Improving Tools for JavaScript Programmers

(Position Paper)

Esben Andreasen
Aarhus University

esbena@cs.au.dk

Casper S. Jensen
Aarhus University

semadk@cs.au.dk

Asger Feldthaus
Aarhus University

asf@cs.au.dk

Peter A. Jonsson
Aarhus University

pjonsson@cs.au.dk

Simon Holm Jensen
Aarhus University

simonhj@cs.au.dk

Magnus Madsen
Aarhus University

magnusm@cs.au.dk

Anders Maller
Aarhus University
amoeller@cs.au.dk

ABSTRACT

We present an overview of three research projects that all
aim to provide better tools for JavaScript web application
programmers': TAJS, which infers static type information
for JavaScript applications using dataflow analysis; JSRefac-
tor, which enables sound code refactorings; and Artemis,
which provides high-coverage automated testing.

1. JAVASCRIPT PROGRAMMERS NEED
BETTER TOOLS

JavaScript contains many dynamic features that allegedly
ease the task of programming modern web applications. Most
importantly, it has a flexible notion of objects: properties are
added dynamically, the names of the properties are dynam-
ically computed strings, the types of the properties are not
fixed, and prototype relations between objects change dur-
ing execution. An experimental study has shown that most
dynamic features in JavaScript are widely used [10].

Such flexibility has a price. It becomes challenging to rea-
son about the behavior of JavaScript programs without ac-
tually running them. To make matters worse, the language
provides no encapsulation mechanisms, except for local vari-
ables in closures. For many kinds of programming errors
that cause compilation errors or runtime errors in other lan-
guages, JavaScript programs keep on running, often with
surprising consequences.

As a consequence, JavaScript programmers must rely on
tedious testing to a much greater extent than necessary with
statically typed languages. Additionally, it is difficult to
foresee the consequences of modifications to the code, so
code refactoring is rarely applied. Unlike the first scripts
that appeared when JavaScript was introduced, today’s Java-
Script programs often contain thousands of lines of code,
so it becomes increasingly important to develop better tool
support for the JavaScript programmers.

'For more information about the projects and tools, see
the website for Center for Advanced Software Analysis at
http://cs.au.dk/CASA.

2. FINDING ERRORS WITH
DATAFLOW ANALYSIS

The TAJS analysis tool infers an abstract state for each
program point in a given JavaScript web application. Such
an abstract state soundly models the possible states that
may appear at runtime and can be used for detecting type-
related errors and dead code. These errors often arise from
wrong function parameters, misunderstandings of the run-
time type coercion rules, or simple typos that can be tedious
to find using testing.

We have approached the development of TAJS in stages.
First, our focus has been on the abstract domain and dataflow
constraints that are required for a sound and reasonably
precise modeling of the basic operations of the JavaScript
language itself and the native objects that are specified in
the ECMAScript standard [3]. This involves an extraordi-
narily elaborate lattice structure and models of the intricate
details of identifier and object property resolution, proto-
type chains, property attributes, scope chains, type coer-
cions, etc. [7]. The resulting static analysis is flow- and
partially context-sensitive. It performs constant propaga-
tion for primitive values and models object references using
recency abstraction. For every expression, the analysis pro-
vides an over-approximation of its possible runtime types
and values, which can be analyzed subsequently to detect
likely errors.

Next, to reason about web application code, we also need
to model the browser API, including the HTML DOM and
the event system, with involves additional hundreds of ob-
jects, functions, and properties [6]. In parallel, we have de-
veloped new techniques for interprocedural dataflow analy-
sis to boost performance. Our lazy propagation technique
is particularly suitable for the large abstract states that we
encounter [8]. More recently, we have taken the first step
of handling common patterns of code that is dynamically
generated using the eval function [5], using the study by
Richards et al. [9] as a starting point.

Altogether, these techniques enable analysis of JavaScript
web applications up to a few thousand lines of code, although
the scalability is naturally highly affected by the complexity
of the code. We have demonstrated that the approach can
infer type information and call graphs with good precision

{8 = SGverC fidyhmi I EClipselSDR:
File Edit Source Navigafe Search Project Run Window Help
rEHEa|d o] swer s o i [#Java
Sy | It
- | teore.fidy.html % =0
his.angle = v, ry
4] this.coreQuality = 16;
this.coreNodes = []
Player.prototype = new Point;
Player.prototype.updateCore = function () {
var d, h;
if (this.coienodes.'length == 0)
fo: Upostible values of corenodes: tY:) { D
- pundeﬁned
5 ¥

[2/ Problems| @ Javadoc | Declaration | # Javascript Analysis View &

File Line | Problem D

[Core/src/core tidy.html: 535 | (error) TypekErrar, reading property of null/undefii
] >

Figure 1: The TAJS analysis plug-in for Eclipse,
reporting a programming error and highlighting the
type inferred for the selected expression [6].

and provide useful warning messages when type-related er-
rors occur. We envision such information being made avail-
able to the programmer during development; a screenshot
from our prototype plugin for Eclipse is shown in Figure 1.

Our current work focuses on improving the analysis per-
formance. As the average JavaScript programs become larger
and often involve libraries, it becomes increasingly impor-
tant that the scalability of the analysis is improved. Specifi-
cally, we are studying the performance bottlenecks that ap-
pear with applications that use jQuery, using the idea of
correlation tracking that has recently been proposed by Srid-
haran et al. [11].

3. TOOL-SUPPORTED REFACTORING

Refactoring is a popular technique for improving the struc-
ture of programs while preserving their behavior. Tool sup-
port is indispensable for finding the necessary changes when
the programmer suggests a specific refactoring and for en-
suring that the program behavior is preserved. However,
refactoring tools for JavaScript cannot use the techniques
that have been developed for e.g. Java since they rely on
information about static types and class hierarchies. As an
example, no existing mainstream JavaScript IDE can per-
form even apparently simple refactorings, such as, renaming
an object property, in a sound and precise manner.

In the JSRefactor project, we explore the use of pointer
analysis as a foundation for providing better tool support for
refactoring for JavaScript programs [4]. As a starting point
we consider renaming of variables or object properties, but
also more JavaScript-specific refactorings — encapsulation of
properties and extraction of modules — that target program-
ming idioms advocated by influential practitioners [2].

Beside supporting additional refactorings in our frame-
work, an important next step is to improve the scalability
of the underlying pointer analysis. On the theoretical side,
it remains an interesting challenge how to ensure that the
refactoring specifications we provide are sound with respect
to the semantics of JavaScript.

4. AUTOMATED TESTING

Testing JavaScript web applications is tedious but neces-
sary. The goal of the Artemis project is to automate the
production of high-coverage test inputs [1]. This can be
seen as a complementary approach to TAJS. Although test-
ing cannot show absence of errors — in contrast to the static
analysis approach we use in TAJS — one may argue that
dynamic approaches to error detection are better suited for
dynamic languages like JavaScript. As a case in point, eval
causes no complications in Artemis, unlike in TAJS.

The approach we take in Artemis is to apply light-weight
feedback-directed random testing. A test input consists of
a sequence of parameterized events that trigger execution of
code. The Artemis tool monitors the execution to collect
information that suggests promising new inputs that may
improve coverage.

Our first version of Artemis was based on Envjs, which is
a simulated browser environment written in JavaScript, and
included various heuristics for generating and prioritizing
new inputs. We are currently integrating our algorithms into
the more robust WebKit infrastructure and exploring more
powerful heuristics for providing higher and faster coverage
of typical JavaScript applications.

Acknowledgments

We appreciate the contributions to the TAJS, JSRefactor,

and Artemis projects by Kristoffer Just Andersen, Shay Artzi,
Julian Dolby, Matthias Diehn Ingesman, Jacob H.C. Kragh,

Todd Millstein, Max Schéfer, Peter Thiemann, and Frank

Tip. This work was supported by Google, IBM, and The

Danish Research Council for Technology and Production.

5. REFERENCES

[1] S. Artzi, J. Dolby, S. H. Jensen, A. Mgller, and
F. Tip. A framework for automated testing of
JavaScript web applications. In ICSE’11, May 2011.

[2] D. Crockford. JavaScript: The Good Parts. O'Reilly,
2008.

[3] ECMA. ECMAScript Language Specification, 3rd
edition, 2000. ECMA-262.

[4] A. Feldthaus, T. Millstein, A. Mgller, M. Schiifer, and
F. Tip. Tool-supported refactoring for JavaScript. In
OOPSLA’11, October 2011.

[5] S. H. Jensen, P. A. Jonsson, and A. Mgller. Remedying
the eval that men do. In ISSTA’12, July 2012.

[6] S. H. Jensen, M. Madsen, and A. Mgller. Modeling the
HTML DOM and browser API in static analysis of
JavaScript web applications. In ESEC/FSE’11,
September 2011.

[7] S. H. Jensen, A. Mgller, and P. Thiemann. Type
analysis for JavaScript. In SAS’09, August 2009.

[8] S. H. Jensen, A. Mgller, and P. Thiemann.
Interprocedural analysis with lazy propagation. In
SAS’10, September 2010.

[9] G. Richards, C. Hammer, B. Burg, and J. Vitek. The
eval that men do - a large-scale study of the use of eval
in JavaScript applications. In ECOOP’11, July 2011.

[10] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An
analysis of the dynamic behavior of Javascript
programs. In PLDI’10, June 2010.

[11] M. Sridharan, J. Dolby, S. Chandra, M. Schifer, and
F. Tip. Correlation tracking for points-to analysis of
JavaScript. In ECOOP’12, June 2012.

