
Systematic Black-Box Analysis of Collaborative Web Applications

Marina Billes
Department of Computer Science

TU Darmstadt, Germany
marina.billes@crisp-da.de

Anders Møller
Department of Computer Science

Aarhus University, Denmark
amoeller@cs.au.dk

Michael Pradel
Department of Computer Science

TU Darmstadt, Germany
michael@binaervarianz.de

Abstract
Web applications, such as collaborative editors that allow
multiple clients to concurrently interact on a shared resource,
are difficult to implement correctly. Existing techniques for
analyzing concurrent software do not scale to such complex
systems or do not consider multiple interacting clients. This
paper presents Simian, the first fully automated technique
for systematically analyzing multi-client web applications.

Naively exploring all possible interactions between a
set of clients of such applications is practically infeasible.
Simian scales to real-world applications by using a two-
phase black-box approach. The first phase systematically
explores the application with a single client to infer po-
tential conflicts between client events. The second phase
synthesizes multi-client interactions targeted at triggering
misbehavior that may result from the potential conflicts, and
reports an inconsistency if the clients do not converge to a
consistent state.

We evaluate the analysis on three widely used systems,
Google Docs, Firepad, and ownCloud Documents, where it
reports a variety of inconsistencies, such as incorrect format-
ting and misplaced text fragments. Moreover, we find that
the two-phase approach runs 10x faster than exhaustive ex-
ploration, making systematic analysis feasible.

CCS Concepts •Software and its engineering → Dy-
namic analysis; Software testing and debugging

General Terms Algorithms, reliability, verification

Keywords Testing, collaborative editing, dynamic analysis

1. Introduction
The web platform has greatly expanded its capabilities in re-
cent years with improvements in browser implementations

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’17 June 18–23, 2017, Barcelona, Spain

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-nnnn-nnnn-n/yy/mm. . . $15.00

DOI: http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

and APIs, which have enabled rich internet applications that
perform tasks previously reserved to dedicated desktop ap-
plications. This work focuses on collaborative web applica-
tions, where multiple clients concurrently work on a shared
resource, such as a text document, a spreadsheet, or source
code. Popular examples of such applications are Google
Docs,1 Microsoft Office Online,2 and the Cloud9 IDE.3

Synchronizing the clients of a collaborative web appli-
cation is a nontrivial problem. Typically, a snapshot of the
shared data is modified locally via a JavaScript-based client-
side implementation, while updates are sent to the server and
from there pushed out to other clients. The goal of these sys-
tems is to ensure that all clients eventually converge to a con-
sistent state. In practice, implementing concurrency control
for a collaborative web application is challenging because
clients may trigger various UI actions and because these ac-
tions may interleave in a multitude of ways. Due to this com-
plexity, collaborative web applications are particularly error-
prone concurrent applications, while finding errors is diffi-
cult because of the enormous space of possible interactions
between clients.

As a simple real-world example, consider a document
in Google Docs with the text “testing” in a single line, as
shown in Figure 1. Suppose one client writes “ this” at the
end of the line, while another client concurrently selects and
deletes the existing text. After the clients synchronize their
actions via the server, the first client shows “ this” in bold
font, whereas the second client shows the text without using
bold font. The clients now have inconsistent states that do
not converge, which is clearly a bug.

Unfortunately, state-of-the-art analysis techniques fail to
detect such bugs. Existing approaches applicable to collab-
orative web applications include server-side load testing,
which does not test the client UI implementation, and UI
testing on a client, e.g., using Selenium,4 which is geared to-
ward single-client scenarios. As a result, current techniques

1 http://docs.google.com/
2 https://www.office.com/
3 https://c9.io/
4 http://www.seleniumhq.org/

http://docs.google.com/
https://www.office.com/
https://c9.io/
http://www.seleniumhq.org/

Initial state

Concurrent
modifications

Write “ this” Delete

Inconsistent
states

Sync

Figure 1: A bug in Google Docs where client states differ
after concurrent modification of a line.

easily miss bugs that arise from the interactions of clients
and their synchronization via a server.

This paper presents Simian, a systematic black-box ap-
proach to analyze collaborative web applications.5 Given a
set of UI actions that exercise individual features of an ap-
plication, Simian synthesizes concurrent interactions aimed
at reaching inconsistencies between clients, i.e., a situation
where the application fails to provide eventual consistency.
The main challenge is the huge number of possible inter-
actions, which are practically impossible to explore. Simian
addresses this challenge with a novel two-phase approach
for analyzing concurrent software. It consists of a sequential
learning phase, which exhaustively checks for potentially
conflicting actions, and a concurrent analysis phase, which
exercises the potential conflicts using concurrent clients that
interact on the same shared state. Simian reports a problem
when a concurrent interaction leads to an inconsistency be-
tween the clients, such as the example in Figure 1.

Our approach provides several benefits. First, it is auto-
matic and does not need a developer to specify potentially
bug-revealing interactions. Second, due to its black-box
view on the application code, Simian easily scales to real-
world applications with complex client-side and server-side
implementations. Third, it is precise in the sense that it does
not report any false positives, because all reported incon-
sistencies are indeed observed during the analysis. Fourth,
Simian is systematic, by exploring all potential conflicts up
to a configurable bound, yet more efficient than naive ex-
haustive exploration.

It is important to note that our work focuses on synthe-
sizing concurrent interactions, which is orthogonal to the
problem of exploring the low-level runtime interleavings of
these interactions. Previous work on software model check-

5 Simian stands for “systematic exploration of multi-client interactions.”

ing [16, 20, 26, 44] addresses the latter problem. Adapting
these techniques to collaborative web applications remains
as a challenge for future work. We here focus on synthesiz-
ing concurrent interactions because not taking interleavings
into account greatly reduces the search space and simplifies
the implementation of our approach, while still revealing a
large number of bugs in widely used applications.

We have implemented Simian for the domain of collab-
orative editors and evaluated it with three popular systems:
Google Docs, Firepad,6 and ownCloud Documents.7 Simian
reveals a variety of inconsistencies, including incorrect for-
matting, incorrectly ordered text fragments, duplicated text,
and various visual discrepancies. The inconsistencies are
triggered by different sequences of user actions, yet the root
causes of the bugs that trigger the inconsistencies may over-
lap. Still, the inconsistencies represent a broad range of prob-
lems, as we discuss in Section 5. Compared to a naive sys-
tematic exploration of concurrent interactions, the two-phase
approach makes the analysis 10x faster, finding an inconsis-
tency approximately every 9 minutes, on average.

In summary, this paper contributes the following:

• A black-box analysis technique to detect errors in com-
plex concurrent programs. The key novelty is a two-phase
approach to systematically analyze all potentially bug-
exposing concurrent interactions up to a configurable
depth.
• Applying the idea to collaborative web applications, an

increasingly important class of applications that has not
been targeted by existing analysis techniques.
• Empirical evidence that the approach finds a variety of

bugs in widely used and well tested applications. To the
best of our knowledge, our work is the first automatic
approach that detects bugs in these systems.

The paper is organized as follows. In Section 2, we give
an overview of the problem and our solution, Simian, along
with a motivating example. In Section 3, we explain Simian
in more detail, and in Section 4, we describe our imple-
mentation. We evaluate the effectiveness and efficiency of
Simian and give further examples of the kinds of inconsis-
tencies it detects in Section 5. Section 6 discusses related
work, and Section 7 concludes.

2. Overview and Example
The following section informally describes the key ideas of
our approach using a motivating example. The example is a
simplified version of the bug in Google Docs illustrated in
Figure 1. Google Docs is a collaborative editor implemented
as a web application, where multiple clients can simultane-
ously edit a shared document. The intended behavior is that
all clients see the same state of the shared document.

6 https://firepad.io
7 https://github.com/owncloud/documents/

https://firepad.io
https://github.com/owncloud/documents/

a) Given: Set of actions
• a: insert text “a”
• bold: mark line and make it bold
• del: delete the last character (backspace)

b) Phase 1: Explore single-client interactions

a

aaa
a

aa a

a

a bold del

bold

...

del

a

... ...

a bold del
...

c) Potential conflicts and equivalent states

Prefix Source state Equiv. class Conflicting actions

a “a” 1 bold vs. del
del, a “a” 1 bold vs. del
a, bold “a” 2 a vs. del
. . .

d) Phase 2: Synthesize and execute multi-client interac-
tions

Interaction 1:

a

bold del

Interaction 2:

a

bold

a del

e) Final result: Inconsistent state
• Inconsistency: Client 1 sees “a” but client 2 sees “a”.

Figure 2: Running example that illustrates our two-phase
approach for synthesizing multi-client interactions that reach
an inconsistent state.

To analyze with Simian whether the application behaves
as expected, a developer defines a set of actions. Each action
implements a logical step triggered by a client when interact-
ing with the application. For our running example, suppose
the developer specifies the three actions listed in Figure 2a.

The goal of our approach is to synthesize an interaction
of multiple clients that exposes an error in the application.
The search space to find such an interaction based on the
given set of actions comprises interactions between an arbi-

trary number of clients that each trigger an arbitrarily long
sequence of actions. We limit the search space to interactions
where, at first, one client triggers a sequence of actions, with-
out any other concurrent clients, and then, two concurrent
clients each trigger one action in parallel, with an arbitrary
interleaving of low-level system events. Even when focusing
on such interactions, the search space still remains infinitely
large because of the arbitrary length of the sequential prefix.

To effectively explore the space of possible interactions,
Simian takes a two-phase approach. In the first phase, it
systematically explores all single-client interactions up to a
fixed depth. The goal of this first step is to identify pairs
of actions that may conflict with each other in a particular
application state, and to identify application states that are
equivalent to each other.

For the example, suppose that Simian explores all single-
client interactions created from the given set of actions up to
a depth of three. Figure 2b illustrates the tree of the explored
sequences of actions. The nodes in the tree summarize the
state of the application by showing the content of the doc-
ument after triggering a sequence of actions. The edges in
the tree represent the actions triggered by the client. For ex-
ample, the root node is empty because Simian starts with
an empty document and no action has been triggered yet.
The left-most child of the root node contains “a” because
the client has triggered the action that inserts the text “a”.
The text cursor is abstracted away from the state.

By analyzing the states reached via the interactions in
Figure 2b, Simian learns about potential conflicts between
actions and about equivalent states. To this end, it abstracts
the client-side states reached after each action and compares
these states with each other. We choose to abstract the state
into the pixels of a screenshot and compare states based on
this representation.

Figure 2c summarizes some of the detected potential con-
flicts and equivalent states. For example, after triggering ac-
tions a and bold, the two actions a and del are detected as a
potential conflict because the parts of the screen affected by
these actions overlap. The “Source state” column of the table
shows that the states reached via the sequences a and del, a
are equivalent, because both yield a document that contains
the text “a”.

In the second phase, Simian uses the knowledge learned
from exploring single-client interactions to synthesize multi-
client interactions that trigger potential conflicts. The main
idea is to create one multi-client interaction for each poten-
tial conflict, without repeatedly analyzing the same pair of
conflicting actions in equivalent states.

For the learned knowledge summarized in Figure 2c,
Simian synthesizes two concurrent interactions, as illus-
trated in Figure 2d. The first interaction involves two clients
that concurrently trigger bold and del, respectively, in a doc-
ument initialized by action a. The second interaction concur-
rently triggers the actions a and del in a document initialized

by a, bold. These two interactions are sufficient to cover
the three potential conflicts in Figure 2c because two of the
potential conflicts have different prefixes but reach a single
equivalent state “a”.

Simian executes each synthesized concurrent interaction
and checks for inconsistencies. When executing the second
concurrent interaction in Google Docs, the documents seen
by the two clients may differ from each other. One client sees
“a”, whereas the other client sees “a”, i.e., without the bold
formatting. Waiting, e.g., a minute does not change anything,
so the situation is not just an acceptable consequence of the
eventual consistency policy. Such an inconsistency clearly
violates the intended behavior of a collaborative editor.

3. Approach
We now present a detailed description of our approach for
automatically analyzing collaborative web applications us-
ing a systematic black-box technique.

3.1 Correctness of Collaborative Editors
Our overall goal is to systematically detect erroneous be-
havior in concurrent software systems that have multiple
clients. Based on experience from concurrency errors in
multi-threaded programs, which shows that two threads are
sufficient to trigger the vast majority of errors [21], we focus
on two clients that interact with the system. The techniques
presented here can be generalized to more than two clients.

A multi-client software system can be considered as a
labeled transition system (S,A,→) where S is a set of
states, A is a set of actions that trigger transitions, and →
is a transition relation, i.e., a subset of S×A×S . Each state
s = (σ1, σ2, σsys) ∈ S is a triple of state components that
represent the state observable by the two clients and the state
of the rest of the system, respectively. An action is either
a client action, which is triggered by one of the clients, or
any other action triggered by some other part of the system.
The transition relation represents how triggering an action
influences the overall system.

In a collaborative web application, the client states σ1
and σ2 correspond to the respective DOM states of the web
clients. The system state σsys comprises the server-side state
of the application, the state of the network, and any other
state that influences the application. A client action is any
logical operation performed by a client. For example, for
a text editor, “append text to end of line” or “select line
and make it bold” are client actions. A single client action
may correspond to multiple implementation-level steps, e.g.,
multiple events triggered in the client-side JavaScript code
or multiple network interactions between client and server.
Other, non-client actions are any other operations performed
by the application, e.g., sending a request from the server to
the client or replicating the server-side state into redundant
databases.

Correctness can be defined using the notion of operational
transformations [13], a non-blocking method of concurrency
control. Consider two clients C1 and C2 that concurrently
generate the operations op1 || op2. Client C1 applies op1 to
its state immediately upon creation, as doesC2 with op2, and
they send update notifications to each other. Upon arrival, the
operations are transformed by the transformation function
T . Client C1 executes T (op2) = op′2 and C2 executes
T (op1) = op′1. The transformation is chosen to ensure
that, for input state s = (σ1, σ2, σsys) with equivalent client
states σ1 ≡ σ2, the transitions

σ1
op1,op

′
2−−−−−→ σ′1

σ2
op2,op

′
1−−−−−→ σ′2

produce equivalent output client states σ′1 ≡ σ′2. Operational
transformation does not require the result of op1 || op2 to be
equal to a serialization of the two operations.

Ellis and Gibbs [13] define the correctness of a collabo-
rative editor as follows:

DEFINITION 1 (Correctness). A collaborative editor is cor-
rect if and only if it fulfills the following two properties:

• Precedence property – For each pair of operations op1

and op2, if the client generating op2 executes op1 before
generating op2, then op1 is executed before op2 on each
client.
• Convergence property – When all generated operations

have been executed on all clients, then all clients have
identical states.

The convergence property is an eventual consistency [45]
property in the sense that consistency of client states can
only be guaranteed after all operations have been fully per-
formed and the system is in a quiescent state.

3.2 Problem Statement and Challenges
In this work, we reveal violations of the above correctness
property by searching for quiescent states where the client
states are not equivalent, i.e., violations of the convergence
property. The input to our approach are the system under test
and a set A of client actions that each implement a logical
step of a client interacting with the system. The complexity
of real-world collaborative web applications makes system-
atic reasoning about the entire application state practically
impossible. To deal with this problem, our work treats the
system state σsys as a black box and restricts itself to trig-
gering client actions.

A sequence of client actions (a1, .., aj) triggers transi-
tions s1

a1−→ s2
a2−→ . . .

aj−→ sj+1. We call a sequence of
actions by a single client a single-client interaction. We as-
sume that the execution of serializable interactions, and as
such single-client interactions, is deterministic. In case this
assumption fails, Simian may miss bugs related to possible

non-determinism of single-client interactions, however, we
primarily target bugs that involve multiple clients.

In contrast to single-client interactions, a multi-client in-
teraction is an interleaving of two sequences of actions,
each of which is triggered by one client. Simian generates
multi-client interactions a1, .., aj , (ax||ay), which consist of
a single-client prefix a1, .., aj , where all actions are triggered
by only one client, and a concurrent suffix, where two clients
each trigger an action, ax and ay , concurrently. For the suf-
fix, there may be many possible interleavings of the low-
level events triggered by the actions ax and ay . The problem
of exploring these interleavings is orthogonal to the problem
considered in this work.

Our work focuses on violations of the convergence prop-
erty caused by executing two concurrent actions in two
clients. Focusing on this kind of multi-client interaction al-
lows the analysis to detect concurrency errors that match
various classes of problems known from multi-threaded ap-
plications. In particular, the analysis is able to detect atom-
icity violations, because a single action typically consists
of multiple implementation-level operations, and data races,
because concurrent actions may trigger concurrent reads and
writes of shared data.

Based on the above definitions, we formulate the problem
addressed in this work as follows: Given a collaborative web
application and a set of client actions, find a multi-client
interaction a1, .., aj , (ax || ay) where the states of the clients
after the interaction do not converge. For such an interaction,
we say that the actions ax and ay are conflicting actions.

The key challenge for achieving this goal is the huge
search space. We partially address this challenge by limiting
the length of interactions to a maximum length k = j + 1,
for a configurable bound k. A naive approach to generat-
ing multi-client interactions of this restricted form would
be to exhaustively try all possible interactions within the
bound k. However, the number of such interactions is ex-
ponential in k, making it practically infeasible to perform
this exhaustive exploration, even with a low bound.

3.3 Overview of Simian
Our analysis, Simian, has two phases. First, it systematically
explores single-client interactions up to a maximum length
k to learn which pairs of actions may conflict with each
other in a particular state. Second, it exploits the potential
conflicts identified in the first phase to generate multi-client
interactions targeted at exploring each potential conflict, and
reports divergent states. We present the two phases of the
analysis in Sections 3.4 and 3.5, respectively.

The approach relies on techniques to identify potentially
conflicting actions, equivalent states, and inconsistent states.
These techniques depend on the kind of application our ap-
proach is applied to. Section 3.6 presents techniques suitable
for a black-box analysis of collaborative web applications,
such as collaborative text editors.

Algorithm 1 Explore single-client interactions

Input: Set A of actions, exploration depth k
Output: Set C of potential conflicts

1: E ← ∅ . Maps (a1, ..., aj) to the data affected by aj
2: for each (a1, a2, .., ak) ∈ Ak do
3: effect1, effect2, .., effectk ← execute(a1, ..., ak)
4: for i = 1, .., k − 1 do
5: E ← E ∪ {a1, .., ai−1 7→ effect i}
6: C ← ∅
7: for each (a1, a2, .., aj) ∈ Aj , j ∈ {1, . . . , k − 1} do
8: seq ← (a1, a2, .., aj) . Source state
9: for each (ax, ay) s.th. ax ∈ A, ay ∈ A do

10: seqx ← (a1, a2, .., aj , ax)
11: seqy ← (a1, a2, .., aj , ay)
12: if E(seqx) ∩ E(seqy) 6= ∅ then
13: C ← C ∪ {(seq , ax, ay)}

3.4 Phase 1: Systematic Sequential Exploration
The first phase of Simian explores all sequences of actions
in A triggered by a single client up to a configurable bound
k. We refer to this set of sequences as the action tree Ak,
as seen in Figure 2b. Each path through the action tree
is one sequence of actions triggered by a single client in
a sequential manner. We call states with outgoing actions
source states. We identify a state sj by the sequence of
actions s1

a1−→ ...
aj−→ sj that leads to the state.

Simian checks for each node in the tree, which pairs of
outgoing actions affect the same data, and identifies these
actions as potential conflicts.

DEFINITION 2 (Potential conflict). A potential conflict is a
triple (seq , ax, ay) where seq = a1, .., aj is a sequence of
actions, such that ax and ay are actions that affect the same
data when executing after seq .

The rationale for this way of identifying potential con-
flicts is that two actions must affect the same data to produce
an inconsistency. Potential conflicts may not produce actual
conflicts of the actions ax and ay when they are executed
concurrently, which is why the second phase of Simian vali-
dates them.

Algorithm 1 summarizes how Simian explores the tree
of single-client interactions to detect potential conflicts. The
algorithm takes as an input the set A of actions and the ex-
ploration depth k. The output is the set of potential conflicts
C. The algorithm consists of two main steps. The first step
(lines 1–5) is to execute each path of length k through the ac-
tion tree while recording the effects of individual actions. In-
tuitively, the effect of an action triggered in a particular state
represents the data affected by the action. The second step
(lines 6 to 13) is to compute potential conflicts by analyzing
to what extent recorded effects of different actions overlap.
There are various options for how to record the effect of an

action and how to compute overlaps between effects. Sec-
tion 3.6.2 presents an approach suitable for black-box anal-
ysis of collaborative web applications, which is based on the
state that is visible to the clients. We next describe the two
steps of Algorithm 1 in more detail.

At first, the algorithm initializes a map E (line 1) that
for each sequence of actions (a1, ..., aj) records the effect
of action aj in the state reached via a1, ..., aj−1, Then, the
algorithm populates E by exploring all sequences of actions
up to depth k (lines 2–5). To this end, the algorithm executes
each sequence of length k, while recording the effects of
each individual action (line 3). The effect of an action ai
is represented by effect i.

Based on the effects of all actions, the algorithm com-
putes the set of potential conflicts C. It iterates over all source
states, i.e., all sequences of actions of length between 1 and
k−1 (lines 7–13). For each source state, it considers all pairs
(ax, ay) of actions, ax, ay ∈ A that may be executed in the
source state and compares their effects. For this purpose, the
algorithm queries the map E with the two sequences that re-
sults from appending ax and ay to the sequence that leads
to the source state. If and only if the effects of ax and ay
overlap (line 12), the potential conflict is stored into C.

For illustration, consider the action tree in Figure 2b and
suppose that the exploration bound is k = 3. Algorithm 1
executes all 27 possible sequences of three actions, such as,
(a,a,a), (a,a,bold), and (a,a,del), and records the effect of
each action. For example, for the source state reached by
(a,a), it records the effect of a, bold, and del, and checks
these effects for overlaps.

The first phase of Simian is systematic and determinis-
tic. It is systematic because the approach explores all single-
client interactions up to a configurable length. It is determin-
istic under the assumption that single-client interactions with
a collaborative web application are deterministic. We do not
experience any non-determinism during the first phase of
Simian in our experiments.

3.5 Phase 2: Conflict-Guided Concurrent Exploration
Algorithm 2 summarizes how our analysis synthesizes and
executes multi-client interactions to find interactions that
end in an inconsistent state. The input to Algorithm 2 is the
set of potential conflicts C, and the output is a set of multi-
client interactions that reach an inconsistent state. For each
potential conflict ((a1, .., aj), ax, ay), the algorithm assem-
bles an interaction that is comprised of a single-client pre-
fix a1, .., aj and a concurrent suffix (ax || ay) (line 6). The
algorithm executes this interaction and checks whether the
resulting state is inconsistent. We describe in Section 3.6.3
how Simian identifies inconsistent states based on the state
visible in clients.

To avoid exploring conflicts redundantly, Algorithm 2
uses a function equivCls that assigns to each state an equiv-
alence class and keeps track of the equivalence classes in
which particular pairs of actions have already been explored.

Algorithm 2 Synthesize and execute multi-client interac-
tions
Input: Set C of potential conflicts
Output: Interactions that reach an inconsistent state

1: explored ← {} . Maps equivalence classes of states to
sets of action pairs

2: for each (seq , ax, ay) ∈ C do
3: if (ax, ay) ∈ explored(equivCls(seq)) then
4: continue
5: explored(equivCls(seq))←

explored(equivCls(seq)) ∪ {(ax, ay)}
6: interaction ← [a1, .., aj , (ax || ay)]

where seq = a1, .., aj
7: s← execute(interaction)
8: if isInconsistent(s) then
9: report interaction and error

To this end, it maintains a map explored that assigns to each
state equivalence class the set of action pairs that have al-
ready been executed in states of this equivalence class. If
a potential conflict has already been analyzed for another
source state of the same equivalence class, the algorithm
skips the conflict (lines 3–4).

We find in our experiments that this optimization signifi-
cantly reduces the effort spent in the second phase of Simian.
The effectiveness of the optimization and whether the opti-
mization may introduce false negatives, i.e., missed bugs,
depends on how accurately equivCls identifies equivalence
classes of states. Section 3.6.1 describes how Simian realizes
equivCls for collaborative web applications.

For our running example, reconsider Figure 2d, which
shows the two multi-client interactions that Algorithm 2
executes based on the potential conflicts and the equivalence
classes shown in Figure 2c. Suppose that executing these
interactions reveals that the second interaction leads to an
inconsistent state. The algorithm then reports the interaction,
along with a description of the error, to the developer.

A naive alternative to our two-phase approach would be to
exhaustively explore all multi-client interactions up to a par-
ticular bound k, as outlined at the end of Section 3.2. As
we show in detail in our evaluation, focusing on potential
conflicts instead of a naive exhaustive exploration greatly re-
duces the number of executions, which makes the approach
viable in the first place.

3.6 Reasoning about Actions and States
Simian relies on techniques for identifying equivalent states,
conflicting actions, and inconsistent states. We now present
such techniques suitable for collaborative web applications.
The main idea is to abstract the state of a client based on the
rendered web site shown in the browser, and to use this state
abstraction to reason about actions and states. Alternative
approaches include to reason about the state of the DOM,

the JavaScript heap of the client-side application, and the
various client-side storage mechanisms, such as cookies and
web storage. The benefit of our approach is that it treats the
application as a black box, making Simian easily applicable
to complex applications without requiring any knowledge
about the implementation of the client-side or server-side of
the application.

The core of our technique to reason about actions and
states is a pixel-based abstraction φ of client state. Given
two client states σ1 and σ2, the abstraction considers them
to be equivalent, φ(σ1) = φ(σ2), when a screenshot of both
rendered web sites contains exactly the same pixels. More
concretely, suppose that φ yields a double-indexed array of
pixels, then the following function computes the differences
between two states:

diff (σ1, σ2) = {(x, y) | φ(σ1)[x, y] 6= φ(σ2)[x, y]}

Using this definition, we consider two abstracted states to be
equivalent if diff (σ1, σ2) = ∅.

Since different rendering engines, window sizes, operat-
ing systems, etc. may influence the state abstraction, we keep
all these factors stable when implementing Simian. Because
our entire analysis can easily run on a single computer, this
constraint as not an issue in practice.

3.6.1 Identifying Equivalent States
The second phase of our analysis uses a function equivCls
that assigns an equivalence class to each state. Based on
the pixel-based state abstraction, we consider two states to
belong to the same equivalence class when they have the
same state abstraction. In other words,

equivCls(seq1) = equivCls(seq2)⇔ diff (σ1, σ2) = ∅

where σ1 and σ2 are the client states reached through the
sequences of actions seq1 and seq2, respectively.

For our running example, the initial state (i.e., the root
node in Figure 2b) and the state reached by triggering “bold”
in the initial state are equivalent. The reason is that both
states correspond to an empty document and therefore the
same pixel-based state abstraction. However, note that state
equivalence may not be preserved by triggering further ac-
tions. For example, after performing the action a on both of
the above states, the resulting states are not equivalent any-
more. The reason is that a is printed in a non-bold font in
one state but in bold font in the other state.

3.6.2 Identifying Conflicting Actions
The first phase of our analysis identifies potential conflicts
by recording the effects of individual actions and by compar-
ing these effects with each other. Simian reasons about the
effects of actions based on the pixel-based state abstraction
by comparing the abstracted state before and after an action:

• Effects. For an action a invoked in a state σ that leads to a
state σ′, the effect of a is the set diff (σ, σ′) of pixels that
differ between the two states.

• Overlap of effects. To check whether two actions a1 and
a2 overlap, suppose that σ1, σ′1, σ2, and σ′2 are the states
before and after these actions. We consider the effects
of a1 and a2 as overlapping if and only if the following
condition holds:

diff (σ1, σ
′
1) ∩ diff (σ2, σ

′
2) 6= ∅

In the running example, our technique detects no conflict-
ing actions among the three actions triggered in the root node
of Figure 2b. The reason is that neither bold nor del influ-
ence the abstracted state, and therefore do not have overlap-
ping effects with any other action. In contrast, the technique
identifies several conflicting actions in the state reached by
triggering a: both bold and del affect the existing character
“a”. Furthermore, triggering a again writes another charac-
ter next to the existing character, and because both characters
are adjacent, the areas of their affected pixels overlap. As a
result, all three actions are found to be pairwise conflicting
with each other.

3.6.3 Identifying Inconsistent States
When executing multi-client interactions in the second phase
of Simian, the analysis uses a function isInconsistent that
decides whether the state of the application is inconsistent.
To find a violation of the convergence property (Defini-
tion 1), Simian first needs to wait until the system reaches a
quiescent state, in which all operations have been performed
on all clients. Because we use a black-box approach that can-
not directly detect when the system reaches quiescence, we
instead heuristically wait for a configurable amount of time
and assume all clients have processed all events within that
window.

Simian uses the pixel-based state abstraction to define a
generic consistency check between the states seen by the
two clients involved in the interaction. Concretely, let σC1

and σC2 be the states of the two clients, then the approach
considers the two states as inconsistent if and only if the
following condition holds:

diff (σC1, σC2) 6= ∅

For the running example, the second multi-client interac-
tion in Figure 2d produces an inconsistent state, where one
client shows “a” while the other client shows “a”, as dis-
cussed in Section 2. Because the pixel-based abstractions of
these two states differ, the analysis reports an inconsistency.

Our approach for synthesizing multi-client interactions
is independent of the correctness criterion used to identify
inconsistent states. Alternative to or in addition to the pixel-
based check for inconsistencies, other correctness oracles,
such as neutral event sequences [1] or application-specific
specifications, can easily be plugged into our approach.

The pixel-based approach is accurate for most applications,
such as collaborative text editors, drawing applications, and
shared calendars, and has the benefit of being easy to rea-
son about and to implement. It is, however, not applicable
to every kind of collaborative application. For example, con-
sider a chat window, where most actions insert a new line
into the chat, pushing existing lines further to the top. In
such an application, the pixel-based state abstraction would
yield a large set of changed pixels even for trivial actions,
reducing the effectiveness of Simian’s two-phase approach.
While such applications certainly exist, we find that the sim-
ple pixel-based state abstraction is suitable for a large class
of widely used applications (Section 5).

4. Implementation
We have implemented our analysis using the Java edition
of the Selenium WebDriver framework and Mozilla Fire-
fox 45. Our implementation is available at https://github.
com/marinabilles/simian. Users provide implementations of
actions using the Selenium framework.

The implementation takes screenshots for determining af-
fected areas of actions. Our pixel-by-pixel comparison algo-
rithm overapproximates potential conflicts, as some pixels
identified as changed are not related to the performed user
actions, but are rather caused by the idiosyncrasies of the
platform’s native font rendering. To exclude minor differ-
ences between screenshots, we use a 8-neighbor flood filling
algorithm to detect the size of connected changed pixel areas
and exclude such areas that are less than 10 pixels in size.

For Phase 2, we spawn separate Java threads, which each
take control of their own WebDriver instance. We use Se-
lenium Grid with grid nodes running in their own X server
session running on the same machine as the grid hub. Using
multiple X server sessions avoids problems that Selenium
would encounter when trying to control a not currently fo-
cused window.

Before triggering the concurrent actions of a multi-client
interaction, the implementation sets the cursor of both clients
to the location where it is after executing the prefix, to ensure
that the concurrent actions are the same as the ones explored
during the first phase of the approach. There is a waiting
time before and after the concurrent part of a multi-client
interaction to give the application time to synchronize and
to reach a consistent state. This timeout can be configured
individually for each subject application depending on the
time each application needs for the states to stabilize.

5. Evaluation
5.1 Research Questions
We pose the following research questions:

RQ1 How effective is Simian at finding inconsistencies in
collaborate web applications, and what is the nature of
these inconsistencies?

Alarge

Asmall

Type “a”
Press Return
Toggle bold on line before cursor
Set font face to Verdana on line before cursor
Select and delete line before cursor

Press Tab
Press Space
Type “b”
Toggle italic on line after cursor
Set font size to 18 on line before cursor

Figure 3: Actions used in the evaluation.

RQ2 How do the effectiveness and the efficiency of Simian
depend on the size of the action set A and the depth
bound k?

RQ3 How does Simian compare to a single-phase, exhaus-
tive exploration of multi-client interactions?

5.2 Experimental Setup
Benchmark applications We run Simian on three widely
used collaborative editors: Google Docs, Firepad, and own-
Cloud Documents. According to their developers, these sys-
tems use operational transformations [13] for synchroniz-
ing changes between clients8. Since the implementation of
Google Docs is not available to us, we use the publicly
available installation hosted by Google. All experiments
were performed between Nov 4 and Nov 15, 2016. For
Firepad and ownCloud Documents, which are available as
open-source, we locally install the applications, using ver-
sion 1.4.0 and 0.13.1, respectively. To avoid false positives
caused by our pixel-based state abstraction (Section 3.6), we
specify for each application particular areas of the screen
that are ignored, such as a chat box shown by Google Docs
and the DOM element that represents the blinking cursor.

We set the waiting time before and after the concurrent
actions of multi-client interactions to 7 seconds for Google
Docs and Firepad, and to 12 seconds for ownCloud. Based
on our experience, this is sufficient for allowing the applica-
tions to stabilize after user input.

Actions We define two sets, Asmall and Alarge , of actions
that we implement for all benchmark applications (Figure 3).
We choose these action sets to reflect typical user actions that
are available across all three applications. Each action is im-
plemented as an application-specific sequence of Selenium
commands that interact with the text editor. For example,
for Google Docs, the Type “a” action sends a series of keys
to the hidden iframe element in the page that Google Docs
uses to handle keyboard input. For Firepad, there is a hidden
textarea that accepts text input. We also tried a larger set

8 https://drive.googleblog.com/2010/09/whats-different-about-new-
google-docs 22.html,
https://firepad.io/,
http://webodf.org/about/features.html

https://github.com/marinabilles/simian
https://github.com/marinabilles/simian
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs_22.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs_22.html
https://firepad.io/
http://webodf.org/about/features.html

Application Interaction Screenshots Description

Client 1 Client 2

ownCloud
Set font Verdana

Type “a” Type “b”
Client 1 sees character “b” formatted in Ver-
dana, Client 2 in the default font.

Firepad

Type “a”

Toggle bold

Type “a” Toggle bold

Client 1 has a shadowed highlight on the first
“a” character, a marker that another client has
currently selected this text. Client 1 still sees
that Client 2 has selected text, while this is no
longer the case.

Google Docs

Type “a”

Toggle bold

Type “a” Press Space

Pressing space capitalizes the first “a”. The
text fragments are swapped: the second “a”
gets incorrectly inserted before the capitalized
“A”. Both clients see an incorrect state. Addi-
tionally, the font weight of “a” is inconsistent.

Google Docs

Set font size to 18

Type “b”

Press Tab Press Space

Pressing space auto-capitalizes the “b”, but the
concurrent action by the other client causes
the application to insert another spurious “B”
after the space. Additionally, Client 2 keeps
font size 18 for the space character, whereas
on Client 1 resets it to the default.

Table 1: Examples of inconsistencies detected by Simian.

of 15 actions, but each experiment with it exceeded our time
budget of 24 hours.

Hardware Simian and the locally installed web applica-
tions are running on a 2.10 GHz 4-core machine running
Ubuntu 16.04.

5.3 Inconsistencies Detected by Simian (RQ1)
Analyzing the three benchmark applications with the Alarge

actions yields a total of 195 unique inconsistencies: 37 in
Google Docs, 32 in Firepad, and 126 in ownCloud Docu-
ments. Unique here means that each inconsistency is trig-
gered by a different multi-client interaction. Because we are
not familiar with the implementations of the benchmark ap-
plications and have only partial access to them, we can only
speculate about the number of unique root causes that trig-
ger these inconsistencies. We observe that the inconsisten-
cies represent a diverse set of problems, some of which we
present next.

5.3.1 Representative Examples
Table 1 presents examples of the detected inconsistencies.9

The ownCloud example as well as the motivating example
for Google Docs in Figure 1 are inconsistencies where dif-
ferent clients see differently formatted variants of the same
characters in the document. The Firepad example in Table 1

9 Some screenshots have been modified to remove whitespace.

is an inconsistency where editing state that should be shared
across clients is not correctly displayed. The two Google
Docs examples in Table 1 are inconsistencies that lead to
an erroneous state with problems beyond differently shown
text and different editing state. These examples are particu-
larly interesting because they demonstrate that inconsistent
visible client states, as identified by Simian, sometimes indi-
cate an even more severe problem. In both cases, both clients
show an incorrect state due to incorrectly ordered or extra
characters, and additionally there is a formatting inconsis-
tency between the two clients, which allows Simian to report
the interaction in the first place.

Overall, we find that the inconsistencies found by Simian
cover a diverse set of problems across all three applications.
Given our setup, the analysis identifies inconsistencies that
involve only a few characters. Many of them can also be
easily reproduced with larger text fragments.

5.3.2 Influence of Non-Determinism
To better understand to what extent the detected inconsis-
tencies are due to non-deterministic behavior, we conduct
two experiments. First, we re-execute ten times each multi-
client interaction that has revealed an inconsistency and re-
port how often it reveals the inconsistency again. Figure 4
presents the results. The number of multi-client interactions
that reproduce the inconsistency in ten out of ten executions
is shown in the right-most column. For example for Google

Application |R1| |R2| |R1 ∩R2| |R2\R1|
Google Docs 37 32 20 12
Firepad 32 42 24 18
ownCloud 126 127 125 2

Table 2: Comparison of inconsistencies detected by two runs
of Simian. Ri refers to the set of inconsistency reports for
run i.

Docs (Figure 4a), 11 of the total of 37 inconsistencies are
reproduced in all ten re-executions. For Google Docs and
Firepad, the majority of inconsistencies occur only in some
executions, and ownCloud also has a non-negligible number
of such inconsistencies.

Second, we re-execute all multi-client interactions con-
sidered in Phase 2 of the approach, i.e., independent of
whether an interaction has revealed an inconsistency in our
initial experiment. Then, we compare the setR1 of reported
inconsistencies of the first run with the set R2 of reports of
the second run. Table 2 summarizes the results. We find that,
for Google Docs and Firepad, there is a considerable overlap
between the two runs, yet the second run reveals a notewor-
thy number of additional inconsistencies. For ownCloud, we
see little difference between the two runs, with most of the
inconsistencies reproducing.

We conclude that many inconsistencies are caused by
specific interleavings of the low-level events triggered by
concurrent actions. These results motivate future work on
exploring the interleavings of multi-client interactions in the
context of collaborative web applications. Despite this limi-
tation, our current approach has the significant advantage of
being light-weight, not requiring instrumentation of applica-
tion code or modifications of the low-level runtime system,
and yet it is capable of effectively exposing bugs.

5.4 Influence of Actions and Exploration Depth (RQ2)
We run a series of experiments to examine the effect of the
size |A| of the action set and the depth bound k. The exper-
iments use the two action sets Asmall and Alarge (Figure 3)
with bound k = 3. Furthermore, for Alarge , we additionally
test k = 1 and k = 2.

Table 3 presents our results. The “Phase 1” block of
the table shows for each experiment how many sequences
of actions Simian explores during the first phase and how
long it takes. Furthermore, we show the total number of
source states to explore and how many equivalence classes
of source states Simian identifies. The first column of the
“# Pot. conflicts” block shows how many potential conflicts
the approach detects (taking source state equivalence into
account), which is equal to the number of multi-client in-
teractions we execute. Finally, the “Phase 2” block of the
table indicates how long exploring these potential conflicts

takes (column “Simian”) and how many inconsistencies the
approach finds.

Figures 5a and 5b visualize the main results from these
experiments. The figures compare the total analysis time
and the number of detected inconsistencies per application
across the experiments. For Alarge , k = 1, the execution
time is insignificant but the analysis also is not very effec-
tive, only reporting a single inconsistency. ForAsmall , k = 3
and Alarge , k = 2, the execution time is around one hour
for Google Docs and ownCloud, and about 15 minutes for
Firepad. Yet, the number of inconsistencies is still relatively
small, ranging from 0 (Google Docs, Alarge , k = 2) to 19
(ownCloud, Asmall , k = 3). The Alarge , k = 3 setup shows
the potential of our approach because the number of detected
inconsistencies increases significantly. As expected, the exe-
cution time also increases, with Google Docs taking over 15
hours and Firepad being the fastest with 4:22h.

In the Alarge , k = 3 setup, Simian finds an inconsistency
every 8:43 minutes, on average (24:29 minutes in Google
Docs, 8:11 minutes in Firepad, 4:13 minutes in ownCloud).
Given that the approach is a fully automated tool, we con-
sider this time to be acceptable.

5.5 Comparison with Naive Exhaustive Exploration
(RQ3)

Finally, we compare Simian to a naive approach that exhaus-
tively explores all multi-client interactions, i.e., without first
identifying potential conflicts. The “Naive” columns in Ta-
ble 3 show the number of conflicts that such an approach
considers and how long exploring all them would take. The
times are estimated based on the average time taken to ex-
ecute a multi-client interaction for the specific application.
We find that, compared to the naive approach, Simian re-
duces the number of potential conflicts to explore by 92%,
on average. As a result, the overall execution time of Simian
reduces the execution time that the naive approach would
take by 89%, i.e., Simian is 10x faster. We conclude that the
two-phase approach taken in this work is worthwhile and
key to scaling the systematic exploration of interactions to
real-world applications.

6. Related Work
Simian relates to research on UI-level testing, concurrency
bugs, and collaborative web applications, which we discuss
in the following.

UI-level testing Various approaches for automatically test-
ing applications at the UI-level have been proposed. To steer
the testing toward potential problems, some approaches use
feedback from executions, e.g., on coverage [3] or the per-
formance of event handlers [32]. Other directions include
to learn a finite state model of the application [9, 23, 25],
to exploit informal specifications [43], to repeat typical user
actions [6, 14], or to steer toward particular statements via
symbolic execution [19]. None of these approaches analyzes

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x10x
0

5

10

15

reproduced (out of 10)

#
in

te
ra

ct
io

ns

(a) Google Docs

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x10x
0

5

10

15

reproduced (out of 10)

#
in

te
ra

ct
io

ns

(b) Firepad

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x10x
0

50

100

reproduced (out of 10)

#
in

te
ra

ct
io

ns

(c) ownCloud

Figure 4: Reproducibility of inconsistencies across ten executions of synthesized multi-client interactions.

Application A k Phase 1 # Pot. conflicts Phase 2

Sequences Time Source states Simian Naive Time (hh:mm)
Reported
inconsis-

tencies
(hh:mm) All Equiv.

classes
Simian Naive

(est.)

Google Docs

Asmall 3 125 00:30 31 7 46 310 00:34 04:55 4
Alarge 1 10 00:02 1 1 1 45 < 00:01 00:43 0
Alarge 2 100 00:20 11 3 73 495 00:55 07:52 0
Alarge 3 1000 04:01 111 23 698 4995 11:05 79:19 37

Firepad

Asmall 3 125 00:13 31 5 6 310 00:04 03:48 1
Alarge 1 10 < 00:01 1 1 1 45 < 00:01 00:33 0
Alarge 2 100 00:09 11 3 21 495 00:12 06:04 5
Alarge 3 1000 02:02 111 19 190 4995 02:20 61:13 32

ownCloud

Asmall 3 125 00:25 31 14 42 310 00:46 07:04 19
Alarge 1 10 00:02 1 1 2 45 00:02 01:02 1
Alarge 2 100 00:17 11 7 52 495 00:49 11:17 15
Alarge 3 1000 03:30 111 34 250 4995 05:21 113:49 126

Table 3: Summary of results for different action sets and varying k.

multiple concurrent clients of an application, which is the
focus of our work.

Races in event-based programs Event-based programs,
such as web applications and other UI applications, suffer
from data races that result from the non-deterministic ex-
ecution order of event handlers. Recent work detects such
races in web applications [29, 33] and Android applica-
tions [18, 22]. Other approaches filter potential harmful
races by analyzing their effects on persistent state [27] and
on the DOM [20]. All of these approaches target races that
occur within a single client or a single application, whereas
Simian addresses concurrency bugs that results from the in-
teraction of multiple clients.

Generation of concurrent tests Several techniques test the
correctness and performance of thread-safe classes by gen-
erating multi-threaded tests that exercise the methods of a

shared instance. A random-based approach [30], a coverage-
based approach [10], and several more heavyweight tech-
niques that steer the generation toward data races [36], atom-
icity violations [35], deadlocks [34], crashing behavior [37],
or particular interleavings [42] have been proposed. Simian
and several of these approaches [34–37] share the idea to
learn from sequential executions which concurrent interac-
tions to explore. Our work differs from these approaches
by analyzing at the application-level, where multiple clients
interact, instead of the class-level, where multiple method
calls interact. Complementary to generating concurrent tests,
there is work on creating multi-threaded performance re-
gression tests [31], which is orthogonal to the problem ad-
dressed here.

Concurrency bug detection Beyond test generation-based
approaches, various other techniques for detecting concur-
rency bugs exist, such as dynamic analyses to detect data

Asmall ,
k = 3

Alarge ,
k = 3

Alarge ,
k = 1

Alarge ,
k = 2

0

200

400

600

800

tim
e

(m
in

)

Google Docs
Firepad
ownCloud

(a) Time to analyze application.

Asmall ,
k = 3

Alarge ,
k = 3

Alarge ,
k = 1

Alarge ,
k = 2

0

50

100

in
co

ns
is

te
nc

y
re

po
rt

s

Google Docs
Firepad
ownCloud

(b) Inconsistencies found.

Figure 5: Comparison of different action sets and exploration
bounds.

races [5, 12, 24] and atomicity violations [2, 15, 40], static
analyses [17, 28, 47], and profilers to detect synchronization-
related performance bottlenecks [48]. In contrast to these ap-
proaches, Simian is a black-box analysis that does not re-
quire low-level reasoning about the application code.

Schedule exploration To explore the different schedules
of a concurrent program, several techniques have been pro-
posed, e.g., software model checking [44], possibly opti-
mized by dynamic partial order reduction [16, 46], random
partial order sampling [38], preemption bounding [26], and
other techniques to prioritize particular schedules [8, 11, 39,
41]. A prerequisite for schedule exploration is to have suit-
able inputs for the program, which is what Simian generates.
Our work can be combined with existing schedule explo-
ration techniques and may encourage future work to con-
sider the problem in the context of collaborative web appli-
cations.

Collaborative web applications Several protocols for con-
currency control of collaborative web applications have

been proposed [4], e.g., based on operational transforma-
tions [13]. In practice, the problem of correctly implement-
ing concurrency control for collaborative web applications
remains challenging, as evidenced by the large amount of
problems detected by Simian.

Eventual consistency Concurrency control protocols typi-
cally aim for eventual consistency [45], i.e., that eventually
all clients converge to the same state. Although eventual con-
sistency is a liveness property, the correctness condition we
consider, expressed using operational transformations as ex-
plained in Section 3.1, is a safety property. Our analysis tech-
nique is therefore designed to search for states that fail to
converge. This approach is related to recent work on serial-
izability for data store clients [7]. That work presents a cor-
rectness criterion expressed as a notion of conflict serializ-
ability that takes eventual consistency into account, together
with a dynamic analysis that approximates the criterion as
a safety property based on specifications of commutativity
and absorption for the relevant operation. An essential dif-
ference compared to Simian is that their dynamic analysis is
not a black-box approach.

7. Conclusion
Collaborative web applications are complex software sys-
tems that are difficult to implement correctly. We have pre-
sented a novel analysis technique for detecting bugs in such
applications. By choosing a black-box analysis design that
abstracts away from the application source code and low-
level event handling, the analysis becomes relatively simple
to implement, yet highly effective at exposing bugs in widely
used systems. The key insight of our approach is that effi-
ciency can be achieved by organizing the analysis into two
phases that first learn about conflicting actions and equiva-
lent states and then synthesize multi-client interactions.

For future work, we want to apply the approach to other
multi-client web applications not from the collaborative ed-
itor domain, such as chatting software and web-based mul-
tiplayer games. It may also be interesting to combine our
approach of generating high-level multi-client interactions
with existing model checking techniques to more thoroughly
analyze the low-level non-determinism.

Acknowledgments
We thank the anonymous reviewers and our shepherd Stephen
Freund for their comments and guidance. Our research has
been supported by the DFG within ConcSys, by the BMBF
and the HMWK within CRISP, and by the European Re-
search Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation program (grant agreement
No 647544).

References
[1] C. Q. Adamsen, G. Mezzetti, and A. Møller. Systematic

execution of Android test suites in adverse conditions. In
nternational Symposium on Software Testing and Analysis
(ISSTA), pages 83–93, 2015.

[2] C. Artho, K. Havelund, and A. Biere. High-level data races.
Software Testing, Verification and Reliability, 13(4):207–227,
2003.

[3] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip. A
framework for automated testing of JavaScript web applica-
tions. In International Conference on Software Engineering
(ICSE), pages 571–580, 2011.

[4] H. Attiya, S. Burckhardt, A. Gotsman, A. Morrison, H. Yang,
and M. Zawirski. Specification and complexity of collabora-
tive text editing. In Symposium on Principles of Distributed
Computing (PODC), pages 259–268, 2016.

[5] M. D. Bond, K. E. Coons, and K. S. McKinley. PACER: pro-
portional detection of data races. In Conference on Program-
ming Language Design and Implementation (PLDI), pages
255–268, 2010.

[6] P. A. Brooks and A. M. Memon. Automated GUI testing
guided by usage profiles. In International Conference on Au-
tomated Software Engineering (ASE), pages 333–342, 2007.

[7] L. Brutschy, D. Dimitrov, P. Müller, and M. Vechev. Serial-
izability for eventual consistency: criterion, analysis, and ap-
plications. In Symposium on Principles of Programming Lan-
guages (POPL), pages 458–472, 2017.

[8] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte.
A randomized scheduler with probabilistic guarantees of
finding bugs. In Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
pages 167–178, 2010.

[9] W. Choi, G. Necula, and K. Sen. Guided GUI testing of An-
droid apps with minimal restart and approximate learning. In
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 623–640, 2013.

[10] A. Choudhary, S. Lu, and M. Pradel. Efficient detection of
thread safety violations via coverage-guided generation of
concurrent tests. In International Conference on Software
Engineering (ICSE), 2017.

[11] K. E. Coons, S. Burckhardt, and M. Musuvathi. GAMBIT: ef-
fective unit testing for concurrency libraries. In Symposium on
Principles and Practice of Parallel Programming, (PPOPP),
pages 15–24, 2010.

[12] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-
J. Boehm. IFRit: Interference-free regions for dynamic
data-race detection. In Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA),
pages 467–484, 2012.

[13] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware
systems. In International Conference on Management of Data
(MOD), pages 399–407, 1989.

[14] M. Ermuth and M. Pradel. Monkey see, monkey do: Effective
generation of GUI tests with inferred macro events. In In-
ternational Symposium on Software Testing and Analysis (IS-
STA), pages 82–93, 2016.

[15] C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity
checker for multithreaded programs. In Symposium on Prin-
ciples of Programming Languages (POPL), pages 256–267,
2004.

[16] C. Flanagan and P. Godefroid. Dynamic partial-order reduc-
tion for model checking software. In Symposium on Principles
of Programming Languages (POPL), pages 110–121, 2005.

[17] C. Flanagan and S. Qadeer. A type and effect system for
atomicity. In Conference on Programming Language Design
and Implementation (PLDI), pages 338–349, 2003.

[18] C. Hsiao, C. Pereira, J. Yu, G. Pokam, S. Narayanasamy,
P. M. Chen, Z. Kong, and J. Flinn. Race detection for event-
driven mobile applications. In Conference on Programming
Language Design and Implementation (PLDI), pages 326–
336, 2014.

[19] C. S. Jensen, M. R. Prasad, and A. Møller. Automated testing
with targeted event sequence generation. In International
Symposium on Software Testing and Analysis (ISSTA), pages
67–77, 2013.

[20] C. S. Jensen, A. Møller, V. Raychev, and M. Vechev. Stateless
model checking of event-driven applications. In Conference
on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), pages 57–73, 2015.

[21] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mis-
takes: a comprehensive study on real world concurrency bug
characteristics. In Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
pages 329–339, 2008.

[22] P. Maiya, A. Kanade, and R. Majumdar. Race detection
for Android applications. In Conference on Programming
Language Design and Implementation (PLDI), pages 316–
325, 2014.

[23] A. Marchetto, P. Tonella, and F. Ricca. State-based testing
of Ajax web applications. In International Conference on
Software Testing, Verification, and Validation (ICST), pages
121–130, 2008.

[24] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace:
effective sampling for lightweight data-race detection. In Con-
ference on Programming Language Design and Implementa-
tion (PLDI), pages 134–143, 2009.

[25] A. M. Memon. An event-flow model of GUI-based applica-
tions for testing. Software Testing, Verification and Reliability,
17(3):137–157, 2007.

[26] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing Heisenbugs in concur-
rent programs. In Symposium on Operating Systems Design
and Implementation (OSDI), pages 267–280, 2008.

[27] E. Mutlu, S. Tasiran, and B. Livshits. Detecting JavaScript
races that matter. In European Software Engineering Con-
ference and International Symposium on Foundations of Soft-
ware Engineering (ESEC/FSE), 2015.

[28] M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective static
deadlock detection. In International Conference on Software
Engineering (ICSE), pages 386–396, 2009.

[29] B. Petrov, M. Vechev, M. Sridharan, and J. Dolby. Race de-
tection for web applications. In Conference on Programming

Language Design and Implementation (PLDI), pages 251–
262, 2012.

[30] M. Pradel and T. R. Gross. Fully automatic and precise detec-
tion of thread safety violations. In Conference on Program-
ming Language Design and Implementation (PLDI), pages
521–530, 2012.

[31] M. Pradel, M. Huggler, and T. R. Gross. Performance regres-
sion testing of concurrent classes. In International Symposium
on Software Testing and Analysis (ISSTA), pages 13–25, 2014.

[32] M. Pradel, P. Schuh, G. Necula, and K. Sen. EventBreak:
Analyzing the responsiveness of user interfaces through
performance-guided test generation. In Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pages 33–47, 2014.

[33] V. Raychev, M. Vechev, and M. Sridharan. Effective race de-
tection for event-driven programs. In Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pages 151–166, 2013.

[34] M. Samak and M. K. Ramanathan. Multithreaded test synthe-
sis for deadlock detection. In Conference on Object-Oriented
Programming Systems, Languages and Applications (OOP-
SLA), pages 473–489, 2014.

[35] M. Samak and M. K. Ramanathan. Synthesizing tests for de-
tecting atomicity violations. In European Software Engineer-
ing Conference and International Symposium on Foundations
of Software Engineering (ESEC/FSE), pages 131–142, 2015.

[36] M. Samak, M. K. Ramanathan, and S. Jagannathan. Synthe-
sizing racy tests. In Conference on Programming Language
Design and Implementation (PLDI), pages 175–185, 2015.

[37] M. Samak, O. Tripp, and M. K. Ramanathan. Directed synthe-
sis of failing concurrent executions. In International Confer-
ence on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 430–446, 2016.

[38] K. Sen. Effective random testing of concurrent programs. In
International Conference on Automated Software Engineering

(ASE), pages 323–332, 2007.

[39] K. Sen. Race directed random testing of concurrent programs.
In Conference on Programming Language Design and Imple-
mentation (PLDI), pages 11–21, 2008.

[40] O. Shacham, N. Bronson, A. Aiken, M. Sagiv, M. Vechev,
and E. Yahav. Testing atomicity of composed concurrent
operations. In Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pages 51–
64, 2011.

[41] S. Tasharofi, M. Pradel, Y. Lin, and R. Johnson. Bita:
Coverage-guided, automatic testing of actor programs. In
Conference on Automated Software Engineering (ASE), 2013.

[42] V. Terragni and S.-C. Cheung. Coverage-driven test code
generation for concurrent classes. In International Conference
on Software Engineernig (ICSE), pages 1121–1132, 2016.

[43] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and
S. Chandra. Guided test generation for web applications.
In International Conference on Software Engineering (ICSE),
pages 162–171, 2013.

[44] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda.
Model checking programs. International Conference on Au-
tomated Software Engineering (ASE), pages 203–232, 2003.

[45] W. Vogels. Eventually consistent. Communications of the
ACM, 52(1):40–44, 2009.

[46] C. Wang, M. Said, and A. Gupta. Coverage guided systematic
concurrency testing. In International Conference on Software
Engineering (ICSE), pages 221–230, 2011.

[47] A. Williams, W. Thies, and M. D. Ernst. Static deadlock de-
tection for Java libraries. In European Conference on Object-
Oriented Programming (ECOOP), pages 602–629, 2005.

[48] T. Yu and M. Pradel. Syncprof: Detecting, localizing, and op-
timizing synchronization bottlenecks. In International Sym-
posium on Software Testing and Analysis (ISSTA), pages 389–
400, 2016.

	Introduction
	Overview and Example
	Approach
	Correctness of Collaborative Editors
	Problem Statement and Challenges
	Overview of Simian
	Phase 1: Systematic Sequential Exploration
	Phase 2: Conflict-Guided Concurrent Exploration
	Reasoning about Actions and States
	Identifying Equivalent States
	Identifying Conflicting Actions
	Identifying Inconsistent States

	Implementation
	Evaluation
	Research Questions
	Experimental Setup
	Inconsistencies Detected by Simian (RQ1)
	Representative Examples
	Influence of Non-Determinism

	Influence of Actions and Exploration Depth (RQ2)
	Comparison with Naive Exhaustive Exploration (RQ3)

	Related Work
	Conclusion

