
Scalability-First Pointer Analysis with
Self-Tuning Context-Sensitivity

Yue Li, Tian Tan, Anders Møller
Aarhus University, Denmark

{yueli,tiantan,amoeller}@cs.au.dk

Yannis Smaragdakis
University of Athens, Greece

smaragd@di.uoa.gr

ABSTRACT
Context-sensitivity is important in pointer analysis to ensure high
precision, but existing techniques suffer from unpredictable scala-
bility. Many variants of context-sensitivity exist, and it is difficult
to choose one that leads to reasonable analysis time and obtains
high precision, without running the analysis multiple times.

We present the Scaler framework that addresses this problem.
Scaler efficiently estimates the amount of points-to information
that would be needed to analyze eachmethodwith different variants
of context-sensitivity. It then selects an appropriate variant for
each method so that the total amount of points-to information is
bounded, while utilizing the available space to maximize precision.

Our experimental results demonstrate that Scaler achieves pre-
dictable scalability for all the evaluated programs (e.g., speedups
can reach 10x for 2-object-sensitivity), while providing a precision
that matches or even exceeds that of the best alternative techniques.

CCS CONCEPTS
• Theory of computation→ Program analysis;

KEYWORDS
static analysis, points-to analysis, Java
ACM Reference Format:
Yue Li, Tian Tan, Anders Møller and Yannis Smaragdakis. 2018. Scalability-
First Pointer Analysis with, Self-Tuning Context-Sensitivity. In Proceedings
of the 26th ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE ’18), November
4–9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3236024.3236041

1 INTRODUCTION
Pointer analysis is a family of static analysis techniques that provide
a foundation for many other analyses and software engineering
tasks, such as program slicing [36, 39], reflection analysis [19, 31],
bug detection [13, 26], security analysis [1, 23], program verifica-
tion [8, 27], and program debugging and comprehension [5, 21].
The goal of pointer analysis is to statically compute a set of objects
(abstracted as their allocation sites) that a program variable may
point to during run time. Although stating this goal is simple, it is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236041

2
8
5

2
4
5
8

5
3 9
3

5
3
7
4

9
5

9
6
0

2
8
9

2
9
5
0

4
5 5
4

1
2
0
3

2
2
8

4
8 1
3
5

4
9 1
1
7

1
1
2

2
2

2
2 6
7

9
9
4

0

1000

2000

3000

4000

5000

6000

2obj 2type CI
timeout (>10800)

Figure 1: Comparison of running time (seconds) of 2-object
sensitivity, 2-type sensitivity, and context-insensitive analy-
ses. The y-axis is truncated to 7000 seconds for readability,
and all truncated cases reach the time budget, 10800 seconds.

challenging to produce precise analysis results without sacrificing
scalability [12, 30, 35]. Thus, for decades, researchers have contin-
ued to develop sophisticated pointer analysis techniques [2, 14–
16, 18, 22, 24, 25, 32, 33, 37, 38].

One of the key mechanisms for achieving high analysis precision
is context sensitivity, which allows each program method to be
analyzed differently according to the context it is used in [17].
Context sensitivity has different variants, depending on the kind of
context information used. For Java programs, object-sensitivity [25]
and type-sensitivity [32] have proven to be quite effective. The
former is strictly more precise but less efficient than the latter [15,
37]. However, with any available variant, although the analysis can
gain in precision, scalability is known to be unpredictable [33, 38],
in the sense that programs very similar in size and other complexity
metrics may have completely different scalability profiles.

Figure 1 shows time spent analyzing 10 real-world Java pro-
grams1 under 2-object-sensitivity (2obj) [25], which is among
the most precise variants of context sensitivity, 2-type-sensitivity
(2type) [32], and context-insensitivity (CI). We observe that

• 2obj is not scalable for 6 out of 10 programs within 3 hours,
while it can finish running for 3 programs within 5 minutes;

• program size is far from a reliable predictor—for example, jython
(12 718 methods) is smaller than briss (26 582 methods), how-
ever, 2type is not scalable for the former but scalable for the
latter;

1These are all popular open-source applications, including the heaviest (jython and
eclipse) of the DaCapo benchmarks [3].

https://doi.org/10.1145/3236024.3236041
https://doi.org/10.1145/3236024.3236041

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yue Li, Tian Tan, Anders Møller and Yannis Smaragdakis

• context insensitivity exhibits very good and stable scalability
for all programs (but it is much less precise).

Scalability of context-sensitivity is not only unpredictable, but also
tends to be bimodal [32]: when analyzing a given program with
existing context-sensitivity techniques, usually the analysis either
terminates relatively quickly (we say that the analysis is scalable
in this case), or it blows up and does not terminate even with very
high time limits.

Consider a scenario where the task is to analyze a set of pro-
grams within a given time budget, for example as part of a large-
scale security analysis. Should one pick a precise context-sensitive
pointer analysis and take the risk that it may not scale for sev-
eral programs, or pick a scalable, context-insensitive, analysis that
sacrifices precision for all programs? One answer is introspective
analysis [33], which tunes context sensitivity according to the re-
sults of a first-pass, context-insensitive analysis. However, that
approach is, as the authors put it, an “if all else fails” analysis that
should only be used if traditional context-sensitive algorithms fail.
Thus, computing resources are wasted, because one has to wait
until the context-sensitive analysis reaches a timeout, before the
introspective analysis is run as a fallback.

In this paper, we present a pointer analysis framework named
Scaler that has the following desirable properties.

(i) Users only have to apply Scaler once for each program, without
a need to experiment with different variants of context sensitiv-
ity.

(ii) Scaler prioritizes scalability. Given a reasonable time budget,
Scaler can be expected to finish analyzing any given program
P within the budget. More specifically, if a context-insensitive
pointer analysis is scalable for P , users can confidently expect
that Scaler will also scale for P .

(iii) Scaler is able to achieve precision comparable to, or better
than that of the most precise context-sensitivity variant that is
scalable for P . That is, the user does not need to manually pick a
context-sensitivity variant a priori, but can expect to effectively
match the best option that one could have picked, on a single
analysis run. Experimentally, this precision is much greater than
prior introspective analyses [33].

The key insight of Scaler is that the size of context-sensitive
points-to information (or, equivalently, the total memory consumed)
is the critical factor that determines whether analysis of a given pro-
gram using a particular context-sensitivity variant is scalable or not,
and that it is possible to estimate the size of context-sensitive points-
to information produced by different kinds of context sensitivity
without conducting the context-sensitive analysis. This estimate
can be computed using a cheap, context-insensitive pre-analysis,
by leveraging the notion of object allocation graphs [37].

Scaler is parameterized by a number called the total scalability
threshold (TST), which can be selected based on the available mem-
ory. For a given TST, Scaler automatically adapts different kinds of
context sensitivity (e.g., object-sensitivity, type-sensitivity) and con-
text insensitivity, at the level of individual methods in the program,
to stay within the desired bound and thereby retain scalability,
while utilizing the available space to maximize precision.

In summary, this paper makes the following contributions:

• We propose the Scaler pointer analysis framework that, given
a total scalability threshold, automatically selects an appropriate
variant of context sensitivity for each method in the program
being analyzed (Section 3). The approach relies on the concept
of scalability-critical methods that helps explain why context-
sensitive pointer analysis is sometimes unscalable.

• We present a novel technique to efficiently estimate the amount
of points-to information that would be needed to analyze each
method with different variants of context sensitivity, using ob-
ject allocation graphs (Section 4).

• We describe our open-source implementation (Section 5).
• We conduct extensive experiments by comparing Scaler with
state-of-the-art pointer analyses (Section 6). The evaluation
demonstrates that Scaler achieves predictable scalability for all
the evaluated programs in one shot, while providing a precision
that matches or even exceeds that of the best alternatives. As
an example, the jython benchmark from DaCapo is known to
cause problems for context-sensitive pointer analysis [15, 38]:
1type is the most precise conventional pointer analysis that is
scalable for jython, taking around 33 minutes on an ordinary
PC, while 2obj and 2type do not complete within 3 hours. In
comparison, Scaler achieves significantly better precision than
both 1type and the state-of-the-art introspective analysis [33]
and takes under 8 minutes.

2 BACKGROUND
Pointer analysis typically consists of computing the points-to sets
of variables in the program text.2 Points-to sets form a relation
between variables and abstract objects, i.e., a subset of

Var × Obj

with Var being the set of program variables and Obj the set of
abstract objects. Abstract objects are typically represented as al-
location sites, i.e., instructions that allocate objects (e.g., new in
Java) [6]. An allocation site stands for all the run-time objects it can
possibly allocate. This representation by nature loses significant
precision. A program variable corresponds to many run-time incar-
nations during program execution—not just for executions under
different inputs but also for different instances of local variables
during distinct activations of the same method.

To combat the loss of precision, context-sensitive pointer anal-
ysis enhances the computed relations to maintain a more precise
abstraction of variables and objects [30, 35]. Variables get quali-
fied with contexts, to distinguish their different incarnations. The
analysis effectively computes a subset of

Ctx × Var × Obj

where Ctx is a set of contexts for variables.3 This precision is valu-
able for intermediate analysis computations, even though the final
analysis results get collapsed in the easily-understandable Var×Obj
relation: distinguishing the behavior of a much-used variable or
2A second formulation is that of alias analysis, which computes the pairs of variables
or expressions that can be aliased. For most published algorithms, computing points-to
sets and computing alias sets are equivalent problems: one can be mapped to the other
without affecting the algorithm’s fundamental precision or scalability.
3For simplicity of exposition, we ignore context sensitivity for abstract objects (a.k.a.,
heap cloning) which also qualifies Obj with a set of heap contexts, HCtx, in much the
same way as qualifying variables.

Scalability-First Pointer Analysis with Self-Tuning Context-Sensitivity ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

object (e.g., in a library method) according to the context in which
it is used helps the precision at all use sites of the common code.

Two observations on context sensitivity will be important in
our subsequent discussion. First, contexts qualify variables but are
generally chosen per method. The main use of context sensitivity
is to distinguish different activations of the same method (e.g.,
“stack frames” for the same procedure, in traditional stack-based
languages), which create fresh instances of all local variables at run
time. Therefore, all local variables of the same method have the
same set of contexts.

Second, the worst-case complexity of a context-sensitive pointer
analysis is much higher than that of a context-insensitive one: the
number of computed points-to facts, and hence the complexity of
the analysis, increases in the worst case multiplicatively by the
size of the set Ctx. However, in the common case, the precision of
context sensitivity often compensates, reducing the analysis com-
plexity: different contexts divide the points-to sets of variables into
non-overlapping subsets. In the ideal case, if a context-insensitive
analysis computes a points-to relation pt ⊆ Var × Obj, a context-
sensitive analysis would compute a relation pt ′ ⊆ Ctx × Var × Obj
that is not greater in cardinality than Var ×Obj. The extra precision
of the Ctx information would be enough to split the original points-
to sets into disjoint subsets. This observation also hints at why
context sensitivity has unpredictable scalability: When it works
well to maintain precision, its cost is modest to none. When it fails
to do so, however, the cost is orders-of-magnitude higher.

The actual definitions of the set Ctx can vary widely. Three
main categories are call-site sensitivity, object sensitivity, and type
sensitivity:

• Call-site sensitivity has Ctx be a sequence of call sites, i.e.,
instructions that call themethod inwhich the qualified variable
has been declared.

• Object sensitivity hasCtx be a sequence of abstract objects: they
are the receiver object of the method containing the qualified
variable, the receiver object of the method that allocated the
previous receiver object, etc.

• Type sensitivity keeps the same information as object sensitiv-
ity, but objects used as contexts are collapsed not per allocation
instruction but per class that contains it.

We refer the reader to surveys that discuss the options in full de-
tail [30, 35].

3 THE SCALER FRAMEWORK
In this section, we present an overview of the Scaler approach.
We first describe the idea of scalability thresholds, which is the
key to predictable scalability (Section 3.1). Next, we explain how
Scaler automatically chooses a suitable scalability threshold for
each program, based on a single parameter called the total scalability
threshold that depends only on the available space for storing points-
to information (Section 3.2). These ideas are then collected in the
overall Scaler framework (Section 3.3).

3.1 Scalability Thresholds
We begin by introducing the concept of scalability-critical meth-
ods (Section 3.1.1), and we then leverage this concept to address
unscalability (Section 3.1.2).

3.1.1 Scalability-Critical Methods. The scalability of a context-
sensitive pointer analysis is closely linked to the amount of points-to
information it produces, i.e., the size of relation pt ′ ⊆ Ctx×Var×Obj.
The challenge that Scaler addresses is to closely upper bound the
size of pt ′ without performing a context-sensitive analysis, given
only the result, pt ⊆ Var × Obj, of a context-insensitive analysis.
Prior approaches have made similar attempts to obtain scalability,
but without a concrete model to predict scalability effectively, as
explained in Section 7.

By then distinguishingwhich parts of the program can contribute
disproportionately to the total size of pt ′, Scaler can adjust its
context sensitivity at different methods, to yield higher precision
only when this does not endanger scalability.

To achieve this, we introduce the concept of scalability-critical
methods. These are methods that are likely to yield very large
amounts of context-sensitive points-to information. Whether a
method is scalability-critical depends on the context sensitivity in
question. For example, a method may be scalability-critical under
2obj (a 2-object-sensitive analysis) but not under 2type (a 2-type-
sensitive analysis).

Definition 3.1 (Scalability-Critical Methods). A method m is
scalability-critical (or, for brevity, just critical) under context sensi-
tivity c , if the value of the product #ctxcm ·#ptsm exceeds a given
scalability threshold STp , where

• #ctxcm is an estimate of the number of contexts form if using
context-sensitivity variant c , computed using a fast context-
insensitive analysis,

• #ptsm is the sum of the sizes of the points-to sets for all local
variables inm, computed using the same context-insensitive
analysis, and

• STp is a value that can be given by users (Section 3.1.2) or
computed automatically (Section 3.2) for program p.

That is, we upper-bound the potential contribution of a method
to the context-sensitive points-to set (pt ′ ⊆ Ctx×Var×Obj) by com-
puting the number of potential combinations of possible abstract
objects (i.e., a subset of Obj) and contexts (i.e., a subset of Ctx) that
may pertain to the method. The individual numbers are guaranteed
to be upper bounds, since they are computed by a less precise (and,
thus, conservatively over-approximate) context-insensitive analy-
sis. Accordingly, their product is guaranteed to be an upper bound
of the number of potential combinations.

The intuition behind Definition 3.1 is that a methodm may cause
scalability problems for different reasons: (1)m is being analyzed in
too many contexts, (2) too much points-to information is computed
withinm, or (3) although the individual numbers of contexts and
points-to facts form are not very large, their product is. For this
reason, the product of the estimates #ctxcm and #ptsm gives an
indication of potential scalability problems.

It makes sense to perform this reasoning at the method level,
since (as discussed in Section 2) decisions on context sensitivity are
made per-method, i.e., for all local variables of a method together.

The number #ptsm can be obtained directly from the context-
insensitive points-to relation: #ptsm =

∑
v ∈m |pt(v, _)|. Comput-

ing #ctxcm is less straightforward. This is one of the technical
novelties of the approach, and we postpone its discussion until
Section 4.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yue Li, Tian Tan, Anders Møller and Yannis Smaragdakis

2obj2type

0

10 000
ST

method 10 000method 20001 method 4000method
1type

2type
1type

2obj1 000 000

100 000

p

#ctx cm·#pts m c =
c =
c =

Figure 2: Choosing a context-sensitivity strategy c for the
methods of program p based on a scalability threshold, STp .

3.1.2 Choosing Context Sensitivity Strategies. Given a scalability
threshold STp , Scaler classifies eachmethodm as scalability-critical
or not, relative to a context sensitivity variant. It then ensures scal-
ability for critical methods by selecting a cheaper (less precise)
context sensitivity variant for them. As a result, different methods
will be analyzed with different context sensitivity variants.

Assume there is a set of context sensitivity variants
C = { c1, c2, ..., cn }

where ci is typically more precise (but less efficient) than ci−1. For
example, this set could be C = {1type, 2type, 2obj}.

Figure 2 illustrates (imaginary) distributions of #ctxcm ·#ptsm
values (log-scale y-axis) for a 10 000-method program, with each
methodm (x-axis) ranked by decreasing value of #ctxcm ·#ptsm ,
under different context sensitivity variants c ∈ C. Assume a suitable
STp value has been chosen (we explain in Section 3.2 how this can
be done). According to Definition 3.1, the first 4 000 methods are
scalability-critical under 2obj, and the first 2 000 are scalability-
critical also under 2type. All 10 000 methods are non-scalability-
critical under 1type.

For each method m, Scaler selects the most precise context-
sensitivity variant ci ∈ C for which m is not scalability-critical,
and context-insensitivity (CI) if none exists. That is, methodm is
analyzed with context-sensitivity SelectCtx(m, STp):

SelectCtx(m, STp) =

cn ifm is non-critical under cn for STp
ck if ∃ck : m is non-critical under ck

∧m is critical under ck+1 for STp
CI otherwise

For example, in Figure 2, methods 1 to 1 999 will be analyzed
using 1type, methods 2 000 to 3 999 using 2type, and methods 4 000
to 10 000 using 2obj.

The remaining issue, which we address in the following section,
is how to choose an appropriate scalability threshold for a given
program to be analyzed.

3.2 Total Scalability Thresholds
As discussed earlier, the overall cost of a context-sensitive pointer
analysis is closely linked to the size of the points-to relation being
computed. An analysis that fails to terminate within realistic time
limits often does so because the space needed to represent the

TSTTST is Memory-
Related

ctx1, p1 obj1
ctx2, p2 obj4
ctx3, p3 obj9

ctx , p objk m n

… …
… …
… …
… …

Program 1

Program 2
#ctx cm·#pts mΣm

#ctx cm·#pts mΣm

#ctx cm·#pts mΣm

Figure 3: Context-sensitive points-to information and TST.

points-to relation exhausts the available RAM. The scalability of
pointer analysis is therefore related to the features of the analysis
environment, most importantly the memory size.

We now show how Scaler determines a scalability threshold for
a given program, based on the concept of a total scalability threshold
that represents the analysis capacity and can be selected based on,
for example, the available memory, independently of the program
being analyzed.

Definition 3.2 (Total Scalability Threshold). A total scalability
threshold (TST) is a number that satisfies the inequality E(STp) ≤
TST where E(STp) is the estimated cost for the given value of STp ,
computed as the sum of the sizes of the points-to relations (cf. Defi-
nition 3.1) for all the methods in the program:

E(STp) =
∑
m #ctxSelectCtx(m,STp)

m · #ptsm

Figure 3 illustrates the concept. The complexity of a pointer
analysis (running on a given program) is closely related to the size
of the points-to information, which is upper-bounded by E(STp).
The TST of the environment can be seen as analogous to the volume
of a container. The volume of the points-to information computed
by the analysis has to fit in the TST volume for the analysis to
scale, i.e., E(STp) ≤ TST. This effectively normalizes the analysis
capacity for all programs, regardless of the number of methods they
contain, or the variants of context sensitivity employed. We discuss
in Section 6 the actual TST values used in our experiments.

Importantly, in the TST inequality, #ctxSelectCtx(m,STp)
m depends

on the choice of context sensitivity, which can vary based on the
approach described in Section 3.1. The self tuning approach of
Scaler consists of computing, given the TST, an appropriate value
of STp for a program p that will be used to assign appropriate
context-sensitivity variants to p’s methods.

To maximize precision while ensuring scalability, Scaler needs
to pick the largest STp that satisfies the TST inequality. In this way,
as many methods as possible are analyzed with the most precise
context sensitivity that the total analysis capacity can afford. That
is, Scaler needs to pick max{STp | E(STp) ≤ TST}.

Figure 4 illustrates the mechanism using the distribution of Fig-
ure 2. This time, STp is not given by the user in advance. Instead,
its value is computed to satisfy the inequality shown in Figure 4.
For a candidate STp value, each method is classified as detailed in
Section 3.1.2: it is assigned the most precise context sensitivity that
keeps it from being scalability-critical.

In the case of Figure 4, the value of E(STp) for this program
corresponds to the sum of the areas of A1, A2, and A3. If A1 + A2
+ A3 under the candidate STp is below TST, then STp is viable, but

Scalability-First Pointer Analysis with Self-Tuning Context-Sensitivity ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

method

A1 A2 A3

A1 + A2 + A3 ≤ TST

 is automatically computed
based on the above inequality

method 10 00020001 method 4000method
0

10 000

1 000 000

100 000

STp

#ctx cm·#pts m

pST

2type
1type

2objc =
c =
c =

E

E

E

1

=()STp

Figure 4: Selecting the scalability threshold (STp) based on
the total scalability threshold (TST).

higher STp values may also be viable. The maximum such STp
is computed using binary search in a range between 0 and the
maximum value of #ctxSelectCtx(m,STp)

m · #ptsm for allm.

3.3 Overall Approach
Figure 5 shows the overall structure of the Scaler framework.
Scaler is a stand-alone system that automatically selects a per-
method context-sensitivity variant that can subsequently be used
to configure an existing pointer analysis tool like Doop,Wala, or
Chord.

Given a program p, a fast (but imprecise) context-insensitive
pointer analysis is run first to produce some basic points-to infor-
mation that is used for estimating #ptsm (Section 3.1.1) and #ctxcm
(Section 4). The core of Scaler consists of one component that
decides the scalability threshold based on a given total scalability
threshold (Section 3.2) and another component that chooses context
sensitivity strategies for all methods in the program (Section 3.1.2).

The framework relies on the collection C of context-sensitivity
variants. All that is needed for each variant is a mechanism for
estimating the number of contexts, as presented in Section 4 for
object-sensitivity and type-sensitivity.

4 ESTIMATING THE NUMBER OF CONTEXTS
In Section 3.1 we postponed the discussion of how to compute an
upper bound on the number of contexts (#ctxcm), for a given variant
of context sensitivity c , using only context-insensitive analysis
results. This computation is one of the key elements of Scaler and
distinguishes it from prior approaches that have also tried to adapt
context sensitivity on a per-method basis [14, 33, 41].

The computation of the possible contexts for the context-sensitive
analysis of a method, from only context-insensitive analysis results,
is relatively easy for simple variants of context sensitivity, such as
call-site sensitivity [28]: the possible contexts are call sites, readily
identifiable in the program code. This computation is nontrivial
for object- and type-sensitivity[24, 32], however: the contexts of a
method are abstract objects, determined by the analysis mechanism.
We are not aware of any prior work that performs a similar com-
putation of possible contexts for object-sensitive or type-sensitive
analyses, without running the analyses themselves.

Scaler performs this computation by leveraging the object al-
location graph (OAG) structure proposed by Tan et al. [37]. With
the OAG, the context computation problem can be formulated as
a graph traversal problem. For any program, based on an OAG
derived from pre-analysis (context-insensitive pointer analysis),
Scaler computes the number of contexts (#ctxcm) of every method
for each kind of context sensitivity c used (2obj, 2type and 1type
in our setup) by enumerating all contexts of the method.4

The OAG of a program is a directed graph. A node of the OAG
represents an abstract object, which is identified by its allocation
site in the program. An edge of the OAG, say o1 → o2, represents
an object-allocation relation between o1 and o2, i.e., o1 is a receiver
object of the method that contains the allocation site of o2. Scaler
leverages the pre-analysis to build the OAG for the given program.
The OAG provides a graphical perspective of object- (and type-)
sensitivity, i.e., a k-depth context in object-sensitivity corresponds to
a k-node path in the OAG [37]. Thus, to compute k-object-sensitive
contexts of a methodm, Scaler simply enumerates k-node paths
in the OAG, leading to the receiver objects ofm.

Figure 6 illustrates the mechanism with a simple example. The
allocation sites are labeled B1, B2, and C1, respectively. Suppose we
compute 2obj contexts for method m() (line 12) and its receiver
object is C1 (allocated at line 16). Further, B1 and B2 are two allocator
objects of C1 according to k-object-sensitivity [25, 32]. The possible
(2obj) contexts of m() are [B1,C1] and [B2,C1]. The corresponding
OAG is given in Figure 6, which shows two 2-node paths that
are exactly the 2obj contexts for m(). Since a context-insensitive
analysis over-approximates the fully precise OAG, some edges may
be spurious. However, this is fine, since we only need an upper
bound of the number of possible contexts, to establish scalability.

Type sensitivity is an isomorphic approximation of object sensi-
tivity [30], thus we can easily derive the contexts for type sensitivity
with the OAG. Following the definition [32], Scaler computes the
contexts for type sensitivity by merely replacing objects in contexts
(as computed from the OAG) by the types that contain the alloca-
tion sites of the objects. For example, to compute the contexts for
method m() (Figure 6) under 2type, Scaler first obtains the 2obj
contexts, i.e., [B1,C1] and [B2,C1], then replaces B1 and B2 by type
A, and C1 by type B. As a result, there is only one context of m()
under 2type, i.e., [A,B].

5 IMPLEMENTATION
We have implemented Scaler as a stand-alone open-source tool in
Java, available at http://www.brics.dk/scaler/. Scaler is designed to
work with various pointer analysis frameworks such as Doop [4],
Wala [7], Chord [26], and Soot [40]. To demonstrate its effective-
ness, we have integrated Scaler with Doop [4], a state-of-the-art
pointer analysis framework for Java.

In practice, we found that the #ctxcm ·#ptsm values of some Java
collection methods under package java.util.* are very large, be-
cause (1) the collection methods are frequently called, thus their
#ctxcm values are large, and (2) many objects are passed to the

4We do not consider call-site sensitive analyses (1call, 2call) or 1-object sensitivity
(1obj) in our evaluation, as these analysis variants are typically both less precise and
less scalable than at least one of the analyses in our setup. The Scaler approach can be
adapted to any collection of context sensitivity variants, as long as a relative ordering
in both increasing precision and cost is possible.

http://www.brics.dk/scaler/

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yue Li, Tian Tan, Anders Møller and Yannis Smaragdakis

TST-Based
ST Selection

ST-Based
Context Sensitivity

STp

Selected
context

sensitivity
for every

method of P

Scalable & Precise
Pointer AnalysisPre-Analysis

Points-to
information

SCALERTST
OptionalProgram P

Figure 5: Overview of the Scaler framework.

1 class A {
2 void foo() {
3 B b1 = new B();//B1
4 b1.bar();
5 }
6 void goo() {
7 B b2 = new B();//B2
8 b2.bar();
9 }
10 }
11 class C {
12 void m() {...}
13 }

14 class B {
15 void bar() {
16 C c = new C();//C1
17 c.m();
18 }
19 }

B1 B2

C1

Figure 6: An example illustrating #ctxcm computation.

collection methods, thus their #ptsm values are large. This would
affect STp -based context sensitivity, which may make Scaler pick
less precise context sensitivity for these methods. However, collec-
tion methods are important to the precision of pointer analysis, thus
should be analyzed as precisely as possible by Scaler. To address
this problem, Scaler treats methods under package java.util.*
specially, explicitly assigning them to be analyzed by the most
precise context sensitivity (i.e., 2obj in our settings).

6 EVALUATION
In the evaluation, we investigate the following research questions:

RQ1. Does Scaler consistently achieve scalability, while matching
or exceeding the precision of the most precise conventional
pointer analyses [25, 32] that use the same variant of context-
sensitivity for the entire program?

RQ2. How does Scaler fare against introspective analysis [33] that
also applies context-sensitivity selectively for the different
methods of the program?

RQ3. What is the overhead of running Scaler? What are the com-
puted values of STp and what are the resulting distributions
of SelectCtx in practice?

RQ4. How does Scaler perform with different TST values and
different memory sizes?

Experimental Setup. All pointer analyses were performed using
Doop [29] (with the version published in the artifact of [33], which
contains the exact setup for different analyses). The time budget
for all analyses is 3 hours (10 800 seconds). To demonstrate the
generality of Scaler’s scalability and precision, we consider 10
real-world Java programs that cover different levels of program
complexity. Five of these programs come from the DaCapo 2006
benchmark suite and include the toughest-to-analyze programs
(jython, eclipse). The rest are well-known open-source applica-
tions. Concretely, as shown in Table 1, 6 programs (jython, soot,
pmd, briss, jedit and eclipse) represent complex applications for
which 2obj is not scalable within 3 hours; 2 programs (findbugs
and chart) represent medium-complexity programs for which 2obj

costs thousands or hundreds of seconds; 2 programs (luindex and
lusearch) represent simple programs for which 2obj costs only
dozens of seconds. These programs are all analyzed with a large
Java library: Open JDK 1.6.0_24.

Scaler uses a default TST value of 30M (million) which exhibits
uniform scalability on all machines in our experimental setup. To
answer RQ1–RQ3 (Section 6.1–6.3), we run the experiments on our
default machine with a Xeon E5-2697A 2.6GHz CPU and 48GB of
RAM, with the default TST (30M). To answer RQ4, different TST
values are considered, and the experiments are also run onmachines
with smaller and larger memory sizes (Section 6.4).

6.1 Scalability and Precision of Scaler-Guided
Pointer Analysis

In this section, we examine the scalability and precision of Scaler-
guided pointer analysis (Scaler for short) by comparing it with
conventional context-sensitive pointer analyses for Java: object-
sensitivity [25] and type-sensitivity [32], which are the mainstream
variants adopted in recent analysis clients. For example, object-
sensitivity is widely adopted in recent Android static analysis frame-
works [1, 9] and type-sensitivity is used in recent reflection analy-
sis [20] and security analysis [10] tools.

Table 1 shows the results for all analyses. Each program has
five rows of data, respectively representing context-insensitive
(CI), conventional context-sensitive, Scaler, and two introspective
(IntroA and IntroB) pointer analyses. (The last two analyses will be
discussed in Section 6.2.) For conventional context-sensitive pointer
analyses, we consider 2obj, 2type, and 1type. Call-site-sensitivity
and 1obj are not considered as the former is not effective for Java
programs [15, 17, 37] and the latter is usually both less efficient
and less precise than 2type [15, 32]. As it is virtually impossible to
predict the scalability of a precise context-sensitive pointer analysis
in advance, to get the most precise conventional analysis results we
run 2obj, 2type, and 1type in the given order (from the most to
the least precise one) until one of them terminates within 3 hours.
So in Table 1, the second row for each program shows the results
of the most precise conventional pointer analysis that is scalable.

6.1.1 Scalability of Scaler-Guided Pointer Analysis. In Table 1, the
third column for each program demonstrates Scaler’s extremely
good scalability. 2obj is not scalable for the first six programs, and
even the fast 2type also fails to scale for jython and soot. How-
ever, Scaler scales for all of them, with its one-shot principle. In
addition, for the first seven complex and large programs, Scaler
runs (sometimes significantly) faster than the most precise con-
ventional pointer analysis that is scalable, even if we add Scaler’s
pre-analysis time (CI).

For example, according to past literature and extensive experi-
ence [15, 32, 37, 38], jython is considered the most troublesome
program in terms of scalability, among the DaCapo benchmarks [3].

Scalability-First Pointer Analysis with Self-Tuning Context-Sensitivity ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 1: Efficiency and precision metrics for all programs and pointer analyses. In all cases, lower is better.

Program Analysis
Time

(seconds)
3h=10 800s

Precision metrics
Program Analysis

Time
(seconds)
3h=10 800s

Precision metrics
#may-fail
casts

#poly
calls

#reach
methods

#call
edges

#may-fail
casts

#poly
calls

#reach
methods

#call
edges

CI 112 2 234 2 778 12 718 114 856 CI 135 4 190 9 197 20 862 161 222
2obj 2type 1type >3h+>3h+1 997 2 117 2 577 12 430 111 834 2obj 2type >3h+960 3 401 8 542 20 314 145 210

jython Scaler 452 1 852 2 500 12 167 107 410 eclipse Scaler 652 3 211 8 486 20 374 145 953
IntroA 381 2 202 2 632 12 663 114 095 IntroA 1 369 4 175 8 889 20 853 160 139
IntroB >3h – – – – IntroB 528 3 640 8 539 20 491 149 980
CI 994 16 570 16 532 32 459 415 476 CI 49 2 508 2 925 13 036 77 370
2obj 2type 1type >3h+>3h+3 812 16 212 15 511 32 308 386 840 2obj 2 458 1 409 2 182 12 657 65 836

soot Scaler 1 236 10 549 14 822 31 982 374 877 findbugs Scaler 272 1 452 2 195 12 676 66 177
IntroA 1 295 16 503 15 947 32 390 413 083 IntroA 188 2 271 2 422 12 960 73 681
IntroB 4 850 15 474 14 895 32 222 319 431 IntroB 397 2 024 2 372 12 882 70 725
CI 67 2 948 4 183 15 254 104 457 CI 48 1 810 1 852 12 064 63 453
2obj 2type >3h+1 203 2 317 3 577 14 863 92 885 2obj 285 883 1 378 11 330 52 374

pmd Scaler 705 2 176 3 536 14 895 92 775 chart Scaler 254 976 1 402 11 530 53 198
IntroA 356 2 820 3 823 15 117 101 762 IntroA 128 1 580 1 613 11 952 61 323
IntroB 2 986 2 524 3 694 15 006 96 565 IntroB 189 1 236 1 497 11 518 55 594
CI 228 4 904 6 297 26 582 176 785 CI 22 734 940 6 670 33 130
2obj 2type >3h+5 374 3 589 5 208 25 478 150 735 2obj 53 297 675 6 256 29 021

briss Scaler 1 194 3 428 5 323 25 652 152 761 luindex Scaler 53 297 675 6 256 29 021
IntroA 497 4 889 6 076 26 507 175 565 IntroA 45 617 802 6 600 32 370
IntroB >3h – – – – IntroB 48 450 714 6 316 29 835
CI 117 3 398 4 769 21 232 120 309 CI 22 844 1 133 7 352 36 343
2obj 2type >3h+2 950 2 507 3 971 20 620 98 819 2obj 93 299 850 6 904 31 811

jedit Scaler 1 769 2 397 4 012 20 726 99 536 lusearch Scaler 93 299 850 6 904 31 811
IntroA 300 3 110 4 429 21 075 116 745 IntroA 94 681 981 7 277 35 531
IntroB 6 942 2 609 4 088 20 730 105 116 IntroB 96 462 891 6 970 32 656

To get the most precise results for a conventional pointer analysis,
23 597 seconds (3h + 3h + 1 997s) are spent before one discovers
that 1type is scalable for jython on our machine; however, Scaler
only costs 452 seconds for jython, and with better precision (in
terms of all precision metrics) as described in the next section.

6.1.2 Precision of Scaler-Guided Pointer Analysis. To measure
precision, we use four independently useful client analyses that
are often (although rarely all together) used as precision metrics in
existing literature [14, 15, 32, 33, 38]. Together they paint a fairly ac-
curate picture of analysis precision, as it impacts clients. The clients
are: a cast-resolution analysis (metric: the number of cast operations
that may fail—#may-fail casts), a devirtualization analysis (metric:
the number of virtual call sites that cannot be disambiguated into
monomorphic calls—#poly calls), a method reachability analysis
(metric: the number of reachable methods—#reach methods), and a
call-graph construction analysis (metric: the number of call graph
edges—#call edges). In Table 1, columns (4–7) for each program
list precision results. In all cases, lower is better. We find that,
overwhelmingly, Scaler achieves comparable, and typically bet-
ter, precision than the most precise conventional pointer analysis
that is comparably scalable (e.g., 1type for jython, 2type for pmd
and 2obj for luindex). In the case of findbugs, the precision of
Scaler is marginally lower than that of 2obj, but the running time
is an order of magnitude lower. The chart benchmark is the only
one for which Scaler is slightly less precise than 2objwithout also
being much faster, yet Scaler still attains most of the precision
gains of 2obj relative to a context-insensitive analysis. Moreover,

as shown in Section 6.4, the precision of Scaler can improve by
simply increasing the TST value.

Answer to RQ1: Scaler-guided pointer analysis exhibits extremely
good and uniform scalability while matching or even exceeding the
precision of the most precise conventional pointer analysis that is
scalable.

6.2 Comparison with Introspective Analyses
The closest relative of our work in past literature is introspective
analysis [33]: a technique that also attempts to tune context sensi-
tivity per-method based on a pre-analysis. Introspective analysis
uses heuristics (such as “total points-to information”) that do not,
however, have the upper-bound guarantee, scalability emphasis, or
context-number-estimation ability of Scaler.

There are two published heuristics leading to different variants of
introspective analyses, IntroA and IntroB. Generally, IntroA is faster
but less precise than IntroB. Like Scaler, introspective analysis also
relies on a context-insensitive analysis (CI) as its pre-analysis. Un-
like Scaler, which decides on eachmethodwhat context-sensitivity
it needs (e.g., 2obj, 2type, 1type or CI), introspective analysis de-
cides on each method whether it needs contexts. Despite the dif-
ference, the computation time of producing the context selection
information is very similar (a few seconds for each program on av-
erage). As a result, the overhead of both analyses’ decision making
can be considered similar.

In Table 1, the last three rows for each program show the compar-
ison results. In most programs (except soot and eclipse), IntroA

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yue Li, Tian Tan, Anders Møller and Yannis Smaragdakis

Table 2: Performance of Scaler.

Program jython soot pmd briss jedit eclipse findbugs chart luindex lusearch avg.
Scaler time (seconds) 35.0 1.8 0.8 2.6 1.4 1.0 0.5 0.4 0.2 0.3 4.4

runs faster than Scaler thus also exhibiting good scalability; how-
ever, Scaler’s precision is significantly better than IntroA’s (Scaler
wins in precision in all the precision metrics of all the programs).
IntroB exhibits better precision than IntroA in all cases (when it
is scalable) but it is still less precise than Scaler in all the cases
except #call-edges for soot and #reach-methods for chart. Regard-
ing efficiency, Scaler runs faster than IntroB for most programs
(except eclipse, chart, and luindex); in addition, IntroB is not
scalable for two programs (jython and briss).

Answer to RQ2: Comparing with state-of-the-art adaptive anal-
yses, introspective analyses IntroA and IntroB, both Scaler and
IntroA exhibit extremely good scalability while Scaler’s precision is
significantly better than IntroA’s; and Scaler’s scalability is better
than IntroB’s while being more precise in most cases.

6.3 Scaler’s Effectiveness as a Pre-Analysis
This section answers RQ3 by examining the overhead of Scaler’s
adaptivity as well as the STp values selected by Scaler for each
program, and the corresponding distribution of different kinds of
context sensitivity based on the selected STp .

6.3.1 Overhead of Scaler. The overall overhead of the Scaler
framework (Figure 5) consists of two components: (1) a context-
insensitive pointer analysis CI, which provides points-to informa-
tion to Scaler, and (2) Scaler logic itself, which performs TST-
based STp selection and STp -based context-sensitivity. Scaler’s
pre-analysis time (CI) is given in Table 1, and Table 2 shows the
overhead of Scaler itself. The average overall overhead of Scaler
for each program is 183.8 seconds, of which CI pre-analysis costs
account for the vast majority (179.4 seconds), while Scaler logic
costs only 4.4 seconds. Considering the significant scalability im-
provements achieved by Scaler, its overhead is negligible.

Scaler spends 35 seconds for jython, which is markedly longer
than for other programs (Table 2). The reason is that jython is
especially complicated in the sense that many of its methods have
enormous numbers of contexts, thus Scaler spends much time on
#ctxcm computation. For instance, Scaler’s #ctxcm computation
shows that 130 methods of jython have more than 1 000 000 con-
texts under 2obj. (For comparison, the maximal #ctxcm value of
a single method under 2obj in soot, the largest program in our
evaluation, is only 88 473.) In this way, Scaler also reveals the
reason why many context-sensitive pointer analyses fail to ana-
lyze jython scalably as reported in previous work [15, 32, 37, 38].
Scaler avoids the problem due to its STp -based context-sensitivity
design (Section 3.1.2).

6.3.2 ST Values and Context-Sensitivity Distributions. Figure 7 gives
the STp values selected by Scaler for each program according to
the default TST (30M), and the distribution of different kinds of
context sensitivity over the methods of the programs based on
the selected STp . Generally, given the same TST, Scaler automat-
ically selects small STp values for complex programs (e.g., soot

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

jython soot pmd briss jedit eclipse findbugs chart luindex lusearch

2obj 2type 1type CI

STp 16607 0 35423 2735 17099 8307 78699 108627 35080733 9354949

Figure 7: The STp value (on top of each bar) computed by
Scaler for each program and the distribution of different
kinds of context-sensitivities selected according to each STp .

and briss), medium STp values for medium-complexity programs
(findbugs and chart), and large STp values for simple programs
(luindex and lusearch).

Scaler automatically selects 2obj, the most precise context-
sensitivity in our experiments, for most methods (80.6% per pro-
gram on average). This is the reason why Scaler-guided pointer
analysis achieves very good precision as shown in Table 1. This
also demonstrates that our insight of scalability-critical methods
(Section 3.1.1) holds in practice: in most cases, only a small set of
scalability-critical methods make the whole analysis unscalable.

We next discuss two outlier cases, at both ends of the spectrum,
since they are informative of Scaler’s limit behavior.

soot. Scaler selects 0 as STp value for soot, so most of its
methods are analyzed with context-insensitivity (CI). The reason is
that soot is very large. The pre-analysis of Scaler reports that the
total size of points-to information of soot (i.e., the sum of #ptsm
of all methods) is 110 901 529, which already exceeds our default
TST (30M). As a result, Scaler automatically selects 2obj for only
1 792 methods in package java.util.* (as explained in Section 5)
and CI for all other methods according to the definition of SelectCtx
in Section 3.1.2, to ensure the scalability of pointer analysis.

luindex and lusearch. Scaler selects two very large STp val-
ues for luindex and lusearch (the two simplest programs in our
evaluation). Accordingly, it assigns 2obj for all methods in the
two programs which are all classified as non-scalability-critical
methods under 2obj. There is only one exception: the method
<java.lang.Object: void <init>()>. In Java’s type hierarchy,
Object is the supertype of all classes; thus its <init> method will
be called whenever a constructor is called, yielding too many con-
texts (#ctxcm), and a this variable that abstractly points to all the
objects created in the program, which makes the method’s #ptsm
value very large.

As a result, the #ctxcm ·#ptsm value for this <init> method ex-
ceeds the selected STp value, so Scaler selects less precise context

Scalability-First Pointer Analysis with Self-Tuning Context-Sensitivity ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

3 300

3 211
3 170

3 071

2 979

 0

2 000

4 000

6 000

8 000

10 000

12 000

2 800

2 900

3 000

3 100

3 200

3 300

3 400

20M 30M 60M 80M 150M

#may-fail casts 12GB 48GB 368GB

Time

Timeout

Precision

Timeout

(a) eclipse

2 188
2 176

2 080 2 080

2 050

 0

2 000

4 000

6 000

8 000

10 000

12 000

2 000

2 050

2 100

2 150

2 200

20M 30M 60M 80M 150M

#may-fail casts 12GB 48GB 368GB

Time

Timeout

Precision

Timeout

(b) pmd

Figure 8: Scaler-guided pointer analysis time (efficiency) and the corresponding number of may-fail casts (precision) with
different TST values (20M, 30M, 60M, 80M and 150M) on themachines under different memory sizes (12GB, 48GB, and 368GB).

sensitivity for it. Since java.lang.Object’s constructor <init> is
an empty method, analyzing it with or without 2obj does not affect
the precision of pointer analysis. Thus Scaler-guided pointer anal-
ysis achieves exactly the same precision as the conventional 2obj
analysis for luindex and lusearch (see Table 1). This again demon-
strates the self-tuning ability of Scaler which can automatically
obtain maximal precision for simple programs.

Answer to RQ3: Scaler automatically selects appropriate STp
values and context-sensitivity to ensure the scalability of pointer
analysis for programs of varying complexity. In addition, the cost of
such good adaptivity is very low.

6.4 Scaler-Guided Pointer Analysis with
Different TSTs and Memory Sizes

As real-world analysis settings may differ widely, we conduct ex-
periments by running Scaler with different TST and memory sizes,
to further evaluate the adaptiveness and usability of Scaler in prac-
tice. We run Scaler for the top six costliest-to-analyze programs
in Table 1 (jython, soot, pmd, briss, jedit, and eclipse), with
TST values (20M, 30M, 60M, 80M, and 150M) on three machines
with different memory sizes: 12GB, 48GB, and 368GB, representing
typical memory sizes of a personal laptop, a commodity server, and
a large server, respectively.

Conventional pointer analyses that are not scalable for these six
programs in Table 1 (with memory size 48GB) are also all unscal-
able on another machine with a much larger memory size, 368GB.
However, under Scaler’s default TST of 30M (as used in previous
experiments), Scaler-guided pointer analysis still scales for all six
programs even on a machine with only 12GB memory. This result
further demonstrates the effectiveness of Scaler in making pointer
analysis scalable in practice.

Since the six programs under different TST and memory settings
exhibit similar trends, for space reasons we only show two rep-
resentative programs, eclipse and pmd, in Figure 8. We illustrate
precision changes via the #may-fail casts metric, which is arguably
the most common precision metric in Java pointer-analysis litera-
ture [14, 15, 17, 32–34, 37, 38].

Scaler-Guided Pointer Analysis under Different TSTs. Figure 8
encodes a lot of information: it shows how both precision and

scalability vary as a function of TST values, for three different RAM
configurations. As the figure demonstrates, there is nothing special
about Scaler’s default 30M TST: the system adapts appropriately
for both larger and smaller values. Users can simply increase or
decrease the TST value to achieve better precision (up to the level
the analysis setup can support) or better efficiency, respectively.
This simple design with TST being the only tuning knob is able to
drive complicated pointer analyses to adapt to different programs
to achieve their preferred scalability and precision.

Scaler-Guided Pointer Analysis with Different Memory Sizes. As
shown in Figure 8, with the largest TST value of 150M, Scaler-
guided pointer analysis is not scalable for pmd with 12GB or 48GB
memory, but it is scalable if using 368GB memory. With the same
TST, Scaler-guided pointer analysis running on a machine with a
larger memory is more likely to be scalable. For example, with a TST
of 150M, Scaler-guided pointer analysis is not scalable with 12GB
memory for any of the 6 programs, it is scalable for 4 programs
if using 48GB memory, and it is scalable for all 6 programs with
368GB memory. This result indirectly demonstrates that scalability
(and, thus, the choice of TST) is tied to memory size.

Answer to RQ4: Better precision or better efficiency of Scaler-
guided pointer analysis can be achieved by simply increasing or
decreasing the TST value. The scalability is related to memory sizes:
with the same TST, Scaler-guided pointer analysis is more likely to
scale under larger memory; thus a small (large) TST is recommended
for a small (large) memory size for good scalability (precision).

7 RELATEDWORK
Context sensitivity, despite bringing great precision benefits, intro-
duces many uncertainties to scalability, which may render a pointer
analysis useless in practice. We focus on related work that leverages
pre-analysis to achieve good efficiency and precision trade-offs for
context-sensitive pointer analysis.

Introspective analysis [33] attempts to achieve precision and
scalability trade-offs by refining a context-sensitive analysis while
avoiding its worst-case cost. Similar to Scaler, it first performs a
pre-analysis (context-insensitive pointer analysis) to extract neces-
sary information to guide later pointer analysis. Unlike Scaler, it
relies on a set of six manually-selected metrics (e.g., the maximum

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yue Li, Tian Tan, Anders Møller and Yannis Smaragdakis

field points-to set over all fields) to define two heuristics, result-
ing in two introspective analyses, IntroA and IntroB, which are
compared with Scaler in Section 6.2. Benefiting from the new in-
sight of Scaler (TST-based self-tuning context sensitivity), Scaler
outperforms IntroB on both precision and scalability and achieves
the same level of scalability as IntroA, while being significantly
more precise. Moreover, the six different metrics in introspective
analysis need appropriate values to be set in advance to produce
effective analysis results; Scaler’s insights enable its methodology
to be quite simple: it only needs one value (TST) for users to achieve
better precision or better efficiency as desired, resulting in better
usability in practice. Finally, introspective analysis is not one-shot:
using it will always incur a cost in precision, even if the program
could be analyzed more precisely. Therefore, its user will deploy it
only after first attempting a precise analysis and failing.

Hassanshahi et al. [11] leverage similar metrics as introspective
analysis to guide selective object-sensitive pointer analysis for large
codebases. However, their pre-analysis involves several phases (that
need different metrics and heuristics): a context-insensitive analysis
is first performed to extract the program kernel where a context-
insensitive or fixed object-sensitive analysis is still not sufficiently
precise; then a fixed (heavy) object-sensitive pointer analysis is
applied to the extracted (smaller) kernel to determine appropriate
context depth for each selected object. After these pre-analyses,
the selected object-sensitive information is used to guide the main
pointer analysis which is demonstrated to work well for the Open-
JDK library. However, unlike introspective analysis [33] and Scaler,
the overhead of the pre-analysis is uncertain, as it heavily relies
on the complexity of the extracted kernel, which further depends
on various metric values selected by users. Thus, it is unclear if
the technique can exhibit general effectiveness for arbitrary Java
programs in practice.

Both of the above approaches [11, 33] involve metrics and heuris-
tics that are defined manually. An alternative is to use machine
learning techniques, as in the two approaches we describe next.

Wei and Ryder [41] present an adaptive context-sensitive analy-
sis for JavaScript. They first use a machine learning algorithm to
obtain the relationship between some user-defined method char-
acteristics (extracted from a pre-analysis) and context-sensitivity
choice (1-call-site-, 1-object-, or 1-parameter-sensitivity), and ex-
press the results as a decision tree. Based on domain knowledge,
the decision tree is further manually adjusted to produce heuristics
that are easy to interpret while the classifications can still maintain
good accuracy. Finally, based on the heuristics, methods are ana-
lyzed with different context sensitivity, resulting in better precision
achieved than single context-sensitive analysis.

Jeong et al. [14] propose a data-driven approach to guiding con-
text sensitivity for Java. Unlike Scaler, where various kinds of
context sensitivity with different lengths are applied to different
methods, only a single kind of context sensitivity is applied to the
program, and eachmethod is finally assigned an appropriate context
length, including zero (i.e., context insensitivity). As deep contexts
are finally properly applied to only a subset of the methods, more
efficient context-sensitive analysis can be achieved with still good
precision. To select a context length for each method, 25 metrics
(atomic features) are selected and a machine learning approach is
used to learn heuristics based on these metrics. However, unlike

Scaler’s lightweight pre-analysis, the learning phase is heavy and
costs 54 hours in the Jeong et al. experimental setting.

Generally, a machine learning approach is sensitive to the train-
ing on input programs, and its learned results are usually difficult
to explain, for example to discern why the learning algorithm se-
lects a given context for a method. Instead, Scaler is a principled,
rigorously-modeled, approach derived from simple insights; thus
its guided results are tractable and interpretable, leading to more
stable and uniform effectiveness.

Unlike conventional context-sensitive pointer analysis, which
uses consecutive context elements for each context, the Bean ap-
proach by Tan et al. [37] identifies and skips the redundant context
elements that are useless for improving the precision of context-
sensitive analysis. As a result, the saved space allowsmore precision-
useful context elements to be involved to distinguish more contexts,
making the analysis more precise with a small efficiency overhead.
Precision is the focus of Bean while Scaler’s is scalability. In addi-
tion, as explained in Section 4, rather than identifying redundant
precision-useless context elements, Scaler leverages the OAG from
Tan et al. [37] to compute the context numbers in advance.

Mahjong [38], a recent heap abstraction for pointer analysis
of Java, is also based on a cheap pre-analysis, like Scaler. It en-
ables an allocation-site-based pointer analysis to run significantly
faster while achieving nearly the same precision for type-dependent
clients, such as call graph construction. Differently, Scaler works
for general pointer analysis, including alias analysis (i.e., not just
type-dependent clients) which cannot be handled by Mahjong
effectively. In addition, Scaler is able to scale for trouble programs
such as jython where even the very fastMahjong analysis fails.

8 CONCLUSIONS
Good scalability is hard to achieve for precise context-sensitive
pointer analysis. To tackle this problem, we have introduced the
Scaler framework, which automatically chooses a suitable context-
sensitivity variant for each method in the given program, based on
a fast, context-insensitive pre-analysis. The key insight is that it is
possible to efficiently identify scalability-critical methods and that
scalability can be predicted using the ideas of scalability thresholds
and total scalability thresholds. The focus of Scaler is scalability,
but at the same time it aims to maximize precision, relative to a
given total scalability threshold that can be selected based on the
available memory.

The experimental evaluation of Scaler demonstrates that it is
able to achieve extremely good scalability while producing highly
precise points-to results, in one shot, regardless of the programs
being analyzed. This may directly benefit many other program
analyses and software engineering tools that require scalable and
precise pointer analysis. Moreover, we expect the ideas behind
Scaler may help other kinds of static analyses to become more
scalable with good precision for real-world programs.

ACKNOWLEDGMENTS
This work was supported by the European Research Council (ERC)
under the FP7 and Horizon 2020 research and innovation programs
(grant agreements 307334 and 647544).

Scalability-First Pointer Analysis with Self-Tuning Context-Sensitivity ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. 2014.
FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. InACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11,
2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 259–269. https:
//doi.org/10.1145/2594291.2594299

[2] Marc Berndl, Ondrej Lhoták, Feng Qian, Laurie J. Hendren, and Navindra Umanee.
2003. Points-to analysis using BDDs. In Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation 2003, San Diego,
California, USA, June 9-11, 2003, Ron Cytron and Rajiv Gupta (Eds.). ACM, 103–
114. https://doi.org/10.1145/781131.781144

[3] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok
Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovic, Thomas Van-
Drunen, Daniel von Dincklage, and Ben Wiedermann. 2006. The DaCapo
benchmarks: Java benchmarking development and analysis. In Proceedings of
the 21th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006, Port-
land, Oregon, USA, Peri L. Tarr and William R. Cook (Eds.). ACM, 169–190.
https://doi.org/10.1145/1167473.1167488

[4] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative speci-
fication of sophisticated points-to analyses. In Proceedings of the 24th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA, Shail
Arora and Gary T. Leavens (Eds.). ACM, 243–262. https://doi.org/10.1145/1640089.
1640108

[5] Satish Chandra, Stephen J. Fink, and Manu Sridharan. 2009. Snugglebug: a
powerful approach to weakest preconditions. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2009, Dublin, Ireland, June 15-21, 2009, Michael Hind and Amer Diwan (Eds.).
ACM, 363–374. https://doi.org/10.1145/1542476.1542517

[6] David R. Chase, Mark N. Wegman, and F. Kenneth Zadeck. 1990. Analysis of
pointers and structures. In Proceedings of the ACM SIGPLAN’90 Conference on
Programming Language Design and Implementation (PLDI), White Plains, New
York, USA, June 20-22, 1990, Bernard N. Fischer (Ed.). ACM, 296–310. https:
//doi.org/10.1145/93542.93585

[7] Julian Dolby et al. 2018. WALA: T. J. Watson Libraries for Analysis. http://wala.
sf.net.

[8] Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay.
2008. Effective typestate verification in the presence of aliasing. ACM Trans. Softw.
Eng. Methodol. 17, 2 (2008), 9:1–9:34. https://doi.org/10.1145/1348250.1348255

[9] Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen
Nguyen, and Martin C. Rinard. 2015. Information flow analysis of An-
droid applications in DroidSafe. In 22nd Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2015, San Diego, California, USA, February 8-
11, 2015. The Internet Society. https://www.ndss-symposium.org/ndss2015/
information-flow-analysis-android-applications-droidsafe

[10] Neville Grech and Yannis Smaragdakis. 2017. P/Taint: unified points-to and taint
analysis. PACMPL 1, OOPSLA (2017), 102:1–102:28. https://doi.org/10.1145/
3133926

[11] Behnaz Hassanshahi, Raghavendra Kagalavadi Ramesh, Padmanabhan Krish-
nan, Bernhard Scholz, and Yi Lu. 2017. An efficient tunable selective points-
to analysis for large codebases. In Proceedings of the 6th ACM SIGPLAN Inter-
national Workshop on State Of the Art in Program Analysis, SOAP@PLDI 2017,
Barcelona, Spain, June 18, 2017, Karim Ali and Cristina Cifuentes (Eds.). ACM,
13–18. https://doi.org/10.1145/3088515.3088519

[12] Michael Hind. 2001. Pointer analysis: haven’t we solved this problem yet?. In
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
For Software Tools and Engineering, PASTE’01, Snowbird, Utah, USA, June 18-19,
2001, John Field and Gregor Snelting (Eds.). ACM, 54–61. https://doi.org/10.1145/
379605.379665

[13] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type analysis
for JavaScript. In Static Analysis, 16th International Symposium, SAS 2009, Los
Angeles, CA, USA, August 9-11, 2009. Proceedings (Lecture Notes in Computer
Science), Jens Palsberg and Zhendong Su (Eds.), Vol. 5673. Springer, 238–255.
https://doi.org/10.1007/978-3-642-03237-0_17

[14] Sehun Jeong, Minseok Jeon, Sung Deok Cha, and Hakjoo Oh. 2017. Data-driven
context-sensitivity for points-to analysis. PACMPL 1, OOPSLA (2017), 100:1–
100:28. https://doi.org/10.1145/3133924

[15] George Kastrinis and Yannis Smaragdakis. 2013. Hybrid context-sensitivity for
points-to analysis. InACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Hans-Juergen
Boehm and Cormac Flanagan (Eds.). ACM, 423–434. https://doi.org/10.1145/
2462156.2462191

[16] Ondrej Lhoták and Laurie J. Hendren. 2003. Scaling Java points-to analysis using
SPARK. In Compiler Construction, 12th International Conference, CC 2003, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2003, Warsaw, Poland, April 7-11, 2003, Proceedings (Lecture Notes in Computer
Science), Görel Hedin (Ed.), Vol. 2622. Springer, 153–169. https://doi.org/10.1007/
3-540-36579-6_12

[17] Ondrej Lhoták and Laurie J. Hendren. 2006. Context-sensitive points-to analysis:
Is it worth it?. In Compiler Construction, 15th International Conference, CC 2006,
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 30-31, 2006, Proceedings (Lecture Notes in
Computer Science), Alan Mycroft and Andreas Zeller (Eds.), Vol. 3923. Springer,
47–64. https://doi.org/10.1007/11688839_5

[18] Lian Li, Cristina Cifuentes, and Nathan Keynes. 2011. Boosting the performance
of flow-sensitive points-to analysis using value flow. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering (ESEC/FSE ’11). ACM, New York, NY, USA, 343–353.
https://doi.org/10.1145/2025113.2025160

[19] Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. 2014. Self-inferencing reflection
resolution for Java. In ECOOP 2014 - Object-Oriented Programming - 28th European
Conference, Uppsala, Sweden, July 28 - August 1, 2014. Proceedings (Lecture Notes
in Computer Science), Richard E. Jones (Ed.), Vol. 8586. Springer, 27–53. https:
//doi.org/10.1007/978-3-662-44202-9_2

[20] Yue Li, Tian Tan, and Jingling Xue. 2015. Effective soundness-guided reflection
analysis. In Static Analysis - 22nd International Symposium, SAS 2015, Saint-Malo,
France, September 9-11, 2015, Proceedings (Lecture Notes in Computer Science),
Sandrine Blazy and Thomas Jensen (Eds.), Vol. 9291. Springer, 162–180. https:
//doi.org/10.1007/978-3-662-48288-9_10

[21] Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. 2016. Program tailoring: Slicing by
sequential criteria. In 30th European Conference on Object-Oriented Programming,
ECOOP 2016, July 18-22, 2016, Rome, Italy (LIPIcs), Shriram Krishnamurthi and
Benjamin S. Lerner (Eds.), Vol. 56. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 15:1–15:27. https://doi.org/10.4230/LIPIcs.ECOOP.2016.15

[22] Donglin Liang andMary JeanHarrold. 1999. Efficient points-to analysis for whole-
program analysis. In Software Engineering - ESEC/FSE’99, 7th European Software
Engineering Conference, Held Jointly with the 7th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Toulouse, France, September 1999, Proceedings
(Lecture Notes in Computer Science), Oscar Nierstrasz and Michel Lemoine (Eds.),
Vol. 1687. Springer, 199–215. https://doi.org/10.1007/3-540-48166-4_13

[23] Benjamin Livshits and Monica S. Lam. 2005. Finding security vulnerabilities in
Java applications with static analysis. In Proceedings of the 14th USENIX Security
Symposium, Baltimore, MD, USA, July 31 - August 5, 2005, Patrick D. McDaniel
(Ed.). USENIX Association.

[24] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2002. Parameterized object
sensitivity for points-to and side-effect analyses for Java. In Proceedings of the
International Symposium on Software Testing and Analysis, ISSTA 2002, Roma,
Italy, July 22-24, 2002, Phyllis G. Frankl (Ed.). ACM, 1–11. https://doi.org/10.
1145/566172.566174

[25] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized object
sensitivity for points-to analysis for Java. ACM Trans. Softw. Eng. Methodol. 14, 1
(2005), 1–41. https://doi.org/10.1145/1044834.1044835

[26] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race detection
for Java. In Proceedings of the ACM SIGPLAN 2006 Conference on Programming
Language Design and Implementation, Ottawa, Ontario, Canada, June 11-14, 2006,
Michael I. Schwartzbach and Thomas Ball (Eds.). ACM, 308–319. https://doi.org/
10.1145/1133981.1134018

[27] Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R. Gross. 2012. Stati-
cally checking API protocol conformance with mined multi-object specifications.
In 34th International Conference on Software Engineering, ICSE 2012, June 2-9, 2012,
Zurich, Switzerland, Martin Glinz, Gail C. Murphy, and Mauro Pezzè (Eds.). IEEE
Computer Society, 925–935. https://doi.org/10.1109/ICSE.2012.6227127

[28] Micha Sharir and Amir Pnueli. 1981. Two approaches to interprocedural data flow
analysis. Prentice-Hall, Chapter 7, 189–234.

[29] Yannis Smaragdakis et al. 2018. Doop: Framework for Java pointer analysis.
http://doop.program-analysis.org.

[30] Yannis Smaragdakis and George Balatsouras. 2015. Pointer analysis. Foundations
and Trends in Programming Languages 2, 1 (2015), 1–69. https://doi.org/10.1561/
2500000014

[31] Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Braven-
boer. 2015. More sound static handling of Java reflection. In Programming
Languages and Systems - 13th Asian Symposium, APLAS 2015, Pohang, South
Korea, November 30 - December 2, 2015, Proceedings (Lecture Notes in Computer
Science), Xinyu Feng and Sungwoo Park (Eds.), Vol. 9458. Springer, 485–503.
https://doi.org/10.1007/978-3-319-26529-2_26

[32] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick your
contexts well: understanding object-sensitivity. In Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2011, Austin, TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.).
ACM, 17–30. https://doi.org/10.1145/1926385.1926390

https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/781131.781144
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1542476.1542517
https://doi.org/10.1145/93542.93585
https://doi.org/10.1145/93542.93585
http://wala.sf.net
http://wala.sf.net
https://doi.org/10.1145/1348250.1348255
https://www.ndss-symposium.org/ndss2015/information-flow-analysis-android-applications-droidsafe
https://www.ndss-symposium.org/ndss2015/information-flow-analysis-android-applications-droidsafe
https://doi.org/10.1145/3133926
https://doi.org/10.1145/3133926
https://doi.org/10.1145/3088515.3088519
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/379605.379665
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1145/3133924
https://doi.org/10.1145/2462156.2462191
https://doi.org/10.1145/2462156.2462191
https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1007/11688839_5
https://doi.org/10.1145/2025113.2025160
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1007/978-3-662-48288-9_10
https://doi.org/10.1007/978-3-662-48288-9_10
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15
https://doi.org/10.1007/3-540-48166-4_13
https://doi.org/10.1145/566172.566174
https://doi.org/10.1145/566172.566174
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1109/ICSE.2012.6227127
http://doop.program-analysis.org
https://doi.org/10.1561/2500000014
https://doi.org/10.1561/2500000014
https://doi.org/10.1007/978-3-319-26529-2_26
https://doi.org/10.1145/1926385.1926390

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yue Li, Tian Tan, Anders Møller and Yannis Smaragdakis

[33] Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspec-
tive analysis: context-sensitivity, across the board. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.).
ACM, 485–495. https://doi.org/10.1145/2594291.2594320

[34] Manu Sridharan and Rastislav Bodík. 2006. Refinement-based context-sensitive
points-to analysis for Java. In Proceedings of the ACM SIGPLAN 2006 Conference
on Programming Language Design and Implementation, Ottawa, Ontario, Canada,
June 11-14, 2006, Michael I. Schwartzbach and Thomas Ball (Eds.). ACM, 387–400.
https://doi.org/10.1145/1133981.1134027

[35] Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav.
2013. Alias analysis for object-oriented programs. In Aliasing in Object-Oriented
Programming. Types, Analysis and Verification, Dave Clarke, James Noble, and
Tobias Wrigstad (Eds.). Lecture Notes in Computer Science, Vol. 7850. Springer,
196–232. https://doi.org/10.1007/978-3-642-36946-9_8

[36] Manu Sridharan, Stephen J. Fink, and Rastislav Bodík. 2007. Thin slicing. In
Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation, San Diego, California, USA, June 10-13, 2007, Jeanne
Ferrante and Kathryn S. McKinley (Eds.). ACM, 112–122. https://doi.org/10.1145/
1250734.1250748

[37] Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-object-sensitive pointer
analysis more precise with still k-limiting. In Static Analysis - 23rd International

Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings (Lecture
Notes in Computer Science), Xavier Rival (Ed.), Vol. 9837. Springer, 489–510. https:
//doi.org/10.1007/978-3-662-53413-7_24

[38] Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and precise points-to analysis:
modeling the heap by merging equivalent automata. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev
(Eds.). ACM, 278–291. https://doi.org/10.1145/3062341.3062360

[39] Frank Tip. 1995. A survey of program slicing techniques. J. Prog. Lang. 3, 3 (1995).
http://compscinet.dcs.kcl.ac.uk/JP/jp030301.abs.html

[40] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java bytecode optimization framework. In Pro-
ceedings of the 1999 conference of the Centre for Advanced Studies on Collaborative
Research, November 8-11, 1999, Mississauga, Ontario, Canada, Stephen A. MacKay
and J. Howard Johnson (Eds.). IBM, 13. https://doi.org/10.1145/781995.782008

[41] Shiyi Wei and Barbara G. Ryder. 2015. Adaptive context-sensitive analysis for
JavaScript. In 29th European Conference on Object-Oriented Programming, ECOOP
2015, July 5-10, 2015, Prague, Czech Republic (LIPIcs), John Tang Boyland (Ed.),
Vol. 37. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 712–734. https:
//doi.org/10.4230/LIPIcs.ECOOP.2015.712

https://doi.org/10.1145/2594291.2594320
https://doi.org/10.1145/1133981.1134027
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1007/978-3-662-53413-7_24
https://doi.org/10.1007/978-3-662-53413-7_24
https://doi.org/10.1145/3062341.3062360
http://compscinet.dcs.kcl.ac.uk/JP/jp030301.abs.html
https://doi.org/10.1145/781995.782008
https://doi.org/10.4230/LIPIcs.ECOOP.2015.712
https://doi.org/10.4230/LIPIcs.ECOOP.2015.712

	Abstract
	1 Introduction
	2 Background
	3 The Scaler Framework
	3.1 Scalability Thresholds
	3.2 Total Scalability Thresholds
	3.3 Overall Approach

	4 Estimating the Number of Contexts
	5 Implementation
	6 Evaluation
	6.1 Scalability and Precision of Scaler-Guided Pointer Analysis
	6.2 Comparison with Introspective Analyses
	6.3 Scaler's Effectiveness as a Pre-Analysis
	6.4 Scaler-Guided Pointer Analysis with Different TSTs and Memory Sizes

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

