
Model-Based Testing of
Breaking Changes in Node.js Libraries

Anders Møller

Aarhus University, Denmark

amoeller@cs.au.dk

Martin Toldam Torp

Aarhus University, Denmark

torp@cs.au.dk

ABSTRACT

Semantic versioning is widely used by library developers to indicate

whether updates contain changes that may break existing clients.

Especially for dynamic languages like JavaScript, using semantic

versioning correctly is known to be difficult, which often causes

program failures and makes client developers reluctant to switch

to new library versions.

The concept of type regression testing has recently been intro-

duced as an automated mechanism to assist the JavaScript library

developers. That mechanism is effective for detecting breaking

changes in widely used libraries, but it suffers from scalability limi-

tations that make it slow and also less useful for libraries that do

not have many available clients.

This paper presents a model-based variant of type regression

testing. Instead of comparing API models of a library before and

after an update, it finds breaking changes by automatically gener-

ating tests from a reusable API model. Experiments show that this

new approach significantly improves scalability: it runs faster, and

it can find breaking changes in more libraries.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;

Software testing and debugging.

KEYWORDS

semantic versioning, JavaScript

ACM Reference Format:

Anders Møller and Martin Toldam Torp. 2019. Model-Based Testing of

Breaking Changes in Node.js Libraries. In Proceedings of the 27th ACM Joint
European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn,
Estonia.ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3338906.3338940

1 INTRODUCTION

An important challenge in software maintenance is how library

developers can make updates without unintentionally breaking the

existing clients of the libraries. Library developers commonly use

the semantic versioning scheme to indicate if an update contains

backward incompatible changes, also called breaking changes. With

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00

https://doi.org/10.1145/3338906.3338940

semantic versioning, updates are marked as major when they are

backward incompatible and minor or patch otherwise. Generally,

library developers should strive toward creating backward compat-

ible updates since clients often apply such updates automatically,

and instant rollout of updates can be critical for security fixes.

A considerable weakness of semantic versioning is that library

developers mostly rely on their own estimates when deciding which

semantic versioning category an update belongs to. Previous work

has shown that developers often incorrectly classify updates as

minor or patch despite breaking changes [3, 6, 9, 15, 17]. This

is especially problematic for dynamically typed languages, like

JavaScript, where mismatches between the library and the client

code are not detected until run-time. JavaScript application pro-

grammers use libraries extensively; the npm
1
repository contains

more than 750 000 modules, mostly libraries, many of which have

thousands of daily downloads and are frequently updated.

A few tools exist for helping developers detect breaking changes

before an update is released to the clients. Examples include APIDiff,

Clirr, and Revapi for Java [8], the elm diff tool
2
for elm, and

NoRegrets [15] and dont-break3 for JavaScript. A common prop-

erty of these tools is that they compute the changes to the types of

the public API of the library for a given update, and then identify

the changes that may break clients. Although this approach can

only detect type-related breaking changes, not semantic changes

that affect the library functionality but preserve the types, previous

work has shown that it is strong enough to catch most breaking

changes in practice [4, 15].

The existing techniquesNoRegrets and dont-break for JavaScript
require running the test suites of a library’s clients to detect break-

ing changes when the library has been updated. That approach has

several disadvantages. First, installing the client test suites may

consume a considerable amount of storage, and running them of-

ten takes significant time, although typically only a small part of

those test suites is relevant for the library. The dont-break tool

simply reports breaking changes whenever a client test fails with

the updated version of the library. In contrast, NoRegrets uses

a technique called type regression testing. It performs a dynamic

analysis of the client test executions to infer models of the library

API before and after the library update, which leads to more er-

rors being detected and to more actionable error reports for the

library developer. However, an important limitation of NoRegrets

is that it can only use those clients whose dependencies include

the current version of the library. For example, after a new major

release of the library, the clients cannot be used by NoRegrets

until they have been updated to the new version. (We explain this

1https://www.npmjs.com
2https://package.elm-lang.org/
3https://www.npmjs.com/package/dont-break

https://doi.org/10.1145/3338906.3338940
https://doi.org/10.1145/3338906.3338940
https://doi.org/10.1145/3338906.3338940
https://www.npmjs.com
https://package.elm-lang.org/
https://www.npmjs.com/package/dont-break

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Anders Møller and Martin Toldam Torp

technical limitations of NoRegrets in more detail in Section 7.)

As a consequence, we find that NoRegrets does not work well on

libraries that only have few available clients.

In this paper, we present a new technique for finding breaking

changes in Node.js library updates, which does not suffer from these

limitations of existing tools and yet finds more breaking changes.

The new technique is implemented in the tool NoRegrets+. It bor-

rows the concept of dynamically computed API models introduced

by NoRegrets, however, NoRegrets+ does not need to re-run all

the client tests at every new release candidate of a library. Instead,

from a single execution of the client tests it computes an API model

that can be used for checking multiple subsequent updates of the li-

brary. It does so by using the model to guide a dynamic exploration

of the library, while checking that the types of the values that flow

between the library and the clients are compatible with the model.

Since NoRegrets+ only uses the client tests to generate the

initial model, it avoids running the irrelevant code of the client

tests in the checking phase, which makes it considerably faster than

NoRegrets. The models are typically not very large, so they are

also more easily stored than the whole set of clients. Additionally,

this new approach is less sensitive to the versioning constraints in

the client dependencies, which makes it useful even for libraries

with relatively few clients.

In summary, this work makes the following contributions:

• We present a new model-based approach to type regression

testing, designed to overcome the main practical limitations of

the NoRegrets technique.

• We demonstrate by an experimental evaluation of our imple-

mentation NoRegrets+ that it is able to find more breaking

changes than NoRegrets, an order of magnitude faster and

requiring less space, and that the new approach works better

for libraries where relatively few clients are available. Specifi-

cally, applying NoRegrets+ to a total of 1 914 minor or patch

updates of 25 Node.js libraries with varying numbers of clients

detects 84 breaking changes, where NoRegrets in comparison

only finds 28.

The tool NoRegrets+ is available at https://brics.dk/noregrets/.

2 MOTIVATING EXAMPLE

To illustrate the practical limitations of the existing techniques

for detecting breaking changes in JavaScript libraries, consider the

big-integer library for arbitrary precision integer arithmetic.
4

Example 1 The patch update of big-integer from version 1.4.6

to version 1.4.7 introduced a new representation of integers that

are small enough to fit in a primitive number, based on a new con-

structor named SmallInteger. The library internally uses a function

parseValue to create a representation of a big integer from some

user-supplied input, for example, a string representation of the in-

teger in decimal form. The update contains the following changes:

1 //big-integer 1.4.6

2 function parseValue (v) {

3 ...

4 return new BigInteger(...);

5 }

4https://www.npmjs.com/package/big-integer

6 //big-integer 1.4.7

7 function parseValue (v) {

8 if (isPrecise(v)) {

9 return new SmallInteger(v);

10 }

11 ...

12 return new BigInteger(...);

13 }

The new SmallInteger constructor is used instead of BigInteger

when the user-supplied value is small enough (lines 8–10). The

SmallInteger constructor internally uses a primitive number to rep-

resent its value, which makes it more efficient than the array of

numbers used by BigInteger. To make the underlying represen-

tation transparent to the users, the update also includes opera-

tions on SmallInteger objects mirroring the existing functionality

of BigInteger. All the operations performed on these types are

overloaded, for example, it is possible to seamlessly multiply a

SmallInteger with a BigInteger. With this optimization, the big-
integer library became much faster at processing smaller integers

with the release of version 1.4.7.

However, the valueOfmethod behaves differently. On BigInteger

it returns a best-effort conversion to a primitive number, while on

SmallInteger it instead returns a reference to the SmallInteger ob-

ject itself. Because of this difference, the update contains a breaking

change that should not have been introduced in a patch update. The

severity of this breaking change is demonstrated by the fact that the

big-integer developers released a patch of this issue (version 1.4.12)

even after version 1.5.0 was released to also accommodate clients

that automatically apply patch updates but not minor updates.

As mentioned in Section 1, the dont-break tool works by running
the test suites of clients of the library before and after the update.

One such client is the deposit-iban5 library, which contains the

following code:

14 const bigInt = require('big-integer');

15 export function isValidIban(iban) {

16 ...

17 const bban = ... // '620000000202102329006182700';
18 const checkDigitBigInt = bigInt(bban);

19 let checkDigitNumber =

20 String(98 - checkDigitBigInt.mod(bigInt('97')));

21 ...

22 }

Before the upgrade of big-integer, in line 20 the mod method re-

turns a BigInteger object whose valueOf method is invoked implic-

itly at the ‘-’ operator. After the upgrade, mod instead returns a

SmallInteger object with the different valueOf method, which re-

turns the SmallInteger object instead of a primitive number. This

means that at the ‘-’ operator, JavaScript implicitly now also in-

vokes SmallInteger’s toString method, which returns a string that

in turn is coerced into a primitive number. The test suite of deposit-
iban does reach the isValidIban function and the different behavior

in line 20. Nevertheless, all the tests still succeed with the broken

version 1.4.7 of big-integer because the JavaScript runtime coerces

the result of the mod call to the same primitive number as in ver-

sion 1.4.6, even though the behavior of valueOf has changed. As a

consequence, dont-break misses the breaking change.

5https://www.npmjs.com/package/deposit-iban

https://brics.dk/noregrets/
https://www.npmjs.com/package/big-integer
https://www.npmjs.com/package/deposit-iban

Model-Based Testing of Breaking Changes in Node.js Libraries ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

In contrast, the NoRegrets tool can detect this breaking change

using deposit-iban’s test suite. TheAPImodel produced byNoRegrets

for big-integer version 1.4.6 will state that valueOf returns a number,

whereas the model of version 1.4.7 will state that valueOf returns

an object. Clearly, these two types are not interchangeable, so a

breaking change is reported. However, NoRegrets still runs all of

deposit-iban’s test suite, which consists of 45 separate tests where

only some use big-integer. That test suite was naturally developed

to test the logic of deposit-iban rather than that of big-integer, so
even for those tests that do use big-integer, most of the work is

irrelevant from the perspective of determining whether the API of

the big-integer library has changed.

With our new approach, NoRegrets+, the test suites of the

clients are still required to infer the initial API model of big-integer.
However, once this initial model has been constructed, NoRegrets+

checks the types of the library’s API by dynamically exploring it

based on the information in the model. Specifically, for the afore-

mentioned breaking change, all NoRegrets+ needs to do is to load

the big-integer library, call the mod function with the right argu-

ments, call valueOf on the result, and assert that the type is com-

patible with the type in the model. Expressed as JavaScript code,

this corresponds to executing the following test:

23 const bigInt = require('big-integer');

24 assert(typeof(bigInt('620000000202102329006182700')

25 .mod(bigInt('97')).valueOf())

26 === "number")

With this approach there is no need for storing the entire deposit-
iban client and its test suite (and similarly for all the other clients

of big-integer), and the breaking change detection phase is much

faster since the irrelevant work is avoided.

3 OVERVIEW

The purpose of NoRegrets+ is to help Node.js library developers

determine if a modification of a library results in breaking changes

in the types of the library’s API.

The intended usage is as follows. First, the library developer

uses the model generation phase of NoRegrets+ that automatically

fetches publicly available clients and their tests from GitHub, and

then runs the tests and simultaneously records the interactions with

the library to form a model of the library’s API. When the library

developer is later ready to release an update, NoRegrets+ is run in

the type regression testing phase6 on the updated version of the li-

brary code, and a set of non-backward-compatible differences in the

API types is reported. If the set is empty, then the library developer

can confidently mark the update as either minor or patch, since

the API types of the library probably did not change. On the other

hand, a nonempty set indicates changes to the API. If a manual

inspection of the causes of the warnings produced by NoRegrets+

shows that the differences are unlikely to cause problems in prac-

tice, then the developer can go ahead and release the new code

as a minor or patch update. If instead the warnings reveal more

serious breaking changes, then the developer can either release

the changes as a major update (and appropriately document the

6
Using the terminology introduced byMezzetti et al. [15], a type regression is a change in
the type signatures of the library API that is incompatible with the mutual expectations

of the client and the library developers.

breaking changes), or, if the changes were unintended, choose to

fix the library code and rerun the checking phase of NoRegrets+

to check that the type regressions are gone and that no new type

regressions were introduced in the process. The checking phase is

fast enough to be integrated into the library’s integration test suite,

such that NoRegrets+ can be used continuously to check for type

regressions during the development cycle.

Because of the dynamic nature of JavaScript, the API models

produced by NoRegrets+ are of course not perfect, so the tool

should be used as a supplement, not a substitute for the developer’s

understanding of the library code. However, as shown in previous

work [15] and in the experimental evaluation of NoRegrets+ (Sec-

tion 6), library developers often overlook breaking changes, and

NoRegrets+ can catch many of them.

Example 2 Continuing Example 1, NoRegrets+ will first gener-

ate an API model for version 1.4.6 of big-integer, by running the test
suite of deposit-iban while dynamically analyzing the interactions

between the client and the library. The main constituent of an API

model is a map from dynamic access paths to types, which we define

formally in Section 4. Intuitively, a dynamic access path (or path,

for short) refers to the value that appears as result of performing

a sequence of operations, for example, a call from the client to a

library function, or a write within the library to an object originat-

ing from the client. Types include the ordinary JavaScript types,

such as string and number, and also concrete primitive values. For

example, the following paths expose the problem from Example 1:

p1 : require(big-integer)
a→arg0

p2 : require(big-integer) b→arg0

p3 : require(big-integer)()b
p4 : require(big-integer)()a .mod

c→arg0

p5 : require(big-integer)()a .mod()c .valueOf()d

A model that includes these paths (and many others) is generated

when using the client test code shown in lines 14–22. For line 18

when the client calls bigInt, the path p1 refers to the value being
read by the library function when accessing argument number 0, in

this case the string '620000000202102329006182700'. For the second

call to bigInt in line 20, p2 similarly refers to the string '97', and p3
refers to the return value. The path p4 refers to the value read by the
mod library function when it reads its argument number 0. Finally,p5
refers to the value returned by the implicit call to valueOf at the ‘-’
operator in line 20 as the type number. The labels a, b, and c uniquely
identify the function calls involved; specifically, we see that p1, p4,
and p5 involve the same call to require('big-integer'), and p4 and
p5 involve the same call to mod. An API model additionally contains

information about the order in which the paths have been observed

and how values flow between paths, which we describe in Section 4.

Such amodel contains enough information to enable NoRegrets+

to automatically produce type regression tests like the one shown in

lines 23–26. For example, when NoRegrets+ is run in the checking

phase on version 1.4.7 of big-integer, it simulates the individual

actions of the path p5 and observes that valueOf returns an object

instead of a number, and therefore issues a type regression warning.

To reproduce the actions of p5, NoRegrets+ obtains arguments

for the calls to mod and the main function of big-integer simply by

inspecting the model at p1, p2, and p4. This process of generating
tests from the model is described in more detail in Section 5.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Anders Møller and Martin Toldam Torp

4 PHASE I: MODEL GENERATION

We obtain realistic executions of the library of interest by leveraging

the publicly available test suites of clients of the library. Running

the test suites using program instrumentation with ES6 proxies,

NoRegrets+ can monitor the flow of values between the clients

and the library, which makes it possible to build a model of the

public API of the library. Although this phase of NoRegrets+ is

conceptually very close to NoRegrets, for completeness we briefly

explain NoRegrets+’s notion of API models, and we point out the

important differences.

API models An API model is a triple (π ,σ , ρ). We first explain

π , which is map of the form π : Path → Type that associates types
with elements of a library API. The set Path consists of dynamic
access paths, each being a sequence of actions, as described in the

following grammar by p and α , respectively.

p ::= ε | require(n) | p α
α ::= .n | ()κ | new()κ | κ→argj | ·n→

Dynamic access paths can be thought of as references to elements

of the library’s API. Each kind of action corresponds to a JavaScript

operation, and a path corresponds to a sequence of operations. All

paths beginwith a require(n) action, wheren is the name of a Node.js

module.
7
The require(n) action can be followed by a sequence of

property reads (denoted .n where n is a property name), function

and constructor applications (denoted ()κ and new()κ where κ is

explained below) and argument reads (denoted

κ→argj where j
indicates the zero-indexed position of the argument). We refer to

Mezzetti et al. [15] for further description of these different kinds

of actions that also appear in NoRegrets.

In NoRegrets+, paths can additionally contain write actions

(denoted ·n→, where n is the property being written), for modeling

side-effects of the client and library functions in the API models.

The κ label in the actions is used to distinguish calls to the same

function.
8
In an argument read action,

κ→argj , the label κ identifies

the function call for which the argument is being read. The purpose

of these modifications to the Path mechanism becomes clear when

we explain the type regression testing phase in Section 5.

As an example, the qs9 library has a method named parse that

in version 2.2.1 unintentionally writes to the value property of the

object given as argument (this error is described in more detail in

Section 6.2). We can refer to the value being written using the path

require(qs).parse
a→arg0 · value →. This path describes the follow-

ing actions: load the library using require('qs'), invoke its parse

method (with an argument obtained via another part of the model),

and then write to the value property of its argument. (The action

label a is not relevant in this example.) The position of an action in

the path shows whether it appears in client code or in library code:

every argument read or write action corresponds to switching side,

as indicated by the → symbols. For this specific path, invoking

require('qs') and accessing its parse method happens in client

7
Node.js libraries are loaded via the built-in require function, as shown in Section 1.

8
Because of the introduction of the κ labels, NoRegrets+ does not need to track the

number of arguments at calls as done by NoRegrets. The array access abstraction,

which is used in NoRegrets to model reads of array indices, is also not needed in

NoRegrets+. Instead the property read action .n is used where n is the array position

being read.

9https://www.npmjs.com/package/qs

code, but reading the method argument and writing to its value

property happens in library code. Since the property write happens

on an object that comes from the client code, the value being writ-

ten by the library is visible on the client side, as indicated by the

last→ symbol. We say that a path is covariant if the value described
by the path flows from library to client, corresponding to an even

number of → symbols, and contravariant in the opposite case.

A type t ∈ Type can be a standard JavaScript runtime type

(number, boolean, object, etc.), a Node.js specific type like stream

or event-emitter, or the default type ◦ which we use for paths that

do not belong to the library’s public API.

t ::= ◦ | undefined | string | boolean | number | object | function
| array | set | map | event-emitter | stream | throws | prim

Unlike in NoRegrets, a type can also be a JavaScript primitive

value (denoted prim), similar to how primitive values can be used as

types in TypeScript.
10

This extension is made because NoRegrets+

needs to reconstruct arguments for library functions in the type

regression testing phase.
11

We do not need traditional record types

or function types, because the different properties of an object or

parameters of a function are represented by different paths.

The second and third components of the model triple, σ and

ρ, are new to NoRegrets+. The second component, σ , is a partial
map σ : Path ↪→ N that associates a unique number with each

path p where π (p) , ◦. It has the following property: for any two

paths p and p′, σ (p) < σ (p′) if and only if p is encountered before

p′ in the model generation phase described below. This information

is needed by the testing phase to be able to invoke the library

functions in the same order as the client on which the model is

based, which we will later demonstrate in Example 4. For paths

that are encountered multiple times during the model generation,

we always use the observations from the first one.

The third component, ρ, is a binary relation ρ of the form ρ ⊆
Path × Path. This relation is used to track how values flow from

one path into another; for example, if a value returned by a library

function call, represented by the path p, is later passed back to the

library as an argument to a library function, where the argument

is represented by the path p′, then (p,p′) ∈ ρ.

Model generation To generate an API model (π ,σ , ρ) of a given
library based on a collection of client test suites, NoRegrets+ in-

struments the loaded module with ES6 proxies, runs the client test

suites, and records the interactions between the library and the

clients. The details of how this instrumentation works are explained

by Mezzetti et al. [15], except for some straightforward adjustments

to accommodate our new variant of API models.

One of the adjustments involves extending the π component

with a new path p. The type associated with p now depends on the

variance of p: if p is contravariant and the valuev observed at p is of

a primitive type t , thenv is used as the type instead of t . For example,

if the value is the string 'foo' and p is contravariant then the type

10https://www.typescriptlang.org/docs/handbook/advanced-types.html
11
For readers who are familiar with NoRegrets: NoRegrets+ does not use intersec-

tion types nor union types. NoRegrets uses intersection types to model JavaScript

prototype chains, however, for NoRegrets+ to reconstruct the client arguments in

tests, it must know exactly on which object in a prototype chain a property resides,

so extended paths such as p .prototype are used instead to refer to the prototype of a

path p . Union types are used by NoRegrets to model polymorphic functions, but are

not needed in NoRegrets+ since different calls are distinguished using the κ labels.

https://www.npmjs.com/package/qs
https://www.typescriptlang.org/docs/handbook/advanced-types.html

Model-Based Testing of Breaking Changes in Node.js Libraries ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

p ∈ Path π (p) σ (p)
require(lib) object 1

require(lib).f function 2

require(lib).f
a→arg0 true 3

require(lib).f()a object 4

require(lib).f b→arg0 false 5

require(lib).f()b object 6

require(lib).f()a .p number 7

require(lib).g function 8

require(lib).g
c→arg0 object 9

require(lib).g()c number 10

other paths ◦ undefined

ρ = {(require(lib).f()b , require(lib).g c→arg0)}

Figure 1: API model for Example 3.

is ’foo’, otherwise it is string. Thereby we ensure that the type

regression testing phase of NoRegrets+ has values available for

library function arguments, and the model compressionmechanism,

which we will describe shortly, is not restricted by too specific types.

Another adjustment involves extending the ρ relation whenever

a value flows from one path to another. In Example 2, the value

created by the bigInt call in line 20 represented by the path p3
flows into the argument of the mod call represented by the path p4,
resulting in (p3,p4) being added to ρ.

Example 3 For the following simplistic library and client,

NoRegrets+ constructs the model shown in Figure 1.

27 //library 'lib'
28 module.exports.f = function (flag) {

29 if (flag) { return { p : 42}; }

30 else { return {}; }

31 }

32 module.exports.g = function (x) {

33 return 87;

34 }

35 //client test suite

36 const lib = require('lib');

37 const o1 = lib.f(true);

38 const o2 = lib.f(false);

39 assert(o1.p === 42);

40 assert(lib.g(o2) === 87);

The client code loads the library lib, calls the f method with the

argument true and stores the result in o1, then it calls f with the

argument false and stores the result in o2. Finally it checks that

o1.p is 42 and that lib.g called with o2 as argument returns 87.

The paths and types of every operation taking place at the bound-

ary of the client and the library are recorded in π : the read of the f,

p, and g properties, the two calls to f, the call to g, and finally the

argument reads at the three calls. Notice how the two calls to f are

distinguished using the labels a and b in the paths. If we were to

abstractly refer to both calls using just one path, then there would

be no way to determine if the p property should be present on the

return value only when f is called with the argument true, when it

is called with the argument false, or in both cases. The fact that

the argument passed to g is the value returned by the call to f in

line 38 is indicated by the single entry in ρ.

Model compression The action label κ is used to distinguish

different calls to the same library function, as mentioned above.

Because of these labels, models may become much larger than

in NoRegrets if the same library function is called many times.

To mitigate this model size explosion problem, we add a simple

compression mechanism. The idea is to only include one call of a

polymorphic function for each of its possible return types since

that suffices for full coverage of the types. We first identify pairs

of paths q = p()a and q′ = p()a′ where q and q′ are covariant

paths representing two calls to the same function only separated

by different labels, a , a′. If all paths s = qr and s ′ = q′r , where r
is a sequence of actions that does not begin with an argument read

action, the types are equal, i.e. π (s) = π (s ′), and s and s ′ do not

appear in ρ, then we remove q from the model and all paths that

have q as a prefix. Paths with an argument read action are skipped

because they are only used to synthesize arguments in the type

regression testing phase, so covering all argument types does not

increase the recall of NoRegrets+. Paths appearing in ρ are not

removed since they may be needed as arguments to other functions.

5 PHASE II: TYPE REGRESSION TESTING

The key novelty of NoRegrets+ is the use of model-based testing,

based on the automatically generated models. When the library

developer has obtained an API model of one version of a library and

later wishes to release an update, NoRegrets+ uses the model to

perform a dynamic exploration of the updated library while testing

for type regressions relative to the model.

The dynamic exploration consists of two primary steps:

(1) For covariant pathsp where π (p) , ◦, NoRegrets+ executes the
actions described by p and checks that the type of the resulting

value is compatible with the type π (p) as explained below.

(2) For contravariant paths p whose actions happen to be executed

as a consequence of step 1, NoRegrets+ checks that π (p) , ◦.

Intuitively, the first step corresponds to checking the types of

the values that are passed by the library to its client. For example, a

library method call that returned a string before the update should

not return a number after the update. The second step corresponds

to checking that the requirements of the values supplied by the

client to the library are not strengthened in the update. For example,

after the update, a library function should not read more properties

of an object that has been supplied by the client.

If any of the checks performed in these two steps fail, then it is

an indicator that the API of the library has changed in a way that

could be breaking clients.

API exploration In the type regression testing phase,

NoRegrets+mimics clients by performing the computations corre-

sponding to the actions of the covariant paths in the model. These

computations sometimes require values from other paths, which is

handled by a synthesis procedure described below.

Example 4 To call g in line 40 in Example 3, we first need to call

f as done in line 38 since its return value is used as argument to g.

It is common for paths to have shared prefixes, for example, all

paths in Figure 1 have require(lib) as a prefix. For such paths, the

value obtained for the prefix is reused for all of them, to ensure that

potential side-effects in the library functions are handled correctly.

To accommodate these requirements, NoRegrets+ represents a

model π as a tree τ . Every node x in τ is a triple x = (px ,Cx ,vx)
consisting of a path px ∈ Path, a set Cx of child nodes, and a

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Anders Møller and Martin Toldam Torp

JavaScript value vx that is assigned when x has been processed

as explained below. The tree has one node for each path p where

π (p) , ◦. A node x is child of x ′ if px = px ′α for some action α . In
the exploration of the API, NoRegrets+ traverses τ starting at the

root, and when a node x has been processed, the resulting value is

stored in the tree as vx . A child is never processed until its parent

has been processed. When NoRegrets+ has to choose between

two nodes x and x ′ to process next, it picks x if σ (px) < σ (px ′).
Thereby the nodes are processed in the same order as they were

added to π in the model generation phase.

In the process of exploring the API, NoRegrets+ needs to con-

vert actions into their corresponding JavaScript operations. To pro-

cess a node x whose parent is x ′, NoRegrets+ performs a pattern

match of px and executes the associated operations:

require(n): Load the module by calling require(n).
p .n: Fetch the valuevx ′ (corresponding top) and read itsn property.
p()κ : First, fetch the value vx ′ , which is the function to be called.

Next, construct the arguments. Each argument has its own node

x i whose path is px i = p
κ→argi , which is a child of x ′. The

argument at position i is constructed by invoking the synthesis
procedure described below for the node x i . Finally, invoke vx ′

with the synthesized arguments to obtain the result value.

pnew()κ : Constructor call actions are processed exactly like call ac-

tions, apart from the function value being invoked as a con-

structor (with new).

p ·n→: Invoke the synthesis procedure for x to produce a value,

and then write that value to the property n of vx ′ .

Paths ending in argument read actions are handled by the synthesis

procedure described next.

Synthesis of values The synthesis procedure is used above to

construct arguments for library function calls and to construct

values for writes to library objects. The procedure is invoked with a

node x as argument. If there exists a node x ′ such that (px ′ ,px) ∈ ρ
then the desired value originates from an earlier interaction with

the library represented by a path px ′ , so the value vx ′ is returned.

Otherwise, we proceed according to the type π (px) of x :
• If the type is a primitive value then that value is returned.

• If the type is object or one of the Node.js-specific types, then

NoRegrets+ creates a new empty object and wraps it in a proxy

object, which is then returned. The purpose of the proxy is

twofold. If the proxy is later used as an argument to a function,

then that function might read one of its properties, q, in which

case the proxy looks for a node x ′ where px ′ = px .q among the

children of x . If x ′ is found, then the proxy recursively invokes

the synthesis procedure with argument x ′. Thereby, the prop-
erties of object arguments are constructed by need. If no node

is found, then the proxy reports a type regression indicating

that the library is now trying to read a property that it did not

previously read, cf. step 2. Writes by the library to the proxy are

handled similarly to calls from the library to client functions, as

described next.

• If the type is function then NoRegrets+ creates a new function

f that behaves as follows when called. If x has a child x ′ in
τ such that px ′ = px ()a , i.e., that path ends in a call action,

then a value vx ′ for x ′ is obtained by a recursive call to the

synthesis procedure. This value is then used as the return value

of f. Furthermore, the API exploration mechanism described

above is invoked recursively on each argument passed to f. For

each argument at position i , the API exploration checks that

it recursively satisfies the type of x i where px i = px
a→argi .

On the other hand, if no child of x with a call action is found,

then NoRegrets+ reports a type regression to indicate that a

previously uncalled callback is now being called, cf. step 2. The f

function is also wrapped in a proxy since functions can also have

properties, which may later be read if f is used as an argument.

Type checking During theAPI exploration, NoRegrets+ checks

type compatibility of the values obtained for the covariant paths,

as mentioned above for step 1. If v is the value obtained through

the application of the actions of the covariant path p, then v must

satisfy type(v) <: π (p) where type(v) denotes the type of v . A vio-

lation of this property indicates a breaking change in the library’s

API at p. The subtyping relation <: expresses which type changes

are permitted. In particular, functions are subtypes of objects, i.e.

function <: object, since JavaScript functions are basically callable

objects. We also define t <: ◦, meaning that everything is a sub-

type of ◦, thereby permitting clients to read additional properties

of library supplied objects. The subtype relation additionally in-

cludes a few rules stating that some of the Node.js specific types

are subtypes of object and/or function.

For the contravariant paths in step 2, we do not use <: but simply

check π (p) , ◦ as explained above, because the values represented

by such paths are generated by NoRegrets+, not by the library.

6 EVALUATION

As explained in Section 1, the overall goal of NoRegrets+ is to

mitigate the scalability issues of NoRegrets. To assess how well

NoRegrets+ reaches this goal, we conducted an experiment de-

signed to answer the following research questions.

RQ1 Howmany breaking changes does NoRegrets+ detect com-

pared to NoRegrets in widely used Node.js libraries, specifically

those used in the evaluation of NoRegrets [15, Section 7]?

RQ2 Howmuch faster is NoRegrets+, and howmuch space does

it require compared to NoRegrets when testing for breaking

changes in a library update?

RQ3 Can NoRegrets+ find breaking changes in libraries with

fewer clients compared to NoRegrets?

We omit a direct comparison with dont-break as it finds strictly

fewer breaking changes than NoRegrets [15].

6.1 Experimental Setup

We sampled 25 npm packages from three segments of the npm

repository as listed in Table 1. The first five packages are among

the top 10 most depended upon npm packages and are also the

packages used in the evaluation of NoRegrets. Then we have a set

of 10 packages sampled around the top 100 most depended upon

packages, and a set of 10 packages sampled around the top 1000most

depended upon package. The less depended upon packages have

fewer available clients with test suites, which both NoRegrets

and NoRegrets+ need for API model generation, but all of the

packages are widely used. Most of them have more than 100 000

weekly downloads, so breaking changes in non-major updates can

Model-Based Testing of Breaking Changes in Node.js Libraries ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 1: Experimental comparison of NoRegrets+ vs. NoRegrets.

Benchmark NoRegrets+ NoRegrets

Name LOC Dependents Updates Clients Model size Coverage BC Clients Client size Coverage BC Speed-up

debug 2.0.0 154 26 146 19 504 46 kB 50% 1 85 17 842 kB 47% 1 37.99x
async 2.0.0 1 682 26 699 5 398 1 247 kB 61% 7 70 28 365 kB 37% 3 6.34x
lodash 3.0.0 3 962 83 992 16 287 1 859 kB 65% 6 47 17 555 kB 29% 2 1.46x
moment 2.0.0 1 041 28 591 31 273 185 kB 80% 7 4 10 591 kB 44% 2 5.45x
express 3.0.0 1 011 30 561 95 183 1 245 kB 41% 11 5 42 188 kB 43% 18 3.62x

mime 1.0.0 289 3 854 33 23 4 kB 85% 0 4 25 950 kB 38% 1 3.85x
aws-sdk 2.0.1 4 821 9 223 606 27 7 kB 26% 2 2 29 766 kB 20% 0 13.92x
mysql 2.0.0 3 476 4 052 34 111 184 kB 55% 7 2 41 201 kB 49% 0 166.84x
joi 9.0.0 3 724 5 606 35 409 1 611 kB 70% 6 1 94 296 kB 5% 0 17.44x
minimatch 1.0.0 660 3 239 13 415 167 kB 73% 0 15 12 906 kb 43% 0 21.10x
autoprefixer 1.2.0 2 668 5 109 95 64 513 kB 75% 10 1 12 026 kB 77% 1 5.92x
qs 1.0.0 220 4 110 43 237 84 kB 93% 14 0 N/A N/A 0 N/A

immutable 1.0.0 115 5 326 60 2 3 kB 26% 2 0 N/A N/A 0 N/A

ora 1.0.0 103 4 623 5 179 19 kB 48% 0 0 N/A N/A 0 N/A

mongoose 1.0.0 2 105 6 137 474 52 19 kB 30% 2 0 N/A N/A 0 N/A

big-integer 1.0.0 312 357 89 20 183 kB 67% 1 0 N/A N/A 0 N/A

boxen 1.0.0 111 634 6 43 15 kB 80% 0 0 N/A N/A 0 N/A

react-onclickoutside 4.0 69 516 46 11 0 kB 0% 0 0 N/A N/A 0 N/A

d3-shape 1.0.0 1 528 449 11 38 739 kB 26% 0 0 N/A N/A 0 N/A

webpack-stream 2.0.0 138 302 14 23 259 kB 70% 1 0 N/A N/A 0 N/A

qiniu 1.2.0 219 254 38 14 3 kB 28% 1 0 N/A N/A 0 N/A

koa-send 1.0.0 63 306 22 25 1 kB 24% 2 0 N/A N/A 0 N/A

twilio 1.0.0 530 506 89 24 45 kB 53% 1 0 N/A N/A 0 N/A

wreck 2.0.0 413 375 18 44 446 kB 42% 0 0 N/A N/A 0 N/A

node-rest-client 1.0.0 354 316 17 29 289 kB 39% 3 0 N/A N/A 0 N/A

Total 84 28

Arithmetic mean 367 kB 52% 30 244 kB 25.8x

have severe consequences. We skipped packages whose newest

version was less than 1.0.0 since such packages are not required to

follow semantic versioning. We also skipped very small packages

with trivial APIs, such as is-stream and make-dir, since their update
rate is low and their APIs are unlikely to change.

We selected the first major version of every package and applied

NoRegrets+ and NoRegrets to every patch and minor update up

to the newest version (as of January 2019). For reasons discussed in

Section 7, NoRegrets+ is able to use more clients than NoRegrets

when generating API models, however, when comparing the exe-

cution times of the two tools, we constrained NoRegrets+ to use

the same set of clients as NoRegrets to ensure a fair comparison.

Because finding clients for many libraries is a time consuming pro-

cess, we limited the client retrieval phase to consider at most 2 000

packages. For NoRegrets, we built the API model only for the first

version, and then reused this model in the test of every update. The

execution time of NoRegrets+ is measured as the time it takes to

execute the type regression testing phase, whereas for NoRegrets

it is the time it takes to generate the post-update model and com-

pare it with the pre-update model. In both cases, this reflects the

work done when testing a new update of a library for breaking

changes. The time required to generate a model is the same for the

two tools.

For every type regression reported by the two tools at minor

or patch updates, we manually inspected the type regression to

identify its cause and determine if it is an actual breaking change

(meaning that the type of some element of the library API has

changed) or a false positive. It is common for one breaking change

to result in multiple type regression warnings, for example, if the

return type changes for a function with many call actions then a

type regression is reported for every call. Such related regressions

are easy to identify by their common structure, so we group them

and only count them as one breaking change.

6.2 Results and Discussion

We present the results of running NoRegrets and NoRegrets+ on

the 25 benchmarks in Table 1. The columns contain left to right:

the benchmark name and the major version on which the testing

was started, lines of code in the initial version excluding tests, to-

tal number of direct dependents in npm, numbers of minor and

patch updates, the number of clients found by the client detec-

tion phase of NoRegrets+, the average NoRegrets+ model size

per client, the statement coverage of NoRegrets+ in the initial

benchmark version, the number of breaking changes (BC) found by

NoRegrets+, the number of clients found by the client detection

phase of NoRegrets, the average NoRegrets client size, the state-

ment coverage of NoRegrets in the initial benchmark version, the

number of breaking changes found by NoRegrets, and the average

speed-up ratio of NoRegrets+ compared to NoRegrets. For both

tools, the reported numbers of breaking changes are only counting

true positives, and excluding duplicates with same root cause as

explained above.

RQ 1 Looking at the first 11 rows, which are the benchmarks

where NoRegrets has a non-empty set of usable clients, we see that

NoRegrets+ finds at least asmany breaking changes as NoRegrets

for all benchmarks apart from mime and express. NoRegrets+ de-

tects 84 breaking changes, whereas NoRegrets only detects 28.

The breaking changes found by NoRegrets+ include 11 of those

found by NoRegrets. There are two reasons why the NoRegrets

breaking changes sometimes go undetected by NoRegrets+. First,

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Anders Møller and Martin Toldam Torp

the clients used by NoRegrets are not necessarily a subset of the

clients used by NoRegrets+. The reason is that NoRegrets+ will

always use the newest version of a client that has the library as

a dependency since it is more likely to utilize more of the library

than earlier versions, however, for reasons we describe in Section 7,

NoRegrets will always pick a version of the client that satisfies

the pre-update version constraint. Second, for some benchmarks

NoRegrets+ is not able to synthesize values with enough preci-

sion to faithfully reconstruct the library-client interaction on which

the model is based. In our experiments, this situation occurs be-

cause the model generation phase of NoRegrets+ uses ES6 prox-

ies to monitor the interaction between the client and the library,

but some values do not tolerate proxification well. For example,

ServerResponse objects, which are commonly used with the HTTP

library of Node.js, will crash Node.js if they are wrapped in proxies

at certain places in the HTTP library. Therefore, NoRegrets+must

avoid using proxies on such objects, which means that their exact

structure cannot by synthesized by NoRegrets+ in the checking

phase, so NoRegrets+ has to use default values instead. This prob-

lem is especially prevalent in the express benchmark since it uses

the HTTP library of Node.js extensively. (With a further implemen-

tation effort it might be possible to mitigate such problems; we plan

to investigate this in future work.)

In addition to the 84 breaking changes detected by NoRegrets+,

the tool emitted 4 false positives (not shown in the table). False

positives may appear due to, for example, the issues with the proxy

mechanism described earlier. Some of the correctly detected break-

ing changes are of course more serious than others; we show some

examples as case studies below.

In summary, NoRegrets+ successfully detects more than twice

as many breaking changes compared to NoRegrets.

RQ 2 Looking at the speed-up column of Table 1, we see that

NoRegrets+ on average runs the type regression testing phase 25x

faster thanNoRegrets generates and checks the post-updatemodel.

For some libraries, for example the debug library, NoRegrets+ is

38x faster than NoRegrets, whereas for lodash the speed-up is only
1.46x. The relatively large difference in the speed-ups is explained

by various factors, for example, how much irrelevant code (non-

library code) is run by the client tests.

The actual time it takes to check an update for type regressions

naturally depends on the size of the generated model and the com-

plexity of the client test suites. The mean time it takes NoRegrets

to check an update on the 11 benchmarks where clients are avail-

able is 96 seconds, compared to only 15 seconds for NoRegrets+.

Excluding the outliers lodash and async, NoRegrets+ checks each

update in less than 6 seconds.

The numbers also show that NoRegrets+ requires substantially

less space than NoRegrets. The average size of a library model

produced by NoRegrets+ is 367 kB per client used for the model

construction, whereas NoRegrets requires 82x as much space.

In summary, NoRegrets+ is more than an order of magnitude

faster than NoRegrets when testing a library update for breaking

changes, and it requires substantially less space to run, whichmakes

it feasible to use NoRegrets+ in library integration test suites.

RQ3 For the second segment of the benchmarks (i.e., the libraries

sampled around top 100), NoRegrets+ finds breaking changes in 7

out of 10 benchmarks, and for the third segment (i.e., the libraries

sampled around top 1000) it finds breaking changes in 6 out of

10 benchmarks. In comparison, NoRegrets only finds breaking

changes in 2 of the benchmarks from the second segment and in

none of the benchmarks in the third segment. This shows that

NoRegrets+ scales much better for libraries with fewer clients.

For most libraries where NoRegrets+ finds no type regressions,

the generated tests cover on average 50% of the statements in the

library, which provides some indication that those updates are in

fact non-breaking. One exception is react-onclickoutside where all
of the models generated by NoRegrets+ are empty. That package

is a plugin for the browser UI library react, which means that it is

unlikely that any clients have automated tests that use it.

Case studies To give the some insight into the nature of the

breaking changes that NoRegrets+ can detect, we describe some

representative examples.

Example 5 The qs package is a library for parsing query strings.

As an example, qs.parse("p=foo") returns the object {p : "foo"} .

A special feature of the package is that it supports parsing of objects

where some on the properties are query strings that are parsed re-

cursively, for example, qs.parse({'a[b]': 'c'}) returns the nested

objects{a : {b : "c"}} .

In the update of qs to version 2.2.1, a mistake was introduced

that resulted in the parse function sometimes overwriting exist-

ing properties on object arguments. This mistake is revealed by

NoRegrets+ through a type regression on the path

p = require(qs).parse
a→arg0 ·value→

where π (p) = ◦ but a value of type string is written in version 2.2.1.

For most cases this overwrite in benign because parse overwrites

the property with its existing value, however, specifically for buffers,

parse writes the result of calling toString on the buffer.

A well-known problem with semantic versioning is that it re-

quires a specification of the library’s API,
12

typically in the form of

documentation, such that a client knows exactly what the library

expects andwhat it produces, and this is often an unrealistic require-

ment [1]. Without such a specification, any change to the library

that breaks a client might as well be classified as the client not using

the library as the library developer intended. With NoRegrets+,

we assume that the clients used in the model generation phase

adhere to the library’s specification. For clients where this is not

the case, NoRegrets+ may produce type regressions, which the

library developer could rightly classify as caused by incorrect usage

of the library. Nevertheless, we still believe that such warnings can

be beneficial, since they may point to ambiguities and underspeci-

fied points in the documentation; each such warning reveals that a

client developer has misunderstood the specification.

Example 6 The async package is a widely used library that pro-

vides a large set of utility functions for working with asynchronous

functions. One of these functions is each, which takes a collec-

tion (typically an array), an asynchronous iterator function, and a

callback function as arguments. It then asynchronously runs the

iterator on every element in the collection, eventually calling the

12“Software using Semantic Versioning MUST declare a public API” — rule 1 of the

SemVer specification, https://semver.org/.

https://semver.org/

Model-Based Testing of Breaking Changes in Node.js Libraries ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

callback when the iteration is done. The iterator function also takes

a callback, which it can call with any argument to signal an error,

which in turn calls the callback of each with the error value. A

typical use of the each function is demonstrated by the following

example where the client asynchronously performs some computa-

tion on an array of files.

41 async.each(['file1.txt', 'file2.txt'],

42 function(file, cb) {

43 var err = ... //async operation

44 if (err) { cb(err) }

45 cb();

46 },

47 function(err) {

48 console.log("error processing files");

49 });

In the update of async from version 2.0.0 to 2.0.1, the each func-

tion was changed slightly to improve its performance when the

collection is an array. While this update is non-breaking when the

iterator function is asynchronous, it unfortunately changed the

behavior of each when the iterator is synchronous. In version 2.0.0

when a synchronous iterator function calls its callback with an

error value, the each call is directly terminated potentially leaving

some elements in the array uniterated. However, in version 2.0.1 the

iteration is not terminated on an error, so all elements will always

be processed. This breaking change is detected by NoRegrets+ as

a type regression on the path

require(async).each
a→arg0 .1

which refers to the element at index 1 in the array passed to the

each call. The model states that this path is not read, nevertheless,

NoRegrets+ detects a read of this path in version 2.0.1 resulting

in a type regression being reported. Upon inspection of this type

regression, we find that the iterator function fails when processing

the first element of the array, but that does not stop each from

also beginning the processing of the second element and thereby

causing the unexpected read.

Notice that this can only break clients that use each with syn-

chronous functions, which is not allowed according to the async
specification. However, due to either a misunderstanding of the

specification or a general lack of knowledge of how asynchrony

works in Node.js, many clients use async with synchronous func-

tions. A search for “RangeError: Maximum call stack size exceeded”,
which is an error caused by the incorrect use of synchronous func-

tions, on async’s issue tracker results in no less than 22 results.

Furthermore, the first point in the “Common pitfalls” section of

the async documentation page mentions the use of synchronous

functions as a pitfall.
13

This example demonstrates that library developers may benefit

from warnings reported by NoRegrets+ even in situations where

the changed library behavior is intended by the library developer,

because many clients fail to follow the library specification and are

thereby affected by the change.

While most type regressions reported by NoRegrets+ are true

positives, some of them are unlikely to cause problems in practice if

the library developer is cautious, as demonstrated by the following

example.

13https://caolan.github.io/async/

Example 7 The joi package is a schema validation library, which

can be used to validate that objects and strings have a certain struc-

ture. Specifically, joi has a method uri that returns a schema object

for validating that strings are valid RFC3986 URIs. The uri method

takes a configuration object argument, specifying for example that

only URIs of certain schemes are allowed:

50 var v = joi.string().uri({ scheme : 'http'})

51 v.validate('http://foo.bar').error // => null

52 v.validate('https://foo.bar').error // => ValidationError

In version 13.5.0, a new optional property allowQuerySquareBrackets

was introduced. Setting this property to true configures the schema

object such that URIs with square brackets in query variables are

allowed. NoRegrets+ reports a type regressions for this change,

because joi reads the path

require(joi).string()a .uri b→arg0 .allowQuerySquareBrackets

in version 13.5.0, although the model states that no read should

occur on it. However, the developers of joi were careful enough to

introduce this change such that no existing clients were impacted.

If a client does not supply the allowQuerySquareBrackets property,

then joi will automatically assume it is false to preserve the old

behavior for existing clients. This means that although the library

API has changed in a way that could in principle break clients, the

type regression is most likely benign.

Even for type regressions that are benign as in Example 7, the

library developers may benefit from the warnings provided by

NoRegrets+. The warnings point the library developers to parts

of the API where extra care must be taken to ensure backward

compatibility and communicate to the client developers that the

newly added properties like allowQuerySquareBracketsmay conflict

with existing properties in the client objects.

7 RELATEDWORK

Our approach builds on the recent work by Mezzetti et al. [15], but

the challenge of detecting breaking changes in libraries also appears

with other programming languages, and there are also connections

to other testing techniques, in particular model-based testing.

Studies of breaking changes in library updates Breaking

changes are common across languages and ecosystems [15, 17, 19].

According to Mezzetti et al. [15], at least 5% of JavaScript packages

they studied have experienced a breaking change in a non-major

update, and that the majority of the breaking changes are due

to type-related issues. Brito et al. [3] conducted a study on why

and how Java developers intentionally break APIs, concluding that

the primary reasons are to add new features (32%), simplify the

API (29%), and improve maintainability (24%). Zerouali et al. [20]

showed that using strict version number constraint results in slow

adoption of security critical updates. Many developers want to

adopt semantic versioning, but do not trust that their dependencies

adhere to the guidelines [1].

The study by Gyori et al. [7] used client test suites to detect break-

ing changes in library updates, similar to the dont-break methodol-

ogymentioned in Section 1 but for Java. They note that it is common

practice in industry to use this form of testing, but also that apply-

ing certain test case selection criteria could yield a considerable

speed-up while preserving coverage, similar to how NoRegrets+

avoids running all the client test suites at every library update.

https://caolan.github.io/async/

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Anders Møller and Martin Toldam Torp

Tools for JavaScript To our knowledge, only the two tools

NoRegrets and dont-break exist for detecting breaking changes in

JavaScript libraries; the relations between NoRegrets+ and those

tools are explained in detail in the preceding sections.

Like NoRegrets+, NoRegrets also looks for type regressions

in Node.js library updates, but it instead generates models for both

the pre-update and the post-update version of the library, and then

compares the models to identify type regressions [15]. Because

NoRegrets needs to compute a model twice to check an update, it

is important that the clients’ dependency constraints on the library

is within the same major number as the pre-update version of the

library. As an example of why this is important, consider the case

where a library l is at version 2.0.0 and the library developer wants

to check some changes for type regressions before releasing 2.1.0.

If NoRegrets now picks a client c that depends specifically on

version 1.0.0 of l , then c expects l to expose an API that might

be considerably different from the API in 2.0.0. If l deprecated a

function д in version 2.0.0 and the developer now plans to remove

it entirely in version 2.1.0, then if the client uses this function, it

will crash with version 2.1.0, which will result in a quite differ-

ent model and therefore also many type regressions. One of these

type regressions will correctly state that д went from function to

undefined, but the rest of them are false positives caused by the

premature termination of the client. In contrast, NoRegrets+ is

able to continue testing of the library even if a type regression that

would have crashed the client is detected. This difference allows

NoRegrets+ to use a larger set of clients and thereby produce

better API models.

Tools for other programming languages For other languages

than JavaScript, there are numerous tools that help library develop-

ers detect breaking changes. Common to all these tools is that they

work for statically typed languages and rely on explicitly typed

library APIs, which make it much easier to detect type-related

breaking changes than for dynamically typed languages. For Java

there is APIDiff [2], Clirr,
14

japicmp,
15

SigTest,
16

and Revapi.
17

The Elm package manager (elm-package) promises to automatically

enforce semantic versioning, although it is also limited to detecting

type-related breaking changes.

For a dynamically typed language like JavaScript, the public

API of a library is not easily identifiable statically, which is why

we resort to the use of dynamic analysis for the model generation

phase. JavaScript library developers can choose to write TypeScript

declarations that define the public APIs of their libraries. However,

declaration files are often full of errors and rarely kept up-to-date

making them unsuitable for breaking change detection [12].

A problem related to breaking change detection is how to update

clients when their libraries evolve, also called collateral evolution.

As an example, the Coccinelle tool [16] has been designed to support

Linux developers in this respect, but it does not help the developers

determine if and where breaking changes are introduced.

14http://clirr.sourceforge.net/
15http://siom79.github.io/japicmp/
16http://wiki.netbeans.org/SigTest
17https://revapi.org/

Model-based testing and related techniques Our approach

can be seen as a form of model-based testing [18]. In NoRegrets+,

the models are inferred automatically based on dynamic analysis

of client usage.

The SCARPE tool by Joshi and Orso [10] uses a capture phase

that generates a model of a software component based on live

executions, and a replay phase that can produce regression tests

from the model. This is reminiscent of how Krikava and Vitek [11]

produce tests for CRAN packages written in R, based on executing

the small snippets of executable example code that is often included

in the documentation of such packages. In comparison with those

techniques, we use the test suites of the client packages to obtain

realistic executions of the library.

The techniques by McCamant and Ernst [13, 14] construct log-

ical models of software components written in C by dynamically

inferring likely invariants. Incompatibilities at component upgrades

can then be detected by comparing the models using an automatic

theorem prover.

The idea of extracting new tests from existing tests also appears

in the test carving technique by Elbaum et al. [5], which aims to

generate effective differential unit tests from existing system tests.

In comparison, NoRegrets+ exploits the fact that the test suite of

a client of a library often indirectly functions as a system test of

the library, which makes it possible to generate useful regression

tests from existing client test suites.

8 CONCLUSION

Breaking changes in libraries are a major concern for JavaScript

developers. For Java, the static type checker helps detecting such

issues when building an application with a new version of a library,

but due to the dynamic nature of JavaScript, breaking changes are

rarely discovered before failures appear at run-time. Type regres-

sions are a kind of breaking changes that manifest as incompatible

changes in the types of the method parameters, return values, and

object properties that constitute the API of a library. Previous work

has shown that type regressions account for many breaking changes

in widely used JavaScript libraries. The NoRegrets tool introduced

the concept of type regression testing for detecting such issues

automatically, but it is inefficient and inadequate for libraries with

relatively few clients.

By taking a model-based testing approach, our tool NoRegrets+

creates tests from a model of the library API, all fully automatically.

As shown in our experimental evaluation, this new approach is sig-

nificantly more efficient and capable of finding manymore breaking

changes, especially in libraries with fewer available clients.

With such tool support, it is our hope that JavaScript library

developers can make more informed decisions when releasing up-

dates and using semantic versioning. The experiments have also

demonstrated that there is room for improvement of the technique,

especially concerning the use of proxies in the model generation

phase, which we plan to pursue in future work.

ACKNOWLEDGMENTS

This work was supported by the European Research Council (ERC)

under the European Union’s Horizon 2020 research and innovation

program (grant agreement No 647544).

http://clirr.sourceforge.net/
http://siom79.github.io/japicmp/
http://wiki.netbeans.org/SigTest
https://revapi.org/

Model-Based Testing of Breaking Changes in Node.js Libraries ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES

[1] Christopher Bogart, Christian Kästner, and James D. Herbsleb. 2015. When

It Breaks, It Breaks: How Ecosystem Developers Reason about the Stability of

Dependencies. In 30th IEEE/ACM International Conference on Automated Software
Engineering Workshops, ASE Workshops 2015, Lincoln, NE, USA, November 9-13,
2015. IEEE Computer Society, 86–89.

[2] Aline Brito, Laerte Xavier, André C. Hora, and Marco Tulio Valente. 2018. APIDiff:

Detecting API breaking changes. In 25th International Conference on Software
Analysis, Evolution and Reengineering, SANER 2018, Campobasso, Italy, March 20-
23, 2018. IEEE Computer Society, 507–511.

[3] Aline Brito, Laerte Xavier, André C. Hora, and Marco Tulio Valente. 2018. Why

and how Java developers break APIs. In 25th International Conference on Software
Analysis, Evolution and Reengineering, SANER 2018, Campobasso, Italy, March 20-
23, 2018. IEEE Computer Society, 255–265.

[4] Danny Dig and Ralph E. Johnson. 2006. How do APIs evolve? A story of refac-

toring. Journal of Software Maintenance 18, 2 (2006), 83–107.
[5] Sebastian G. Elbaum, Hui Nee Chin, Matthew B. Dwyer, and Jonathan Dokulil.

2006. Carving differential unit test cases from system test cases. In Proceedings
of the 14th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2006, Portland, Oregon, USA, November 5-11, 2006. ACM, 253–

264.

[6] Darius Foo, Hendy Chua, Jason Yeo, Ming Yi Ang, and Asankhaya Sharma.

2018. Efficient static checking of library updates. In Proceedings of the 2018 ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018. ACM, 791–796.

[7] Alex Gyori, Owolabi Legunsen, Farah Hariri, and Darko Marinov. 2018. Eval-

uating Regression Test Selection Opportunities in a Very Large Open-Source

Ecosystem. In 29th IEEE International Symposium on Software Reliability Engi-
neering, ISSRE 2018, Memphis, TN, USA, October 15-18, 2018. IEEE, 112–122.

[8] Kamil Jezek and Jens Dietrich. 2017. API Evolution and Compatibility: A Data

Corpus and Tool Evaluation. Journal of Object Technology 16, 4 (2017), 2:1–23.

[9] Kamil Jezek, Jens Dietrich, and Premek Brada. 2015. How Java APIs break - An

empirical study. Information & Software Technology 65 (2015), 129–146.

[10] Shrinivas Joshi and Alessandro Orso. 2007. SCARPE: A Technique and Tool for

Selective Capture and Replay of Program Executions. In 23rd IEEE International
Conference on Software Maintenance (ICSM 2007), October 2-5, 2007, Paris, France.
IEEE, 234–243.

[11] Filip Krikava and Jan Vitek. 2018. Tests from traces: automated unit test ex-

traction for R. In Proceedings of the 27th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July
16-21, 2018. ACM, 232–241.

[12] Erik Krogh Kristensen and Anders Møller. 2017. Type test scripts for TypeScript

testing. PACMPL 1, OOPSLA (2017), 90:1–90:25.

[13] Stephen McCamant and Michael D. Ernst. 2003. Predicting problems caused

by component upgrades. In Proceedings of the 11th ACM SIGSOFT Symposium
on Foundations of Software Engineering 2003 held jointly with 9th European Soft-
ware Engineering Conference, ESEC/FSE 2003, Helsinki, Finland, September 1-5,
2003. ACM, 287–296.

[14] Stephen McCamant and Michael D. Ernst. 2004. Early Identification of Incom-

patibilities in Multi-component Upgrades. In ECOOP 2004 - Object-Oriented Pro-
gramming, 18th European Conference, Oslo, Norway, June 14-18, 2004, Proceedings
(Lecture Notes in Computer Science), Vol. 3086. Springer, 440–464.

[15] Gianluca Mezzetti, Anders Møller, and Martin Toldam Torp. 2018. Type Regres-

sion Testing to Detect Breaking Changes in Node.js Libraries. In 32nd European
Conference on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Am-
sterdam, The Netherlands (LIPIcs), Vol. 109. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 7:1–7:24.

[16] Yoann Padioleau, Julia L. Lawall, René Rydhof Hansen, and Gilles Muller. 2008.

Documenting and automating collateral evolutions in Linux device drivers. In

Proceedings of the 2008 EuroSys Conference, Glasgow, Scotland, UK, April 1-4, 2008,
Joseph S. Sventek and Steven Hand (Eds.). ACM, 247–260.

[17] Steven Raemaekers, Arie vanDeursen, and Joost Visser. 2017. Semantic versioning

and impact of breaking changes in the Maven repository. Journal of Systems and
Software 129 (2017), 140–158.

[18] Mark Utting, Alexander Pretschner, and Bruno Legeard. 2012. A taxonomy of

model-based testing approaches. Softw. Test., Verif. Reliab. 22, 5 (2012), 297–312.
[19] Laerte Xavier, Aline Brito, André C. Hora, and Marco Tulio Valente. 2017. His-

torical and impact analysis of API breaking changes: A large-scale study. In IEEE
24th International Conference on Software Analysis, Evolution and Reengineering,
SANER 2017, Klagenfurt, Austria, February 20-24, 2017. IEEE Computer Society,

138–147.

[20] Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and Jesús M.

González-Barahona. 2018. An Empirical Analysis of Technical Lag in npm Pack-

age Dependencies. In New Opportunities for Software Reuse - 17th International
Conference, ICSR 2018, Madrid, Spain, May 21-23, 2018, Proceedings (Lecture Notes
in Computer Science), Vol. 10826. Springer, 95–110.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Overview
	4 Phase I: Model Generation
	5 Phase II: Type Regression Testing
	6 Evaluation
	6.1 Experimental Setup
	6.2 Results and Discussion

	7 Related work
	8 Conclusion
	Acknowledgments
	References

