reason is that our approach for generating random values for a given type (i.e., the makeValue
functions) cannot produce all possible values. For example, when generating an object according to
an interface type, we do not add properties beyond those specified by the interface type. We could of
course easily add extra properties to the objects, but doing so randomly without more sophisticated
machinery, like dynamic symbolic execution [Godefroid et al. 2005], most likely would not make a
difference in practice. We also use a single special value for the type any, for the reason described
in Section 4.4, rather than all possible values. An example of an error that is missed by TSTEsT
because of that design choice is in the Sortable'® library where a function is declared as taking an
argument of type any but it crashes unless given a value of a more specific type. (Recall that a
function is always allowed to throw exceptions, which is not considered a type error.) Finally, our
treatment of static fields and unions, as described in Section 4.4, also cause incompleteness.

Some mismatches would remain undetectable by TSTEST even if the random value generator
was capable of producing every possible value of a given type. One reason is that the type test
scripts never generate random values for class types or for base objects at method calls, but only
use values obtained via the feedback mechanism, as mentioned in Section 4.1. Another reason is
that the library implementations may depend on global state, for instance the HTML DOM, which
is currently ignored by TSTEST. As an example, for most of the code of reveal js'® to be executed,
the HTML DOM must contain an element with class reveal, which TSTEST currently cannot
satisfy. An interesting opportunity for future work is to extend TSTEST with, for example, symbolic
execution capabilities to increase the testing coverage.

6 EXPERIMENTAL EVALUATION

In this section we describe our implementation and experimental evaluation of TSTEST.

6.1 Implementation

Our implementation of TSTEST contains around 11 000 lines of Java code and 400 lines of JavaScript
code, and is available at http://www.brics.dk/tstools/. It relies on the TypeScript 2.2 compiler for
parsing TypeScript declarations, Node]S and Selenium WebDriver for running type test scripts in
browser and server environments, and Istanbul'’ for measuring coverage on executed code.
TypeScript models the ECMAScript native library and the browser DOM API using a special
declaration file named 1ib.d.ts. As program analyzers, TSTEST needs special models for parts
of the standard library. Browsers do not use structural typing for built-in types but require, for
example, instances of the interface HTMLDivElement, which represent HTML div elements, to
Bhitps://github.com/DefinitelyTyped/DefinitelyTyped/blob/354cec620daccfa0ad167ba046651fb5fef69e8a/types/sortablejs/index.d.ts#L.154

16https://github.corn/hakirnel/lreveall.j s/
l7https://istanbuLjs.org/

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

http://www.brics.dk/tstools/
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/354cec620daccfa0ad167ba046651fb5fef69e8a/types/sortablejs/index.d.ts#L154
https://github.com/hakimel/reveal.js/
https://istanbul.js.org/

Type Test Scripts for TypeScript Testing 90:15

be constructed by the DOM API—having the right properties is not enough. Instead of using the
normal approach described in Section 4.1 when constructing values and performing type checks,
TSTEST therefore uses the DOM API functionality for such types.

Errors reported by the type test scripts are easier to diagnose and debug if the execution is
deterministic. Achieving completely deterministic behavior in JavaScript is difficult,'® which is one
of the reasons why we have not designed TSTEST to output individual tests that expose the detected
mismatches. In TSTEST, most sources of nondeterminism are eliminated by “monkey patching” the
standard library, specifically Date and Math.random, which suffices for our purposes.

The feedback-directed approach used by TSTEST is essential for obtaining suitable library input
values. However, sometimes the use of feedback also has negative effects, for example causing the
internal state of a library to grow such that the time spent running a single method of the library
increases as more and more methods have been executed. Sometimes it even happens that a library
method gets stuck in an infinite loop. For these reasons, periodically interrupting and resetting
the library state often leads to more mismatches being uncovered within a given time budget. The
experiments described below confirm that this pragmatic solution works well.

As part of validating that our implementation works as intended, TSTEST can be run in a special
mode where it tests consistency between the construction of random values for a give type (i.e.,
the makeValue functions) and the converse type checks (i.e., assertType). When this validation
mode is enabled, the generated type test script does not load the actual library implementation,
but instead constructs a random value that has the type of the library. This value is then tested
instead of the actual library implementation. If the resulting type test script reports any mismatches
while running, either the constructed value is not well typed, or the type checking reports errors
on a well typed value—both situations indicate errors in our implementation. The unsoundness
of TypeScript’s type system (discussed in Section 5) occasionally causes this approach to report
spurious validation failures, but overall it has been helpful in finding bugs during the development
of TSTEST and increasing confidence in our experimental results.

6.2 Research Questions

We evaluate three main aspects of the approach, each with some sub-questions:

1) Quantitative evaluation How many type mismatches does TSTEsT find in real-world
TypeScript declarations for JavaScript libraries, and how much time is needed to run the
analysis? Furthermore, how do the different design choices discussed in Section 4 affect the
ability to detect type mismatches? For potential future work it is also interesting to know
what coverage is obtained by the automated testing of the library code and the type test
scripts?

2) Qualitative evaluation Do the type mismatches detected by TSTEST indicate bugs that
developers likely want to fix? In situations where mismatches are classified as benign, what
are the typical reasons? Also, are there any false positives?

3) Comparison with alternatives Can TSTEsT find errors that are missed by available al-
ternative tools, specifically TscHEck [Feldthaus and Meller 2014] and TSINFER [Kristensen
and Meller 2017]?

18The record/replay feature of the Jalangi tool [Sen et al. 2013] was abandoned for exactly this reason.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

90:16 Erik Krogh Kristensen and Anders Meller
Table 1. Total number of type mismatches found by TStEsT, for different time budgets and repeated runs.

Mismatches found

Timeout 1 run ‘ 5 runs ‘ 10 runs ‘ 20 runs
10 seconds || 2804 | 4617 5464 5916
1 minute 3534 5265 6180 -
5 minutes 3478 5898 - -

As benchmarks for experiments we use all of the libraries used by Feldthaus and Meller [2014]
and Kristensen and Meller [2017], and 32 other randomly selected popular JavaScript libraries."’
We exclude libraries that write to the local file system. (Concretely executing such libraries with
TSTEST could harm our filesystem; this and similar issues could be circumvented with sandboxing
or mocking, and it is therefore only a limitation of our current implementation and not of the
general approach.) The resulting 54 JavaScript libraries are listed in Appendix A.

6.3 Quantitative Evaluation
How many type mismatches does TSTEsT find?

TSTEST may report multiple type mismatches that have the same root cause, for example if two
methods return the same value. To avoid artificially inflating the number of mismatches found, we
count two mismatches as the same if they involve the same property on the same type, even though
the mismatches involve different property access paths. That is, mismatches in both foo() .baz
and bar () .baz are counted as the same if foo() and bar () return values of the same type. It is
still possible that different mismatches have a common root cause, but it is inevitable that some
errors will manifest in multiple mismatches.

To see how many mismatches are found and how long it takes to find them, we ran TSTEST with
a timeout of 10 seconds, 1 minute, and 5 minutes. We also ran the type test script 5, 10, and 20
times for some of these timeouts (excluding the longest running ones), to measure the effect of
periodically resetting the library state as discussed in Section 6.1. A summary of the results can be
found in Table 1.

Mismatches were found in 49 of the 54 benchmarks, independently of the timeout and the
number of repeated runs. This confirms the results from Feldthaus and Meller [2014], Kristensen
and Mgller [2017], and Williams et al. [2017] that errors are common, even in declaration files for
highly popular libraries. The numbers in Table 1 are quite large, and there are likely not around
6 000 unique errors among the 54 libraries tested. A lot of the detected mismatches are different
manifestations of the same root cause. However, our manual study (see Section 6.4) shows that
some declaration files do contain dozens of actual errors.

The randomness involved in running a type test script means that repeated executions often
lead to different sets of type mismatches being reported. From Table 1 we see that a substantial
number of the mismatches are found already after running each type test script for 10 seconds, and
that increasing the duration does not help much. On the other hand, running the type test script
multiple times leads to a significant improvement, which validates our claim from Section 6.1 that
periodically resetting the library state is beneficial.

Pfound via https://www.javascripting.com/?sort=rating.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

https://www.javascripting.com/?sort=rating

Type Test Scripts for TypeScript Testing 90:17

Table 2. Testing different configuration options for the type test scripts.

Mismatches found (std. dev.)

Configuration 1 run ‘ 5 runs

Reference configuration 3280.3(231.4) | 5181.9(184.8)
Structural: Using only deeply checked values for feedback 172.8 (42.2) | 313.1 (20.7)
Structural: Also generate random values for class types 2939.9(230.3) | 4813.7 (156.6)
Generics: Using multiple object types for generic methods || 3212.5 (284.1) | 5217.6 (234.0)
Writing properties: Write to properties of primitive type 3020.9 (230.8) | 5125.1(222.0)
Writing properties: Writing to properties of all types 2299.9(185.8) | 5217.1(149.2)

How do the various design choices affect the ability to detect type mismatches?

We evaluate the four most interesting design choices discussed in Section 4: (1) In Section 4.1 we
discussed the use of a shallow type check for determining whether to use a value for feedback.
What if a deep type check is used instead? (2) Another design choice in Section 4.1 involved the
treatment of class types. What if we also generate random values for class types? (3) In Section 4.3
we discussed the use of a single dummy object type to instantiate unbound generic types. What
if we instead use the approach with distinct dummy object types for different type parameters?
(4) Type test scripts read object properties and invoke methods of the libraries. What happens if
the type test scripts are allowed to also write properties of objects, either all properties or only
properties of primitive types?

The results from running TSTEST with six different configurations (with 10 seconds timeout and
both 1 and 5 runs) can be seen in Table 2. The number of mismatches are averages of 30 repetitions
of the experiment (with the standard deviation in parentheses). The row ‘Reference configuration’
is the default setting, and the other five rows correspond to the alternative design choices.

Performing a deep type check for determining whether a value shall be used for feedback testing
does result in significantly fewer type mismatches being reported. Looking closer at the mismatches
found with that configuration reveals that for 40 of the benchmarks, only one mismatch is detected
in each (executing the type test script repeatedly did not change this). That single mismatch
originates from a core object of the library very early in the execution, which blocks the type test
script from further testing. Many of these benchmarks do contain more than one error, so this
result confirms that our choice of using the shallow type check is important for finding as many
errors as possible.

Generating random values for class types results in slightly fewer mismatches compared to the
reference configuration, because more time is required to find the same mismatches. We do however
find that 25 of our 54 benchmarks use instanceof checks on classes defined in the library, and
some internal invariants might break if the library is given a value that is structurally correct
but fails the instanceof check. An example is in the PixiJS library where the constructor of the
Polygon class can take an array of either number or Point, and the implementation of Polygon
expects that instanceof checks can be used to distinguish between the two. This invariant breaks
if the Polygon constructor is given an array of objects that are only structurally similar to Point,
which leads to a benign type mismatch for the return value of the constructor.

We can also conclude that the choice regarding generic methods does not matter much, likely
because only few mismatches involve generics. It is easy to construct examples where one approach
can find a mismatch and the other cannot, so it seems reasonable to run with both configurations

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

90:18 Erik Krogh Kristensen and Anders Meller

Table 3. Coverage of the library code and the type test scripts.

H initialization only \ 1 run \ 5 runs \ 10 runs | 20 runs

Average statement coverage 20.6% | 44.4% | 48.1% 49.1% 49.8%
Average test coverage -1 57.1% | 65.5% 69.1% 69.6%

to find as many mismatches as possible. Using a single object type instead of multiple object types
for generic methods increases the number of mismatches found, but the ones we inspected were all
duplicates.

Allowing the type test scripts to also perform object property write operations does not seem to
significantly increase the ability to detect type mismatches. Writing only to properties of primitive
type merely increases the amount of time it takes to find the same mismatches. Writing to properties
of all types also causes the type test script to take longer to reach the same number of detected
mismatches, but it does perhaps find slightly more mismatches in the end. We found four libraries
where writing to properties of all types significantly increased the amount of detected mismatches.
Investigating some of the mismatches that were only reported when the library was allowed to
write properties showed that these mismatches were all caused by the type test script overwriting
a core method of the library, thereby introducing another source of false positives that is avoided
in the reference configuration.

How much coverage does TSTEST obtain?

For any automated testing, it is relevant to ask how much of the program code is actually executed.
In our case the program code is divided into the type test script and the library being tested.

First, we measured the statement coverage of the libraries. (The Istanbul coverage measurement
system was unfortunately unable to instrument all our libraries and type test scripts, so we only
have coverage data for 36 of the 54 libraries.) We also measured, across all 54 benchmarks, what
percentage of the tests (i.e. cases in the switch block; see Figure 3c) in the type test script were
executed. (Recall from Section 3 that the selectTest function only chooses between the test cases
where values are available for the relevant types.)

The results of these coverage measurements can be seen in Table 3. The first row with numbers
shows the library statement coverage obtained if only initializing the library, and after 1, 5, 10,
and 20 runs of the type test script. Running the type test scripts achieves much higher coverage
than only initializing the library, and even after the type test scripts have run many times, there
are still uncovered statements that could potentially be reached by running the scripts again. The
statement coverage differs significantly between the libraries: from 6.2% to 94.0% (these numbers do
not change by running the type test scripts multiple times). For many libraries, large parts of their
code is never executed. The reasons for low statement coverage are highly individual, however
the most common reason seems to be that the type test script is incomplete in modeling realistic
application behavior. A good example is the library with 6.2% statement coverage, Swiper,”” where
the most of the code is only executed if the main entry point is given an HTMLElement object that
contains child elements. It is also interesting to notice that large fractions of the type test script
code are never executed (see the second row with numbers in Table 3). The dominant cause of
uncovered test cases is the feedback mechanism being unable to provide the required base objects

http://idangero.us/swiper/

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

http://idangero.us/swiper/

Type Test Scripts for TypeScript Testing 90:19

for testing method calls (see Section 4.1). As an example, for this reason only a few of the test cases
for the Sortable library are reached.

Although TSTEST succeeds in detecting numerous type mismatches with relatively simple means,
these results indicate that it may be worthwhile in future work to extend TSTEST with, for example,
dynamic symbolic execution capabilities [Godefroid et al. 2005] to increase the coverage.

6.4 Do mismatches detected by TSTEsT indicate bugs that developers want to fix?

To answer this question, we have randomly sampled 124 type mismatches reported by TSTEsT and
manually classified them into the following three categories. Those mismatches span 41 different
benchmarks.

error (63/124): Mismatches that programmers would want to fix (excluding those that also match
the following category).

strict nulls (47/124): Mismatches that programmers would want to fix, but are only valid when
TypeScript’s non-nullable types feature (introduced in TypeScript 2.0) is enabled (see Section 4.1).
benign (14/124): Mismatches that did not fit the above two categories.

We consider a type mismatch as something that programmers would want to fix if it is evident,
by looking at the library implementation and documentation, that the actual behavior of the
implementation is different from what was described in the declaration, and it is clear how the
error can be fixed. An example is in the P2,js*! library where the declaration states that new
p2.RevoluteConstraint(...).equeations should result in an array, but the actual returned
value is always undefined (because the property name equations was misspelled). The fix for this
mismatch is clear: equeations should be corrected to equations. The classification is inevitably
subjective, but we have striven to be conservative by classifying a mismatch as “benign” if there
was any doubt about its category.”” From this classification it is evident that most of the mismatches
being detected are indeed errors that programmers would want to fix. None of the mismatches
are false positive (in the sense defined in Section 5). Many of the errors are related to non-nullable
types, which is unsurprising given that many declaration files were initially written before that
feature was introduced in TypeScript. An example of such an error is from the library lunrjs,*®
where the method get(id: string) on the Store class is declared to always return an object of
type SortedSet<T>. However, in the implementation such an object is only returned if a value
has been previously set, and otherwise undefined is returned (which is valid when non-nullable
types are disabled).
The 14 “benign” mismatches can be split into three sub-categories:

Limitations of the TypeScript type system (4/14): With reflection being an often used feature
of JavaScript, some constructs used by library developers are simply not expressible in the TypeScript
language. Authors of the TypeScript declaration files therefore sometimes choose to write an
incorrect type that is close to the actual intended type. The function declaration from the Redux**
library is a typical example:

186 function bindActionCreators<A extends ActionCreator<any>>(

187 actionCreator: A,
188 dispatch: Dispatch<any>
189): A;

Zhttps://github.com/schteppe/p2.js

22 All details of the experiments are available at http://www.brics.dk/tstools/.
Bhttps://github.com/olivernn/lunr.js/
Yhttps://github.com/reactjs/redux/blob/f8ec3ef1c3027d6959¢85c97459¢109574d28b3c/index.d.ts#1.343

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

https://github.com/schteppe/p2.js
http://www.brics.dk/tstools/
https://github.com/olivernn/lunr.js/
https://github.com/reactjs/redux/blob/f8ec3ef1c3027d6959c85c97459c109574d28b3c/index.d.ts#L343

90:20 Erik Krogh Kristensen and Anders Meller

This declaration would lead one to believe that the return value of the function has the same type
as the first argument actionCreator. However, the argument value and the return values do not
have the same type. What happens instead is that the return value is an object containing only the
function properties of the actionCreator argument (those properties are being transformed in
a type preserving way). By using the same type parameter A as parameter type and return type,
the TypeScript IDE is able to provide useful code completion and type checking for the function
properties of the returned object in the application code, so in this case the author’s choice is
justifiable even though it is technically incorrect.

TSTEST constructing objects with private behavior (3/14): As explained in Section 4.1, type
test scripts construct random values for function arguments with interface types. However, some-
times such values are only meant to be constructed by the library itself, since they contain private
behavior that is intentionally not expressed in the declaration. This can lead to mismatches when
the library tries to access the private behavior not present in the random values constructed by the
type test scripts.

Intentional mismatches (7/14): For various reasons, declaration file authors sometimes inten-
tionally write incorrect declarations even when correct alternatives are easily expressible, as also
observed in previous work [Feldthaus and Meller 2014; Kristensen and Meller 2017]. A typical
reason for such intentional mismatches is to document internal classes.”’

In addition to the investigation of the 124 samples, for 6 of the 54 benchmarks (selected among
the libraries that are being actively maintained and where TSTEST obtained reasonable coverage)
we created pull requests to fix the errors reported by TSTEST.?® The patches affect between 5 and 84
lines (totaling 331 lines) in the declaration files. All 6 pull requests were accepted by the maintainers
of the respective declaration files. In almost all cases, the error was in the declaration file, however
in one case the mismatch detected by TSTEST also revealed an error in the library implementation.”’

Based on the output from TSTEST, it took only a couple of days to create all these patches, despite
not having detailed knowledge of any of the libraries. This result demonstrates that TSTEST is
capable of detecting errors that the developers likely want to fix, and that the output produced by
TSTEsST makes it easy to diagnose and fix the errors.

6.5 Can TSTEsT find errors that are missed by other tools?

The only existing tool for automatically finding errors in TypeScript declaration files (without using
existing unit tests) is TSCHECK [Feldthaus and Meller 2014]. Being based on static analysis, TSCHECK
is in principle able to find mismatches that TSTEST cannot find due to the inherent incompleteness
of dynamic analysis. However, TSCHECK is very cautious in reporting errors at all: it only reports an
error if the static analysis concludes that there is no overlap between the inferred and the declared
type, and TSCHECK is unable to reports errors involving function arguments. Although the more
recent tool TSINFER [Kristensen and Meller 2017] is designed for inferring rather than checking
declaration files, the static analysis used in TSINFER has been demonstrated to be a significant
improvement over TSCHECK, SO We use TSINFER as a baseline representing the state of the art when
measuring how many true positives are found by TSTEST but not by the existing techniques.

For each of the 63 type mismatches classified as errors in Section 6.4, we have investigated
whether it could also be found by TSINFER. We chose not to test the mismatches classified as “strict
nulls” because TsCHECK and TSINFER were developed before the introduction of that feature in
TypeScript.

%5 An example of this: https://github.com/pixijs/pixi.js/issues/2312/#issuecomment-174608951
26List of the pull request: https://gist.github.com/webbiesdk/eee08ce521f65536af1b87331e871421
?TThe pull request fixing the implementation: https://github.com/caolan/async/pull/1381

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

https://github.com/pixijs/pixi.js/issues/2312/#issuecomment-174608951
https://gist.github.com/webbiesdk/eee08ce521f65536af1b87331e871421
https://github.com/caolan/async/pull/1381

Type Test Scripts for TypeScript Testing 90:21

Some of the mismatches reported in Section 6.4 are quite easy to find, such as, properties missing
on a globally defined object. We therefore created a simplified version of TSTEsT, which does not
call any functions except for constructors (constructors are invoked with no arguments). This
simplified version of TSTEsT mimics the dynamic analysis component of TSINFER. We classify as
type mismatch as trivial if it can be found using this simplified version of TSTEST.

As result, 33 of the 63 errors were classified as trivial mismatches and 30 as nontrivial mismatches.
TSINFER was able to find all the trivial mismatches, however, it only found 10 of the 30 non-trivial
mismatches. In other words, TSINFER finds only one third of the “nontrivial” mismatches that are
found by TSTEST in this experiment.

Both TscHEck and TSINFER suffer from false positives. In the evaluation of TscHECk [Feldthaus
and Meller 2014], 23% of the found mismatches were false positives (and other 16% were benign).
While the evaluation of TSINFER [Kristensen and Meller 2017] did not test for its efficiency in
finding bugs, the quality of inferring method signatures was tested, and here TSINFER was able
to infer the correct method signature for 23% of the signatures, and for 42% it was able to infer
a signature that was close to the correct one. While those results are good when creating new
declaration files from scratch, the false positive rates would be too big for it to have any practical
use as an error finding tool. In comparison, as discussed in Section 6.4, we observe no false positives
with TSTEST.

7 RELATED WORK

Detecting type errors in dynamically typed programs. The most closely related work is
TSCHECK [Feldthaus and Meller 2014], which finds errors in TypeScript declaration files using a
combination of static and dynamic analysis. The limitations of TscHECK have been discussed in
detail in Section 6.5. Recently, Kristensen and Meller [2017] improved the analysis from TSCHECK
and presented two new tools: TSINFER, which can automatically create TypeScript declaration
files from JavaScript implementations, and TSEVOLVE, which uses TSINFER to assist the evolution
of declaration when the implementations are updated. The tool TPD [Williams et al. 2017] uses
JavaScript’s proxy mechanism to perform runtime checking of type contracts from TypeScript
declaration files, based on the blame calculus by Wadler and Findler [2009]. Unlike TSTEsT, it does
not perform automated exploration of the library code but relies on existing test suites. Also, as
discussed in Section 4.3, that approach suffers from interference caused by the use of proxies. Safe
TypeScript [Rastogi et al. 2015] extends TypeScript with more strict static type checks for annotated
code and residual runtime type checks for the remaining code, but also without any automated
exploration capabilities.

JSConTest [Heidegger and Thiemann 2010] performs random testing of JavaScript programs
with type-like contracts, but has to our knowledge not been applied to test TypeScript declaration
files. Compared to TSTEST, its contract system does not support generics, and the automated testing
is not feedback directed. TypeDevil [Pradel et al. 2015] is a dynamic analysis that warns about
inconsistent types in JavaScript programs, but it does not use TypeScript types nor automated
testing. TAJS [Jensen et al. 2009] is a whole-program static analyzer for JavaScript that is designed
to infer type information. It also does not use TypeScript types, and it is unable to analyze most of
the JavaScript libraries mentioned in Section 6.

Flow [Facebook 2017] is a variant of TypeScript that performs more type inference and uses
a similar notion of declaration files, called library definitions. We believe it is possible to adapt
TSTEST to perform type testing of Flow’s library definitions. Type systems have been developed
also for other dynamically typed languages than JavaScript, including Scheme [Tobin-Hochstadt
and Felleisen 2008] and Python [Lehtosalo et al. 2016; Vitousek et al. 2014]. These languages also

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

90:22 Erik Krogh Kristensen and Anders Meller

provide typed interfaces to untyped libraries, so they have a similar need for tool support to detect
errors, but are not yet used at the same scale as TypeScript.

Automated testing. Automated testing is an extensively studied topic, and we can only discuss
the most closely related work. As explained in Section 3, our approach builds on the idea of
feedback-directed random testing pioneered by the Randoop tool [Pacheco et al. 2007]. Guided
by feedback about the execution of previous inputs, Randoop aims to avoid redundant and illegal
inputs and thereby increase testing effectiveness compared to purely random testing. Our main
contribution is demonstrating that this approach can successfully be adapted to test TypeScript
declarations.

Search-based testing is another approach to test automation, using for example genetic algorithms
to maximize code coverage. A notable example is EvoSuite [Fraser and Arcuri 2014], which has
support for testing generic classes in Java, similar to the challenge we address in Section 4.3.
Property-based testing, or quickchecking [Claessen and Hughes 2000], is another technique that
can automatically generate inputs and check outputs for the system under test, often based on
types. A fundamental difference in our work is the feedback mechanism.

In the area of JavaScript web application testing, the Artemis tool [Artzi et al. 2011] also uses
a feedback-directed approach, however using different forms of feedback, e.g. event handler reg-
istrations. Although the majority of the libraries considered in our experiments are intended for
browser environments (see Appendix A), TSTEST achieves good coverage and finds many errors
even without taking the HTML UI event system into account. A possible avenue for future work is
to investigate how the testing effectiveness of TSTEST could be improved by also triggering event
handlers.

As mentioned in previous sections, TSTEST could in principle be extended with dynamic symbolic
execution [Godefroid et al. 2005] to boost coverage. More specifically, the techniques used in
CUTE [Sen et al. 2005] for systematically producing suitable object structures may be a useful
supplement to randomly generated values for structural interface types. To this end, it may be
possible to leverage previous work on symbolic execution for JavaScript from Kudzu [Saxena et al.
2010], Jalangi [Sen et al. 2013], or SymJS [Li et al. 2014].

8 CONCLUSION

We have demonstrated that feedback-directed random testing can successfully be adapted to detect
errors in TypeScript declarations files for JavaScript libraries. Our approach works by automatically
generating type test scripts that perform both runtime type checking and automated exploration
of the library code. The prevalence of structural typing, higher-order functions, generics, and
other challenging features of TypeScript have prompted many interesting design choices, most
importantly how to use values obtained from the feedback process in combination with randomly
generated values, and how to ensure that the feedback-directed process is not stopped each time a
type error is encountered.

The experimental evaluation of our implementation, TSTEST, has shown that the technique is
capable of fully automatically detecting numerous errors in TypeScript declarations files for a large
range of popular JavaScript libraries. Despite the simplicity of the technique, errors were detected
in 49 of 54 benchmarks. Among a sample of 124 reported type mismatches, 63 were classified as
true errors, with additional 47 if using non-nullable types. Patches made for 6 erroneous declaration
files have all been accepted by the declaration file authors, thereby confirming the usefulness of
the technique. Moreover, TSTEST detects many errors that are missed by other tools, and without
false positives.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

Type Test Scripts for TypeScript Testing 90:23

Our coverage measurements show that substantial parts of the library code and the type test
scripts are being covered, but also that there is a potential for improvement. In particular, we
believe it may be interesting in future work to extend TSTEST with symbolic execution to increase
coverage further. It may also be possible that our approach can be applied to other dynamically
typed languages with optional types.

ACKNOWLEDGMENTS

This work was supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant agreement No 647544).

REFERENCES

Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Mgller, and Frank Tip. 2011. A framework for automated testing
of JavaScript web applications. In Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011,
Waikiki, Honolulu , HI, USA, May 21-28, 2011. ACM, 571-580.

Gavin M. Bierman, Martin Abadi, and Mads Torgersen. 2014. Understanding TypeScript. In ECOOP 2014 - Object-Oriented
Programming - 28th European Conference, Uppsala, Sweden, July 28 - August 1, 2014. Proceedings (Lecture Notes in Computer
Science), Vol. 8586. Springer, 257-281.

Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs. In Proceedings
of the 5th ACM SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal, Canada, September
18-21, 2000. ACM, 268-279.

Edsger W. Dijkstra. 1970. Notes on Structured Programming. Technical Report EWD249. Technological University Eindhoven.

Facebook. 2017. Flow. (2017). http://flowtype.org/.

Asger Feldthaus and Anders Mgller. 2014. Checking correctness of TypeScript interfaces for JavaScript libraries. In
Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014. ACM, 1-16.

Gordon Fraser and Andrea Arcuri. 2014. Automated Test Generation for Java Generics. In Software Quality. Model-Based
Approaches for Advanced Software and Systems Engineering - 6th International Conference, SWQD 2014, Vienna, Austria,
January 14-16, 2014. Proceedings (Lecture Notes in Business Information Processing), Vol. 166. Springer, 185-198.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed automated random testing. In Proceedings of the
ACM SIGPLAN 2005 Conference on Programming Language Design and Implementation, Chicago, IL, USA, June 12-15, 2005.
ACM, 213-223.

Phillip Heidegger and Peter Thiemann. 2010. Contract-Driven Testing of JavaScript Code. In Objects, Models, Components,
Patterns, 48th International Conference, TOOLS 2010, Malaga, Spain, June 28 - July 2, 2010. Proceedings (Lecture Notes in
Computer Science), Vol. 6141. Springer, 154-172.

Simon Holm Jensen, Anders Mgller, and Peter Thiemann. 2009. Type Analysis for JavaScript. In Static Analysis, 16th
International Symposium, SAS 2009, Los Angeles, CA, USA, August 9-11, 2009. Proceedings (Lecture Notes in Computer
Science), Vol. 5673. Springer, 238-255.

Matthias Keil and Peter Thiemann. 2015a. Blame assignment for higher-order contracts with intersection and union. In
Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming, ICEP 2015, Vancouver, BC,
Canada, September 1-3, 2015. ACM, 375-386.

Matthias Keil and Peter Thiemann. 2015b. Treat]S: Higher-Order Contracts for JavaScript. In 29th European Conference on
Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic (LIPIcs), Vol. 37. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 28-51.

Erik Krogh Kristensen and Anders Mgller. 2017. Inference and Evolution of TypeScript Declaration Files. In Fundamental
Approaches to Software Engineering - 20th International Conference, FASE 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture Notes in Computer
Science), Vol. 10202. Springer, 99-115.

Jukka Lehtosalo et al. 2016. Mypy. (2016). http://www.mypy-lang.org/.

Guodong Li, Esben Andreasen, and Indradeep Ghosh. 2014. Sym]JS: automatic symbolic testing of JavaScript web applications.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-22), Hong
Kong, China, November 16 - 22, 2014. ACM, 449-459.

Microsoft. 2015. TypeScript Language Specification. (February 2015). https://github.com/Microsoft/TypeScript/blob/master/
doc/spec.md.

Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007. Feedback-Directed Random Test Generation.
In 29th International Conference on Software Engineering (ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007. IEEE

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

http://flowtype.org/
http://www.mypy-lang.org/
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md

90:24 Erik Krogh Kristensen and Anders Meller

Computer Society, 75-84.

Michael Pradel, Parker Schuh, and Koushik Sen. 2015. TypeDevil: Dynamic Type Inconsistency Analysis for JavaScript. In
37th IEEE/ACM International Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1.
IEEE Computer Society, 314-324.

Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin M. Bierman, and Panagiotis Vekris. 2015. Safe & Efficient Gradual
Typing for TypeScript. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015. ACM, 167-180.

Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant, and Dawn Song. 2010. A Symbolic Execution
Framework for JavaScript. In 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland,
California, USA. IEEE Computer Society, 513-528.

Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon Gibbs. 2013. Jalangi: a selective record-replay and dynamic
analysis framework for JavaScript. In Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26,
2013. ACM, 488-498.

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing engine for C. In Proceedings of the 10th
European Software Engineering Conference held jointly with 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2005, Lisbon, Portugal, September 5-9, 2005. ACM, 263-272.

Jeremy G Siek and Walid Taha. 2006. Gradual typing for functional languages. In Scheme and Functional Programming
Workshop, Vol. 6. 81-92.

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Refined Criteria for Gradual Typing.
In 1st Summit on Advances in Programming Languages, SNAPL 2015, May 3-6, 2015, Asilomar, California, USA (LIPIcs),
Vol. 32. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 274-293.

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The design and implementation of Typed Scheme. In Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008. ACM, 395-406.

Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. 2014. Design and evaluation of gradual typing for
Python. In DLS’14, Proceedings of the 10th ACM Symposium on Dynamic Languages, part of SLASH 2014, Portland, OR,
USA, October 20-24, 2014. ACM, 45-56.

Philip Wadler. 1989. Theorems for Free!. In Proceedings of the 4th International Conference on Functional Programming
Languages and Computer Architecture, FPCA 1989, London, UK, September 11-13, 1989. ACM, 347-359.

Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs Can’t Be Blamed. In Programming Languages and
Systems, 18th European Symposium on Programming, ESOP 2009, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings (Lecture Notes in Computer Science), Vol. 5502.
Springer, 1-16.

Jack Williams, J. Garrett Morris, Philip Wadler, and Jakub Zalewski. 2017. Mixed Messages: Measuring Conformance and
Non-Interference in TypeScript. In 31st European Conference on Object-Oriented Programming, ECOOP 2017, June 19-23,
2017, Barcelona, Spain (LIPIcs), Vol. 74. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 28:1-28:29.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

Type Test Scripts for TypeScript Testing 90:25
A LIBRARIES USED IN THE EXPERIMENTAL EVALUATION
Name \ environment \ Jjs \ d.ts H Name \ environment \ Js \ d.ts
accounting.js any 191 51 || Mathjax browser 502 10
Ace browser 7958 | 629 || Medium Editor browser 5211 | 140
AngularjS browser 12490 | 777 || Modernizr browser 1193 | 349
async any 1733 202 || Moment.js any 3244 501
axios any 840 99 || P2js browser 6591 745
Backbone.js browser 1155 | 296 || pathjs browser 183 38
bluebird any 4939 | 195 || PDEjs browser 59395 | 190
box2dweb browser 10718 | 1139 || Peer}S browser 2240 86
Chart.js browser 11870 | 385 || PhotoSwipe browser 2602 | 146
CodeMirror browser 7302 | 402 || Pixi}S browser 17638 | 2148
Create]S browser 8955 | 1325 || Please}S any 630 46
D3.js browser 13605 | 2406 || Polymer browser 7645 | 160
Ember.js browser 31357 | 1299 || q any 1137 100
Fabric.js browser 14633 | 1099 || QUnit browser 3038 | 109
Foundation browser 5646 | 285 || React browser 12603 | 1474
Hammer.js browser 1509 | 265 || Redux any 475 | 100
Handlebars browser 3444 | 241 || Require}S browser 1303 77
highlight.js browser 128 10 || revealjs browser 2612 | 108
intro.js browser 1156 69 || RxJS any 9281 | 1002
Ionic browser 8660 | 310 || Sortable browser 879 76
Jasmine any 2891 | 442 || Sugar any 6144 | 1179
JjQuery browser 6609 | 612 || Swiper browser 4488 | 247
Knockout browser 4346 | 412 || threejs browser 23299 | 4292
Leaflet browser 7391 | 977 || Underscore.js any 2896 | 1171
Lodash any 8032 | 5896 || Video.js browser 11188 52
lunrjs any 860 155 || Vuegjs browser 6733 | 581
Materialize browser 5253 88 || Zepto.js browser 1298 | 3336

The ‘environment’ column shows whether the library is primarily intended for browser-based
applications. The ‘js’ and ‘.d.ts’ columns show the sizes (line counts excluding dependencies) for
the JavaScript implementation and the TypeScript declaration file, respectively.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 90. Publication date: October 2017.

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 The PathJS Library
	2.2 The Async Library

	3 Basic Approach
	4 Challenges and Design Choices
	4.1 Structural Types
	4.2 Higher-Order Functions
	4.3 Generic Types
	4.4 Other Design Choices Involving Types

	5 Soundness and (Conditional) Completeness
	6 Experimental Evaluation
	6.1 Implementation
	6.2 Research Questions
	6.3 Quantitative Evaluation
	6.4 Do mismatches detected by TStest indicate bugs that developers want to fix?
	6.5 Can TStest find errors that are missed by other tools?

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Libraries used in the Experimental Evaluation

