
NodeRacer: Event Race Detection
for Node.js Applications

André Takeshi Endo∗†, Anders Møller∗
∗Aarhus University, Denmark

†Federal University of Technology – Paraná, Brazil
andreendo@utfpr.edu.br, amoeller@cs.au.dk

Abstract—The Node.js platform empowers a huge number of
software systems programmed with JavaScript. Node.js employs
an asynchronous execution model where event handlers are
scheduled nondeterministically, and unexpected races between
event handlers often cause malfunctions. Existing techniques for
detecting such event races require complex modifications of the
Node.js internals, or target only certain kinds of races.

This paper presents a new approach, called NODERACER,
that detects event races in Node.js applications by selectively
postponing events, guided by happens-before relations. The
technique is implemented entirely with code instrumentation,
without modifications of the Node.js system. Our experimental
results give evidence that NODERACER finds event race errors
with higher probability than a state-of-the-art fuzzer, and that
the use of happens-before relations helps avoiding false positives.
Furthermore, we demonstrate that NODERACER produces ac-
tionable error reports, and that it can be helpful for detecting
test flakiness that is caused by event races.

Index Terms—JavaScript, race conditions, flaky tests

I. INTRODUCTION

JavaScript is a multi-paradigm dynamic programming lan-
guage that was initially designed to program client-side web
applications. The launch of the Node.js platform in 2009
helped spread Javascript to other domains, including server-
side applications, command line tools, and even desktop apps.
Node.js along with its official package manager npm1 is one
of the largest and most widely used software ecosystems
according to Stack Overflow2 and GitHub,3 with more than 1
million npm packages now available and more than 10 billion
package downloads weekly.4

It is well-known that the JavaScript execution model is
susceptible to races [1]–[8]. In JavaScript, race conditions
arise not because of multiple threads accessing shared memory
concurrently, but because the program code is executed asyn-
chronously. In general, any task that may take some time to be
processed is handled as callbacks that respond to events. For
example, to access data from the network, an event handler
callback can be registered, such that when the network data
is ready, the event handler is executed to process the data.

This work was supported by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (grant
agreement No 647544).

1https://www.npmjs.com/
2https://insights.stackoverflow.com/survey/2019
3https://octoverse.github.com/
4https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn/

Event handlers always run until completion, non-preemptively.
When multiple event handlers are registered, the execution
order among the different event handlers—and thereby the
behavior of the application—can depend critically on the exact
timing of the events. Interleavings that were unexpected by the
programmer may take the application to a faulty state.

Event race errors are often difficult to detect or reproduce
during ordinary testing at development time, because such
testing is usually performed in a controlled environment,
with a fast and predictable network, reliable databases, etc.
Event race errors in client-side JavaScript code may result
in crashes and annoyed users, but simply reloading the web
page and repeating the user interactions is often sufficient
to recover. In server-side JavaScript code, the stakes are
higher: event race errors do not just affect individual users but
may crash the entire system, or even worse, lead to security
vulnerabilities [9]. Event races are also a well-known cause
of flaky tests: nondeterministic behavior of regression tests
often arises due to races between the test code and the system
under test [10], [11]. For these many reasons, it is important
to provide means for Node.js developers to better detect event
races and diagnose their causes.

Race detection for JavaScript has been mostly investigated
for client-side code in web applications. Predictive techniques
are based on the idea that, based on a sample run of the
web application, it is possible to record and analyze the
memory accesses and the causal dependencies between the
event handler executions, and from that information predict
race issues in other runs [2], [3], [12]. It has been observed that
such techniques often result in too many false positives, and
that it is often difficult to diagnose the causes of the reported
races and thereby to fix the errors [5], [7]. For these reasons,
other techniques are designed to explore different interleavings
and produce witnesses of likely harmful behavior, such as un-
caught exceptions or inconsistent GUIs [4]–[7], [13]. Although
the asynchronous execution models of browsers and Node.js
are conceptually very similar, it is nontrivial to adopt those
techniques to Node.js.

Despite the massive prevalence of Node.js, only a few race
detection techniques have been developed for this platform.
NodeAV [14] focuses on atomicity violations and does not
consider other kinds of races. Node.fz [15] detects races by
incorporating fuzzing into the Node.js scheduler. By randomly
shuffling the entries in the event queues, it increases the

https://www.npmjs.com/
https://insights.stackoverflow.com/survey/2019
https://octoverse.github.com/
https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn/

probability of encountering a failing execution during testing.
This elegant approach can reveal many race bugs, however,
by only shuffling event handlers that are ready to execute,
it misses bugs that only manifest when specific events are
delayed sufficiently, which we demonstrate in Section II.
Also, due to the aggressive fuzzing, it can be difficult to
faithfully reproduce failing executions and to locate the root
causes of the failures being provoked. Furthermore, despite the
conceptual simplicity of the approach, the implementation of
Node.fz requires 10 000 lines of code because of the complex
internals of Node.js and the need for avoiding event schedules
that are impossible in ordinary executions.

In this paper, we introduce NODERACER, a new ap-
proach to detect event races in Node.js applications. The
key idea is to explore alternative schedules entirely by se-
lectively postponing events, without interfering with the in-
ternal event queues in Node.js. This approach is inspired
by EventRaceCommander [8] and AjaxRacer [6]. To avoid
postponing events in ways that are impossible in ordinary
executions, and to avoid postponing events needlessly, the ex-
ploration is guided by a happens-before relation that captures
causal relationships of events. The happens-before relation is
inferred from an initial execution of the application, driven
either by a regression test or by a manual interaction with the
application. Unlike traditional race detectors [2], we follow
the approach of AjaxRacer [6] by completely ignoring the
low-level data races on individual memory locations and
instead detecting race errors by looking for the observable
effects, such as crashes or regression test failures. To support
debugging after a race error has been detected, NODERACER
can be run in a diagnosis mode where it systematically looks
for the smallest number of changes to the original schedule that
exposes the error, inspired by the conflict-reversal bounding
technique of R4 [7]. The approach is implemented entirely in
JavaScript, without changes to the Node.js internals.

In summary, the paper makes the following contributions.

• We propose a light-weight event race detection technique
designed for Node.js applications that is based on the idea
of selectively postponing events to explore executions that
are difficult to reach in ordinary testing.

• We show that happens-before relations between events can
be inferred using low-overhead instrumentation and used
for guiding which events to postpone. As part of this, we
present happens-before rules for Node.js that extend and
improve those from previous work.

• We present the results obtained using our prototype imple-
mentation, demonstrating that (1) NODERACER finds event
race errors with higher probability than Node.fz, (2) the use
of happens-before relations helps avoiding false alarms, (3)
the error reports provided by NODERACER are useful for
diagnosing the causes of event races, and (4) NODERACER
can be useful for detecting test flakiness that is caused by
event races. The implementation and all experimental data
are openly available.

Code from the Archiver library

1 var doneTasks = 0;
2 var entries = 0;
3
4 function processFile(filePath) {
5 entries++;
6 fs.lstat(filePath, function stat(err, stats) {
7 if (err) {
8 entries--;
9 return;

10 }
11 useStatData(stats);
12 fs.readFile(filePath, function read(err, data) {
13 performTask(data);
14 doneTasks++;
15 if (doneTasks === entries)
16 finalize();
17 });
18 });
19 }

Code from one of Archiver’s test cases

20 processFile(’existing-file.txt’);
21 processFile(’missing-file.txt’);
22 processFile(’empty-file.txt’);

Fig. 1. Motivating example.

II. MOTIVATING EXAMPLE

The JavaScript code in Figure 1 illustrates a typical Node.js
event race error. This particular example is based on a previ-
ously unknown bug in the Archiver5 library that was uncovered
by NODERACER. The first part of the code shows the relevant
parts of the library, and the second part represents the test
NODERACER used to reveal the bug.

The function processFile receives as argument the path
to a file (line 4), increments entries (line 5), and invokes
fs.lstat (line 6) from the Node.js API to obtain stats
information on the file. The callback stat (lines 6–18) is run
when the stats on the file are collected: if there is an error,
it decrements the entries and returns (lines 7–10); otherwise,
it processes the stats (line 11) and invokes fs.readFile
(line 12) from the Node.js API to read the contents of the file.
When the file contents are available, callback read (lines 12–
17) is executed: it performs some task with the file contents
(line 13), increments doneTasks (line 14), and calls function
finalize (line 16) if the number of tasks done is equal to
the number of entries (line 15). The operations fs.lstat
and fs.readFile are asynchronous, so their callbacks are
executed when their responses are ready.

The test code (lines 20–22) calls processFile in sequence
three times for an existing file, a missing file, and an empty
file, respectively. By running it, five callbacks are produced:
three instances of stat, we refer to them as eStatex , eStatms ,
and eStatep for existing file, missing file, and empty file,
respectively, and two instances of read, we refer to them as
eReadex and eReadep . There is no invocation of read for
the missing file since eStatms is called with an error and
no callback is registered in that case. These five callbacks
may interleave with each other, the only two restrictions are

5https://github.com/archiverjs/node-archiver

https://github.com/archiverjs/node-archiver

that eStatex registers (happens-before) eReadex and eStatep
registers (happens-before) eReadep .

The race bug manifests when eStatms is the last callback
executed; it correctly updates the number of entries (line 8)
but fails to call the finalize function. In the actual Archiver
code, this causes the system to hang.

This bug may not be detected by existing race detection
techniques for Node.js. Variables doneTasks and entries
represent common cases of control and synchronization mech-
anisms between callbacks. Such cases hinder the application
of predictive approaches: several callbacks are conflicting
because they operate on the same variables, and it is difficult to
reason about which conflicting callbacks are actually harmful.

Also, fuzzing the Node.js scheduler as done by Node.fz may
still not be enough. For this example, a typical run will have
the stat callbacks ready to execute at almost the same time,
and then after some time the read callbacks are ready. This
means that the shuffling of the event queues will concentrate
on those two subsets of callbacks, failing to mix and shuffle
all of them. As explained above, this bug is revealed only if
eStatms is sufficiently delayed to be scheduled last. For this
reason, Node.fz does not find the bug even after 1 000 runs.6

III. BACKGROUND

Node.js is a JavaScript-based runtime environment that
integrates three main components [16]: (i) the V8 high-
performance JavaScript engine developed by Google; (ii) the
libuv I/O library that implements the event loop, the worker
thread mechanism, and all of the asynchronous behavior; and
(iii) native libraries that abstract the functionalities for high-
level use by developers. On top of this, the npm repository
provides a huge collection of open source libraries.

Node.js adopts an event-driven architecture where callbacks
(also known as event handlers) are registered to execute when
relevant events occur [17]. In this paper, a callback is the
runtime instance of a JavaScript function call along with
its execution context. Callbacks are scheduled to run by a
single-threaded event loop; when a callback is picked, Node.js
runs it to completion without interruption in one tick of the
event loop. Node.js has three main categories of asynchronous
execution functionality that are sources of nondeterminism and
event race errors: I/O operations and related computational
resources, timer and process-related operations, and promises.
The happens-before rules defined in Section IV-B involve all
three categories.

I/O and related operations are performed by a pool of
worker threads that run without blocking the main event loop.
As these operations are executed concurrently by the workers
and depend on external computation, there are generally no
guarantees about the execution order of the callbacks.

6Node.fz sometimes delays timer events for 5 ms, and it similarly injects a
0.1 ms delay in the worker thread before each task is processed, when using
the default configuration. Those delays are not always the right ones needed
to reveal the race errors.

The timer module and the process object provide func-
tionality for scheduling callbacks to be called at some future
period of time [18]. The main functions are:

• setImmediate(cb) registers callback cb of type Imme-
diate to be run once after the I/O-related callbacks that
are ready to execute.

• setTimeout(cb, d) registers cb of type Timeout to be
run once after a delay of (at least) d milliseconds.

• setInterval(cb, d) is similar to setTimeout but
repeats indefinitely.

• nextTick(cb) registers cb of type TickObject to be
called once the current tick of the event loop is completed.
It differs from the other functions by not allowing other
callbacks to be scheduled between the current tick and
the one that runs cb.

Promises are JavaScript objects that represent the eventual
completion or failure of an asynchronous operation, which are
useful for structuring asynchronous computations [19]. When
a promise is created, callbacks can be registered to be run
after successful (fullfilled) and failing (rejected) executions,
using the methods then and catch, respectively. Two promise
functions are particularly relevant:

• Promise.all([p1, p2, . . . , pn]) returns a promise
that either fulfills when all promises p1, p2, . . . , pn are
fulfilled or rejects as the first of them rejects.

• Promise.race([p1, p2, . . . , pn]) returns a promise
that either fulfills or rejects as soon as the one of the
promises is fulfilled or rejected, respectively.

IV. APPROACH

The NODERACER approach is composed of three main
phases. In Phase 1, it instruments the application and collects
information relevant for the following phase from a run, driven
by a test or by a manual interaction with the application.
Phase 2 uses the collected information to infer a happens-
before relation between the callbacks. In Phase 3, it re-runs
the application a number of times in a special mode that
selectively postpones callbacks while respecting the happens-
before relation, to expose event race errors.

A. Observation Phase

In the observation phase, NODERACER instruments the
application code to track asynchronous behavior, function
calls, and certain native functions. It then runs the application
and collects information about the execution in a log file.

First, NODERACER tracks the lifetime of asynchronous
behavior using the Async Hooks7 functions init, before,
and promiseResolve. Function init is called every time
an asynchronous callback is registered, in which case
NODERACER adds a log entry with a unique callback ID, the
ID of the running callback, and the callback type (Immediate,
Timeout, TickObject, Promise, or Other). For timeouts, it
also registers the delay specified at the registration. Function
before is called immediately before a callback is executed, in

7https://nodejs.org/api/async_hooks.html

https://nodejs.org/api/async_hooks.html

which case a log entry is added with the callback ID. These
entries are mainly used to distinguish different occurrences
of a callback; e.g., setInterval defines a callback that may
be called several times. Function promiseResolve is called
when a promise is settled, in which case a log entry is added
with the callback ID and the ID of the running callback,
allowing for identification of causality among promises.

The Async Hooks API does not directly give us information
about which functions are used as callbacks. For this reason we
also use the njsTrace8 library that provides two hook functions,
onEntry and onExit, that allow NODERACER to add an entry
each time a function is called or returned from, respectively,
with information about the function (its name if available, file
path, and line number) and the ID of the running callback.
Finally, we monkey patch the functions Promise.all and
Promise.race to similarly track when they are entered or
returned from (with Async Hooks init entries in between).

All the logged information is used in the next phase to
identify the callbacks and ordering constraints among them.

B. Happens-Before Identification Phase

In the second phase, NODERACER identifies a happens-
before relation [20] for the callbacks observed in the previous
phase. Each callback corresponds to one tick of the event loop.
Intuitively, one callback ei happens-before9 another callback
ej , denoted ei ≺ ej , if ej causally depends on ei. To
model Promise.race we also use a variant of happens-before,
written {ei1 , . . . , eik} ≺≺ ej , which means that ej can execute
after at least one of ei1 , . . . , eik has executed.

To identify the happens-before relation, NODERACER scans
the entries of the log file and applies nine rules. Rules #1 to #4
are drawn from the literature and revisit existing knowledge
about asynchronous operations in Node.js [14], [21]–[23]. We
extend those with Rules #5 to #9 to bring a more accurate
modeling of some Node.js operations.

Rule #1: A callback needs to be registered before it can be
executed. If ej is registered during the execution of ei then
ei ≺ ej . The rule is illustrated in the example in Section II:
callback read is registered during the execution of callback
stat. For the sample run, we have that eStatex ≺ eReadex

and eStatep ≺ eReadep .
Rule #2: This rule models the case in which a promise is

settled. A callback ei that resolves a promise p needs to run
before the callback ej that is associated with the promise p
itself, i.e. ei ≺ ej .

Rule #3: As mentioned in Section III, callbacks may have
different types depending on how they were registered; we
use the function type : e→ {I,N, T, P,O} to denote the type
of callback e, where I , N , T , P , and O abbreviate Imme-
diate, nextTick, Timeout, Promises, and Other, respectively.

8https://github.com/ValYouW/njsTrace
9We use a notion of happens-before that is in the style of e.g. WebRacer [2]

and NodeAV [14], which is based on a weaker notion of causality than
Lamport’s. Intuitively, we consider structural causality only, without involving
reads and writes to shared memory, because we want our happens-before
relation to be complete with respect to race conditions.

23 function foo() {
24 let p1 = new Promise((resolve, reject) => {
25 function asyncp1() { resolve(); } //run async
26 });
27 let p2 = new Promise((resolve, reject) => {
28 function asyncp2() { resolve(); } //run async
29 });
30 let p3 = new Promise((resolve, reject) => {
31 function asyncp3() { resolve(); } //run async
32 });
33 Promise.all([p1, p2, p3]).then(function pall(values) { });
34 Promise.race([p1, p2]).then(function prace(value) { });
35 }

Fig. 2. Example with Promise.all and Promise.race.

Callbacks of types I , N and P are always scheduled following
a FIFO discipline, so if ei is registered before ej in the same
tick and type(ei) = type(ej) ∈ {I,N, P}, then ei ≺ ej .

Rule #4: For callbacks of types I , N and P , we can
establish relations between callbacks registered in different
ticks. Assume type(ei) = type(ej) ∈ {I,N, P} and ei and ej
were registered or resolved in different callbacks, parentei and
parentej , respectively. If parentei ≺ parentej then ei ≺ ej .

Rule #5: Timeout callbacks also operate following a FIFO
discipline, but their delays need to be taken into account. We
use e.t to refer to the specific timeout of callback e. If ei is
registered before ej , type(ei) = type(ej) = T and ei.t ≤ ej .t,
then ei ≺ ej . If ei and ej are registered in the same tick, then
under normal circumstances, the one with the smaller timeout
will run first, however, there may be a long delay until it is
scheduled to run, in which case the other callback will also be
enabled [22]. Therefore, if ei is registered before ej (possibly
in the same tick) but ei.t > ej .t, no ordering constraints exist
between the two callbacks.

Rule #6: Function setInterval provokes several instances
of callbacks e1, e2, . . . , en. As the n callbacks are run one after
another, we have ei ≺ ei+1 for each 1 ≤ i ≤ n− 1.

Rule #7: Assume promises p1, p2, . . . , pn are resolved by
callbacks e1, e2, . . . , en and p1, p2, . . . , pn are passed as argu-
ment to Promise.all, and let eall be its resulting callback.
In this case, eall will be called only after e1, e2, . . . , en, so we
have ei ≺ eall for each 1 ≤ i ≤ n.

Rule #8: Assume promises p1, p2, . . . , pn are resolved
by callbacks e1, e2, . . . , en and p1, p2, . . . , pn are passed as
argument to Promise.race, and let erace be its resulting
callback. We cannot require ei ≺ erace for each 1 ≤ i ≤ n,
since only one of them is required to be true in a run, so
instead we represent this as {e1, . . . , en} ≺≺ erace .

Rule #9: The high priority of TickObject callbacks allows
us to relate them to other types of callbacks. Assume ei is a
TickObject callback registered in parentei and ej is a callback
such that type(ej) 6= N . If parentei ≺ ej then ei ≺ ej .

In addition to these nine rules, ≺ is transitive: if e1 ≺ e2
and e2 ≺ e3 then e1 ≺ e3.

The example in Figure 2 involves six callbacks: foo
(line 23), asyncp1 (line 25), asyncp2 (line 28), asyncp3
(line 31), pall (line 33), and prace (line 34). Callback pall will
execute only after callbacks asyncp1 , asyncp2 , and asyncp3
resolve promises p1, p2, and p3, respectively. Then, we can

https://github.com/ValYouW/njsTrace

Fig. 3. hb-graph for the example in Figure 2.

Algorithm 1: Instrumentation of a callback function
36 Function <FUNCTIONNAME>(<PARAMETERS>)
37 f ← noderacer.getCurrentFunctionInfo()
38 {postpone, ei} ← noderacer.shouldPostpone(f)
39 if postpone then
40 noderacer.postpone(() => {
41 noderacer.notify(f, ei)
42 <RUN ORIGINAL FUNCTION CODE>
43 })
44 else
45 noderacer.notify(f, ei)
46 <RUN ORIGINAL FUNCTION CODE>
47 end

infer by Rule #7 that asyncp1 ≺ pall , asyncp2 ≺ pall ,
and asyncp3 ≺ pall . Callback prace will depend on which
promise resolves first, p1 or p2, so asyncp1 or asyncp2 may
happen before prace. Using the representation of Rule #8, we
have {asyncp1 , asyncp2} ≺≺ prace.

The resulting happens-before relation can be represented
as a graph, which we call an hb-graph. Figure 3 shows the
hb-graph for the code from Figure 2. The hb-graph is a
directed graph with a node for each callback and directed
edges representing the happens-before relation. Solid lines and
dashed lines represent ≺ and ≺≺, respectively. The in-degree
of a node e, written indegree(e), is the number of incoming
edges to e. We omit edges that are implied by transitivity.

C. Guided Execution Phase

In the third phase, NODERACER instruments the callback
functions and uses the happens-before relation to guide new
executions towards alternative callback interleavings by selec-
tively postponing callbacks. By taking the happens-before rela-
tion into account when selecting which callbacks to postpone,
we steer away from interleavings that are infeasible in real
executions and thereby avoid false alarms. Also, the happens-
before information can reduce the overhead of postponing
callbacks needlessly. The evaluation in Section VI shows
the importance of this use of the happens-before information
compared to a more naive random exploration.

Algorithm 1 captures the essence of the instrumentation
NODERACER performs for callback functions. The guided
execution is implemented by functions shouldPostpone
(line 38) and notify (lines 41 and 45). When an instrumented
function is called, NODERACER collects information about
the function obtained from Async Hooks (line 37), and passes
it to shouldPostpone to decide the next step. If it decides
to postpone (line 39), NODERACER sets up for the callback
to run in a future iteration of the event loop (lines 40–43)
and remember this for later, such that it is only postponed

Algorithm 2: Function shouldPostpone
48 Function shouldPostpone(f)
49 postpone ← false
50 if f.isCallback then
51 ei ← hbgraph.find(f)
52 if ei 6= null then
53 if hbgraph.mayHappen(ei) then
54 if hbgraph.mayPostpone(ei) then
55 postpone ← randomBoolean()
56 end
57 else
58 postpone ← true
59 end
60 end
61 end
62 return {postpone, ei}

Algorithm 3: Function notify
63 Function notify(f, ei)
64 if f.isCallback ∧ ei 6= null then
65 if hbgraph.mayHappen(ei) then
66 hbgraph.remove(ei)
67 else
68 noderacer.unexpectedOrder(ei)
69 end
70 end

once. Otherwise, it runs immediately (lines 45–46). When
the callback is actually executed, function notify (explained
below) is invoked.

The functions shouldPostpone and notify assume the
existence of object hbgraph that represents a data structure
as in Figure 3, obtained from the previous phase. This object
is updated every time a callback is executed, in which case
the node representing the callback and its outgoing edges are
removed from the graph. In Algorithm 2, shouldPostpone
initially checks if the current function call is related to a
callback (line 50). If it is, f is used to find the associated
callback ei in the hb-graph (line 51). If the current call is
neither a callback (line 50) nor is in the hb-graph (ei is null,
line 52), we return with postpone set to false. If ei exists, we
check if it may be executed now without violating the happens-
before relation (line 53); this is determined by checking that
indegree(ei) = 0. Otherwise, ei is postponed (line 58), which
gives time for its dependencies to be executed before ei is
run in the future. This mechanism ensures that in situations
where ej ≺ ei and ej has been postponed and has not been
executed yet, then ei is also postponed to make sure we
respect the happens-before relation. Line 54 verifies if ei can
be interleaved with other callbacks by checking if there exist
other callbacks with no dependencies, i.e. |{e | indegree(e) =
0}| > 1. If ei is the only one with no dependencies, postponing
it would delay all remaining callbacks without increasing the
chance of changing their order, which would be a waste of
time. If ei can be interleaved, NODERACER randomly decides
whether to postpone it or not (line 55); the default delay for
a postponed callback is 500 ms.

Function notify (Algorithm 3) is called right before the
callback is run; as discussed, it has no effect on function calls
that are unrelated to callbacks in the hb-graph (in which case

Fig. 4. Example of a guided execution.

isCallback is false in line 64). If callback ei may happen
(line 65), we remove it from the hb-graph along with all its
outgoing edges (line 66). If one of the removed edges is part
of ≺≺, we also remove other edges in the same set. If ei may
not happen (i.e., despite the delay there are still some depen-
dencies according to the hb-graph), NODERACER registers ei
and its dependencies in the hb-graph as an unexpected callback
order (line 68). In our experiments we only observed this in
one occasion that was due to a test has nondeterministic inputs
(further details in Section VI).

Figure 4 illustrates the guided execution for the example
from Figure 2. The callback currently scheduled by Node.js
to occur is represented as a gray node. In step 1, foo is called
and run since it is the only one that may happen; its node and
outgoing edges are then removed. In step 2, an asynchronous
task ends and its associated callback asyncp3 is scheduled.
As asyncp3 may interleave with other callbacks (asyncp1
and asyncp2), NODERACER randomly decides to postpone it
or not; here asyncp3 is postponed (depicted as a box marked
P). In step 3, asyncp2 is scheduled but this time NODERACER
decides not to postpone; it is then run and removed from the
graph. The edges (asyncp2 , prace) and (asyncp1 , prace) are
removed along with the node. In step 4, prace is scheduled to
run but NODERACER decides to postpone it. Then, asyncp1 is
run in step 5 and asyncp3 in step 6; notice that asyncp1 could
be postponed, while asyncp3 had already been postponed
once. Finally, prace is run in step 7, and pall in step 8.

Other runs will have different decisions in steps 2–5 and,
as a consequence, different callback interleavings will be
explored. Due to the delays inserted by NODERACER, we thus
obtain a variety of callback interleavings that are unlikely to
happen in ordinary testing but may appear in production.

V. IMPLEMENTATION

NODERACER is implemented as a Node.js application with
a core module of around 1 600 LoC. It has a command-line
interface in which the three phases can be run separately. As
mentioned in Section IV-A, the observation phase uses the
Async Hooks API and the njsTrace library. A modified version
of njsTrace is also used for the guided execution phase.

NODERACER includes some functionality to support diag-
nosis and debugging of race issues. Report facilities include
trace files generated for each run in the observation and
guided execution phases, as well as images for hb-graphs.
Besides, NODERACER can be run in a diagnosis mode where
it systematically postpones only one callback per run, using
the history of previous runs to make sure a different callback
is postponed in each run. Whenever a bug can be reproduced

in this mode, we highlight that single callback in the hb-graph
as definitely related to the bug.

VI. EVALUATION

We set out the following research questions:
RQ1 How does NODERACER compare with the state-of-the-

art fuzzer Node.fz?
RQ2 Does the use of happens-before relations prevent infea-

sible executions and avoid needless delays?
RQ3 Can NODERACER help diagnose open issues related to

races in Node.js applications?
RQ4 Can NODERACER detect previously unknown race bugs

or flaky tests using existing test suites?

A. Experimental Setup

To answer RQ1, we selected 11 race bugs reported in
previous studies: seven bugs from Davis et al. [15] and four
bugs from Wang et al. [9]. We reused the experimental package
available from Davis et al., removing the bugs easily revealed
by ordinary runs, and the ones we could not reproduce. As
for the bugs from Wang et al., we cloned each project’s
GitHub repository and reversed it to a faulty revision using the
information available in the issue. Then, we ran the automated
tests. In some cases where the existing tests did not create the
callbacks involved in the race, we studied the issue report and
designed a test that uses the relevant callbacks but does not
reveal the race error in ordinary runs without NODERACER.
For each of the 11 benchmarks, we thereby have a test that
passes in ordinary runs but fails when the race is exercised.

Using this sample of race bugs (see Table I), we compared
NODERACER with state-of-the-art fuzzer Node.fz with its
default parameterization [15]. We measured how likely each
tool is capable of finding the bug in 100 runs, also called the
bug reproduction ratio [15]. We also collected how many runs
until the first time the test fails. As both tools involve some
randomness, we repeated this process 30 times.

In RQ2, we implemented on top of NODERACER a naive
approach, named NR-naive, that does not use happens-before
relations to decide when postponing callbacks. For each call-
back, NR-naive has a 50/50 chance of postponing it to be
executed after a random delay of 0 to 500 ms. By comparing
NR-naive and NODERACER we can measure the benefits
of NODERACER’s happens-before guided approach. For each
benchmark in Table I, we ran NR-naive 100 times. To know
if NR-naive provokes infeasible interleavings, we counted
how many runs have at least one happens-before violation.
We also collected the number of test case failures and how
many of them have some happens-before violation. Finally,

TABLE I
BENCHMARKS.

ID Project Name Issue1 LOC2 Description
#1 agentkeepalive 23 1.8K Enhancement features for keepAlive and HTTP agent.
#2 fiware-pep-steelskin 269 6.1K Policy enforcement point proxy for FiWare components.
#3 Ghost 1834 30K Platform for building and running publications (e.g., blogs, magazines).
#4 node-mkdirp 2 0.2K Library to recursively create directories.
#5 nes 18 3.4K Native WebSockets plugin for hapi-based application servers.
#6 node-logger-file 1 0.9K File endpoint for logging.
#7 socket.io 1862 2.4K Framework for real-time event-driven communication.
#8 del 43 0.2K API to delete files and directories using globs.
#9 linter-stylint 63 0.2K Linter plugin for the Atom editor.

#10 node-simplecrawler 298 3.9K Flexible event driven API for crawling web sites.
#11 xlsx-extract 7 1K Data extractor for XLSX files.

1The IDs have links to the corresponding GitHub issues. 2Number of lines of JavaScript code according to cloc.

we measured the average number of needlessly postponed
callbacks. (A postponed callback e is needless when there is
no other callback that can currently interleave with e.)

As for RQ3, we first obtained two curated lists of open
source Node.js applications [24], [25]. For the projects in these
lists, we used the GitHub API10 to search for open issues
(not opened by our initiative) that have the keyword ‘race’
in their title or body. We filtered out the issues that were
neither related to race conditions nor involved races within
the Node.js platform. As the investigation of an arbitrary open
issue involves a lot of effort on program comprehension, tests,
and debugging, we limited our analyses to five issues.

Concerning RQ4, the curated lists of RQ3 were initially
used. To simplify the experiments, we sampled projects that
use the test framework Mocha.11 A few projects that use
features currently not supported by NODERACER were also
removed (see the main limitations in Section VI-C). For each
project, we ran the test suite and removed the failing tests
and the ones that cannot run independently (e.g., due to
dependency of other tests). We also filtered out the tests that
have no callback interleaving in the application code. We used
the hb-graph to count how many callbacks may interleave with
others; if it is zero, the test was removed.

In total, we selected 159 test cases from eight different
projects. For each test, we ran NODERACER 100 times. If the
test failed in at least one run, we investigated and flagged it
as bug, flaky test, or false alarm. For the investigation in RQ3
and RQ4, we used the resources provided by NODERACER:
traces, happens-before information, and the diagnosis mode.

A description of procedures, artifacts, and the NODERACER
tool are available at https://brics.dk/noderacer.

B. Analysis of Results

RQ1: Figure 5 compares the bug reproduction ratio for each
benchmark. We could not run Node.fz with four benchmarks
(marked with **).12 NODERACER has higher reproduction

10https://developer.github.com/v3
11https://mochajs.org
12#5 provokes a segmentation fault, #8 fails with an internal error message,

and #9 and #11 have syntax errors due to new features of JavaScript. Node.fz
is based on an outdated version of Node.js, which also prevents us from
running Node.fz with projects used in RQ3 and RQ4.

●

●
●●●●

●

●

●●

●

●
●

●

●
●

●

●

0.00

0.25

0.50

0.75

1.00

#1 #2 #3 #4 #6 #7 #10 #5** #8** #9** #11**
Benchmarks

B
ug

 r
ep

ro
du

ct
io

n
ra

tio

Node.fz NodeRacer

Fig. 5. Bug reproduction ratio. **Node.fz did not run with this benchmark.

ratio in the seven remaining benchmarks. The difference is
particularly significant in four cases: in benchmarks #2, #4,
and #7, Node.fz finds the bug with very low probability; for
benchmark #10, Node.fz cannot reveal the bug at all. In the
latter case, the bug depends on a request that takes some time
to process, akin to the motivating example in Section II.

As expected, the same trend shows in the number of runs
until the first time each test fails. Again, NODERACER has the
best results, revealing the bug in less than 5 runs on median.

With this, our answer to RQ1 can be summarized as follows.

NODERACER has a better bug reproduction rate and
reveals bugs with fewer runs than Node.fz. Moreover,
NODERACER runs on more benchmarks and can uncover
a bug not revealed by Node.fz.

RQ2: Table II summarizes the results for NR-naive. The
second column shows the percentage of runs that have at
least one happens-before violation. Notice that a run with

https://github.com/node-modules/agentkeepalive/issues/23
https://github.com/telefonicaid/fiware-pep-steelskin/issues/269
https://github.com/TryGhost/Ghost/issues/1834
https://github.com/substack/node-mkdirp/issues/2
https://github.com/hapijs/nes/issues/18
https://github.com/michaelwittig/node-logger-file/issues/1
https://github.com/socketio/socket.io/issues/1862
https://github.com/sindresorhus/del/issues/43
https://github.com/AtomLinter/linter-stylint/pull/63
https://github.com/simplecrawler/simplecrawler/issues/298
https://github.com/ffalt/xlsx-extract/issues/7
https://brics.dk/noderacer
https://developer.github.com/v3
https://mochajs.org

TABLE II
RESULTS FOR NR-NAIVE (RQ2).

Benchmark RwHBV1 Failures2 Needlessly postponed3

#1 99% 54 / 55 (98.2%) 2.6 / 18 (14.4%)
#2 93% 41 / 41 (100%) 3.6 / 44 (8.2%)
#3 62% 60 / 93 (64.5%) 1.9 / 16 (11.8%)
#4 45% 31 / 50 (62.0%) 0.7 / 8 (9.0%)
#5 15% 10 / 50 (20%) 1.4 / 12 (11.7%)
#6 100% 71 / 71 (100.0%) 4.2 / 25 (16.8%)
#7 53% 10 / 35 (28.6%) 1.1 / 22 (5.0%)
#8 58% 25 / 46 (54.3%) 2.2 / 18 (12.3%)
#9 0% 0 / 37 (0.0%) 0.01 / 7 (0.1%)

#10 80% 61 / 77 (79.2%) 1.8 / 17 (10.5%)
#11 100% 44 / 44 (100%) 4.6 / 30 (15.5%)
Min 0% 0% 0.1%
Max 100% 100% 16.8%

Average 64.1% 64.3% 10.5%

1RwHBV stands for percentage of runs with happens-before violations.
2Failures with H-B violations / number of failures (percentage).
3Needlessly postponed callbacks / number of callbacks (percentage).

at least one happens-before violation represents an infeasible
run. While for benchmark #9 all runs were feasible, most
benchmarks had a significant proportion of runs with happens-
before violations: 64.1% on average. The third column shows
that infeasible runs are similarly present when a test fails; for
instance, benchmark #4 had 31 runs out of 50 failures (62%),
with some happens-before violation. The average across all
benchmarks is 64.3%. As infeasible runs may lead to false
alarms, this high percentage suggests that false alarms are
more likely to appear with NR-naive than with NODERACER.

The last column brings the results for needlessly postponed
callbacks; for instance, benchmark #11 had an average of 4.6
needlessly postponed callbacks out of 30 callbacks involved
(15.5%). Some computational resource may be saved by
avoiding them (10.5% on average), yet such numbers are not
significant for these benchmarks.

In summary, the results for NR-naive give evidence that:

The happens-before guided approach of NODERACER
prevents infeasible callback interleavings. It also reduces
the likelihood of false alarms; more than half of all
failures by NR-naive involve a happens-before violation.

RQ3: We now describe the investigation of the open issues,
and how NODERACER was employed.

a) Issue 23 of get-port: Get-port is a library that returns
an available TCP port; it is used by >130K projects in GitHub
and has >1.5M weekly downloads in npm. The issue reports
that several tests are run in parallel and a race condition
occurs.13 The race actually happens between the time get-port
returns an available port and a new server is started. Two or
more servers may then try to start using the same port but
only one will succeed. Based on code snippets in the issue,
we came up with a simple test case that would exercise the
race. The test did not hit the error in ordinary executions,
but it happened in 17 out of 100 runs with NODERACER.

13https://github.com/sindresorhus/get-port/issues/23

So, we could confirm with a witness run the presence of the
race error. In the issue discussion, someone suggested using
an asynchronous mutex14 to avoid the race. We modified our
test to include the mutex and applied NODERACER again. This
time, the expected error did not show up after 100 runs. In this
case, NODERACER provided extra evidence that the proposed
fix is good. Finally, the traces and happens-before relations
provided us means to suggest a future enhancement of the
library. We observed that a retention timeout of the returned
port could be developed without locks and races.

b) Issue 262 of live-server: Live-server is a development
server with live reload capabilities; it is used by >34K projects
and has >100K weekly downloads. The issue reports a poten-
tial race between changes in a given file served, causing clients
to view outdated versions of the file.15 As no test was provided,
we set up a test that starts live-server, modifies an HTML
file twice, and observes the file served from the client-side
perspective. Using NODERACER, this test did not fail even
after 100 runs. After providing our feedback that rejected the
aforementioned case, a user pointed out to a scenario where
an entire directory was deleted and recreated. So, we added
two new tests in which a file and a directory are deleted
and recreated, respectively. With these tests, we could confirm
the bug using NODERACER. Moreover, NODERACER revealed
that a potential fix mentioned by the user was insufficient, as
also suspected by that user.

c) Issue 1449 of Bluebird: Bluebird is a promise library;
it is used by >3.2M projects and has >13.7M weekly down-
loads. The issue is related to an extension that allows to set
up a timeout for a promise to be fulfilled; if the promise is
not settled after a delay, the promise is rejected with a Time-
outError. The combination of this extension with setTimeout
has brought an inconsistent behavior, i.e., the TimeoutError
was not intuitively expected.16 The test provided in the issue
reproduces the error even in many ordinary executions. In this
case, we used NODERACER to show that a correct output
may also be produced for the test (28/100 times) confirming
that it is a race bug. While a solution was initially dismissed
due to the inconsistent behavior of setTimeout, a fix was
proposed.17 With the fix, the test did not fail anymore using
ordinary executions or NODERACER. During our analysis, we
noticed that the race arises when a timeout occurs. So, we
slightly modified the test so that the timeout is now expected.
NODERACER caused this test to fail in 34 out of 100 runs.
Therefore, programmers may still be misled when combining
bluebird promise’s timeout and setTimeout.

d) Issue 3536 of Express: Express is a framework to
implement RESTful APIs; it is used by >4.8M projects and
has >10M weekly downloads. The issue is about returning
a prettified JSON response for a request that has a given
parameter. The first solution involved a change per request
in the global variable representing the express application.

14https://github.com/DirtyHairy/async-mutex
15https://github.com/tapio/live-server/issues/262
16Open issue #1449, described in https://github.com/petkaantonov/bluebird/issues/1417
17https://github.com/petkaantonov/bluebird/pull/1449

https://github.com/sindresorhus/get-port/issues/23
https://github.com/DirtyHairy/async-mutex
https://github.com/tapio/live-server/issues/262
https://github.com/petkaantonov/bluebird/issues/1417
https://github.com/petkaantonov/bluebird/pull/1449

TABLE III
RESULTS FOR EXISTING TESTS (RQ4).

Project #TCs Fail-TCs Bugs Flaky FAs
bull 6 0 0 0 0

markdown-it 2 0 0 0 0
mongo-express 4 4 4 (2) 0 0

nedb 21 2 0 2 0
node-archiver 23 1 1 (1) 0 0

node-http-proxy 24 0 0 0 0
node-serialport† 60 0 0 0 0

objection.js 19 1 0 0 1
Total 159 8 5 (3) 2 1

†We used Babel to transpile portions of code with async-await.

The code snippet for it was then claimed to be subjected to
race conditions. Based on this, we designed a small express
application with a test that sends two normal requests and one
request for prettified JSON, and then checks the format of
the three responses. The test was not able to hit the error even
after 100 ordinary executions, but it happened in 62 out of 100
runs with NODERACER, thereby confirming that this solution
was subjected to races. We noticed that the cause of the race
error is not in the library but in the user’s code snippet, which
modifies a global variable from the callbacks. We then adopted
NODERACER to test an alternative solution that formats the
output locally per request. After 100 runs and no errors, we
had extra evidence that this solution is free of similar races.

e) Issue 3358 of socket.io-client: Socket.io-client is the
client library of real-time framework socket.io; it is used by
>1.1M projects and has >3.2M weekly downloads. The issue
reports a case where a client does not try to reconnect when
two sockets are asynchronously open from the same pool.18

The test initially provided reproduced the bug in ordinary
executions. Using NODERACER, the test passed in 48 out of
100 runs, giving evidence that the bug was actually due to an
event race condition. We then tested the submitted fix19; the
tests passed in all 100 runs.

The investigation of the open issues shows that:

NODERACER is helpful to diagnose race issues. If there
is a suspicious test scenario, it supports the reproduction
of different interleavings as well as the understanding of
ordering (or lack of) between callbacks.

RQ4: Table III summarizes the results of applying
NODERACER to existing test suites; it shows the project, num-
ber of test cases (#TCs), number of tests that failed (Fail-TCs),
and number of tests that failed due to bugs (unique bugs), flaky
tests, and false alarms (FAs). In total, we ran NODERACER
in 159 tests that may have callback interleavings, making 8
tests to fail: 5 of them were flagged as bugs (3 unique bugs),
2 were flaky tests, and 1 was a false alarm.

NODERACER uncovered bugs in projects mongo-express
and node-archiver. The 4 failing tests in mongo-express were
related to 2 unique bugs. For the first bug, we submitted an

18https://github.com/socketio/socket.io/issues/3358
19https://github.com/socketio/socket.io-client/pull/1253

issue.20 We noticed that this race had been previously detected
and partially fixed with a timeout.21 While the timeout fixed
the race for trivial runs, the bug remains and was exercised by
NODERACER. The second bug made the test produce an HTTP
500 (Internal Server Error).22 Basically, a request may arrive
before a database-related callback is performed, causing the
use of an undefined variable. For node-archiver, NODERACER
uncovered a previously unknown bug; its essence is illustrated
by the motivating example in Section II. A pull request with a
bug fix was submitted including a test that consistently reveals
the bug in ordinary executions.23

There are 2 flaky tests in nedb; both are related to the use of
function ensureIndex. The tests incorrectly assume that the
function is synchronous and sometimes fail due to unexpected
callback ordering. We fixed the ordering by passing a callback
to the function and verified the fix with NODERACER; a pull
request was submitted.24 We also found an inconsistency in
the documentation, stating that this function is synchronous.
We opened an issue about it as well.25

The false alarm in objection.js was caused by a nonde-
terministic test that sets up random timeouts. By modifying
the timeouts randomly, the happens-before relations initially
observed are violated during the guided execution. We re-
placed the timeouts by I/O operations (preserving the potential
interleavings); for this case, NODERACER ran without failures.

This exploratory study showed that:

If the existing tests create scenarios with potential in-
terleavings, NODERACER can exercise them to reveal
previously unknown bugs and flaky tests.

C. Limitations and Threats to Validity

A first threat to validity of our conclusions is the represen-
tativeness of benchmarks. Regarding selection of bug for the
study, we opted by issues collected and confirmed by previous
studies. They all represent bugs caused by races which were
reported, verified, and fixed in their project repositories. All
benchmarks are real-world Node.js applications collected from
GitHub. Most of them are active projects and have many users
and npm downloads.

Implementation flaws may be a potential threat. To mitigate
them, we performed two main tasks. First, NODERACER
has been extensively tested with a micro-benchmark of 35
small programs that simulate trivial uses (and corner cases)
of asynchronous operations in Node.js. Second, we verified
sample runs of the 11 benchmarks used of RQ1 and RQ2, as
well as checked the results for 13 projects of RQ3 and RQ4.

Node.fz has parameters that can be tuned to improve its
effectiveness. We surmise that tuning Node.fz for each case is
not practical, so we adopted its default setting. By doing this,

20https://github.com/mongo-express/mongo-express/issues/499
21https://github.com/mongo-express/mongo-express/pull/320
22https://github.com/mongo-express/mongo-express/issues/500
23https://github.com/archiverjs/node-archiver/pull/388
24https://github.com/louischatriot/nedb/pull/610
25https://github.com/louischatriot/nedb/issues/609

https://github.com/socketio/socket.io/issues/3358
https://github.com/socketio/socket.io-client/pull/1253
https://github.com/mongo-express/mongo-express/issues/499
https://github.com/mongo-express/mongo-express/pull/320
https://github.com/mongo-express/mongo-express/issues/500
https://github.com/archiverjs/node-archiver/pull/388
https://github.com/louischatriot/nedb/pull/610
https://github.com/louischatriot/nedb/issues/609

Node.fz did not reveal all the bugs and performed poorly in
some benchmarks, although in principle it can find them (or
be more effective) with the right parameters.

The approach can miss happens-before relations introduced
by, e.g., third-party libraries or Node.js addons. This may trig-
ger interleavings that are infeasible and potentially cause false
alarms, though we did not observe any in the experiments.

Our implementation relies on several third-party libraries,
being then subjected to their limitations. For instance, the
current version of njsTrace does not support all features of
JavaScript, and it fails for some corner cases, breaking the
observation and guided execution phases.

NODERACER is designed to work with one process, which
can be expected to cover around 95% of all concurrency
bugs [9]. Future extensions could be added to detect event
races that involve the communication among multiple pro-
cesses and the experimental API worker threads. NODERACER
may also miss races that manifest outside of Node.js; for
example, a race bug may arise in an external service when it
receives two concurrent requests from a Node.js application.

Finally, the effectiveness of dynamic race detection depends
on runs that exercise “interesting” scenarios. Unfortunately,
only a small part of existing test suites produce any event
scheduling nondeterminism. For this reason, as future work
it may be interesting to investigate approaches to synthesize
tests that trigger races [26] and exploit client tests [11].

VII. RELATED WORK

Race conditions may provoke serious issues in different
kinds of concurrent software systems [27]. This topic has been
extensively researched in multi-threaded programs [28]–[32],
though races may still occur in event-driven systems [33]. The
remainder of this section focuses on races in JavaScript.

Client-side JavaScript. Several approaches have been
proposed for race detection in client-side JavaScript.
Zheng et al. [1] propose a static analysis to detect races
related to inconsistency and atomicity violations in AJAX
interactions. The WebRacer [2] and EventRacer [12] tools
are built on top of the browser framework WebKit to collect
dynamic information and report races. Most of the reported
races are harmless [12], [13], so WebRacer and EventRacer
implement countermeasures like post-processing filters and
coverage criteria. In the same line, Mutlu et al. [3] target
harmful races that flow to persistent states.

Other tools go beyond predicting races in the pursuit
of a witness run [4]–[7], [13]. WAVE [13] and R4 [7]
adopt an instrumented version of WebKit so that alternative
event sequences are explored in a controlled execution. In
particular, R4 employs a technique called conflict-reversal
bounding to minimize the event reordering; this has in-
spired the diagnosis mode of NODERACER. RClassify [4],
InitRacer [5], EventRaceCommander [8], and AjaxRacer [6]
diverge from previous tools in the implementation design.
Instead of adopting some kind of browser modification, they
instrument the client-side JavaScript code. Their authors ar-
gue that this platform-agnostic design is more robust to

changes and updates than platform-specific solutions. The
idea of postponing events in NODERACER is also used by
EventRaceCommander [8] and AjaxRacer [6], for repairing
event race errors and for identify harmful races between AJAX
events, respectively.

Node.js. Parts of our happens-before modeling are based
on previous work on modeling of asynchronous behaviors in
Node.js [21]–[23]. Only a couple of techniques target races in
Node.js applications: NodeAV and Node.fz.

NodeAV [14] focuses on detecting races classified as atom-
icity violations. From a trace, the tool predicts atomicity vio-
lations by identifying happens-before relations, a supposedly-
atomic pair of events, and violation patterns. The tool adopts
Async Hooks to track asynchronous behavior and Jalangi [34]
to collect operations on shared resources. NodeAV is tailor-
made for a specific class of atomicity violations and cannot
detect other kinds of races. Besides, its predictive approach
is subjected to false alarms like WebRacer and EventRacer.
We could not compare with NodeAV since the tool and its
benchmarks are not available.

Node.fz [15] is a fuzzing tool that enables exploration of
the callback scheduling. To do so, it takes control of the
Node.js’ internal event queues, injects very small delays so
that the queues are filled with enough events, and shuffles
them before each callback is executed. As explained in the
introduction, this approach has some drawbacks. By only
shuffling callbacks that are ready to run, it misses bugs that
only show up when specific events are postponed sufficiently.
We discuss this issue in the motivating example, and the
experimental results showed that Node.fz performed poorly
compared to NODERACER. In theory, Node.fz can perform
much better, though it would require nontrivial manual tuning
for each case to be effective. Another limitation of Node.fz
is that it limits the size of the worker pool to one thread,
which prevents it from reaching all possible interleavings
when multiple workers are involved. Node.fz is implemented
by modifying the internals of the outdated Node.js v0.12.7,
making it incompatible with many modern JavaScript projects.

VIII. CONCLUSION

We have presented the NODERACER approach to uncover
event race errors in Node.js applications. From an observed
run, a happens-before relation is identified and used to perform
guided re-runs in which callbacks are selectively postponed to
explore different interleavings. NODERACER is implemented
entirely in JavaScript, without changes to the Node.js platform.

The experimental evaluation shows that NODERACER out-
performs the state-of-the-art fuzzer Node.fz, revealing race
bugs with higher probability and with fewer re-runs, while
finding bugs that cannot be revealed by the default setting of
Node.fz. The happens-before guided execution avoids infea-
sible interleavings, needlessly postponed callbacks, and false
alarms. Our approach can also support the diagnosis of un-
solved issues related to race conditions. Finally, NODERACER
can help to uncover previously unknown bugs and flaky tests
in existing test suites.

REFERENCES

[1] Y. Zheng, T. Bao, and X. Zhang, “Statically locating web application
bugs caused by asynchronous calls,” in Proceedings of the 20th Interna-
tional Conference on World Wide Web, WWW 2011, Hyderabad, India,
March 28 - April 1, 2011. ACM, 2011, pp. 805–814.

[2] B. Petrov, M. T. Vechev, M. Sridharan, and J. Dolby, “Race detection
for web applications,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, Beijing, China - June
11 - 16, 2012. ACM, 2012, pp. 251–262.

[3] E. Mutlu, S. Tasiran, and B. Livshits, “Detecting JavaScript races that
matter,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 -
September 4, 2015. ACM, 2015, pp. 381–392.

[4] L. Zhang and C. Wang, “RClassify: Classifying race conditions in
web applications via deterministic replay,” in Proceedings of the 39th
International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017. IEEE / ACM, 2017, pp. 278–288.

[5] C. Q. Adamsen, A. Møller, and F. Tip, “Practical initialization race de-
tection for JavaScript web applications,” PACMPL, vol. 1, no. OOPSLA,
pp. 66:1–66:22, 2017.

[6] C. Q. Adamsen, A. Møller, S. Alimadadi, and F. Tip, “Practical AJAX
race detection for JavaScript web applications,” in Proceedings of the
2018 ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIG-
SOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018.
ACM, 2018, pp. 38–48.

[7] C. S. Jensen, A. Møller, V. Raychev, D. Dimitrov, and M. T. Vechev,
“Stateless model checking of event-driven applications,” in Proceed-
ings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30,
2015. ACM, 2015, pp. 57–73.

[8] C. Q. Adamsen, A. Møller, R. Karim, M. Sridharan, F. Tip, and K. Sen,
“Repairing event race errors by controlling nondeterminism,” in Pro-
ceedings of the 39th International Conference on Software Engineering,
ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. IEEE / ACM,
2017, pp. 289–299.

[9] J. Wang, W. Dou, Y. Gao, C. Gao, F. Qin, K. Yin, and J. Wei,
“A comprehensive study on real world concurrency bugs in Node.js,”
in Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, Urbana, IL, USA, October
30 - November 03, 2017. IEEE Computer Society, 2017, pp. 520–531.

[10] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, (FSE-22), Hong
Kong, China, November 16 - 22, 2014. ACM, 2014, pp. 643–653.

[11] G. Mezzetti, A. Møller, and M. T. Torp, “Type regression testing
to detect breaking changes in Node.js libraries,” in 32nd European
Conference on Object-Oriented Programming, ECOOP 2018, July 16-
21, 2018, Amsterdam, The Netherlands, ser. LIPIcs, vol. 109. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, pp. 7:1–7:24.

[12] V. Raychev, M. T. Vechev, and M. Sridharan, “Effective race detection
for event-driven programs,” in Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2013, part of SPLASH 2013,
Indianapolis, IN, USA, October 26-31, 2013. ACM, 2013, pp. 151–166.

[13] S. Hong, Y. Park, and M. Kim, “Detecting concurrency errors in
client-side JavaScript web applications,” in Seventh IEEE International
Conference on Software Testing, Verification and Validation, ICST 2014,
March 31 2014-April 4, 2014, Cleveland, Ohio, USA. IEEE Computer
Society, 2014, pp. 61–70.

[14] X. Chang, W. Dou, Y. Gao, J. Wang, J. Wei, and T. Huang, “Detecting
atomicity violations for event-driven Node.js applications,” in Proceed-
ings of the 41st International Conference on Software Engineering, ICSE
2019, Montreal, QC, Canada, May 25-31, 2019. IEEE / ACM, 2019,
pp. 631–642.

[15] J. C. Davis, A. Thekumparampil, and D. Lee, “Node.fz: Fuzzing the
server-side event-driven architecture,” in Proceedings of the Twelfth
European Conference on Computer Systems, EuroSys 2017, Belgrade,
Serbia, April 23-26, 2017. ACM, 2017, pp. 145–160.

[16] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to build high-
performance network programs,” IEEE Internet Computing, vol. 14,
no. 6, pp. 80–83, 2010.

[17] J. C. Davis, G. Kildow, and D. Lee, “The case of the poisoned
event handler: Weaknesses in the Node.js event-driven architecture,”
in Proceedings of the 10th European Workshop on Systems Security,
EUROSEC 2017, Belgrade, Serbia, April 23, 2017. ACM, 2017, pp.
8:1–8:6.

[18] Node.js, “Node.js v12.11.0 documentation,” 2019. [Online]. Available:
https://nodejs.org/api/

[19] M. Madsen, O. Lhoták, and F. Tip, “A model for reasoning about
JavaScript promises,” PACMPL, vol. 1, no. OOPSLA, pp. 86:1–86:24,
2017.

[20] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[21] M. C. Loring, M. Marron, and D. Leijen, “Semantics of asynchronous
JavaScript,” in Proceedings of the 13th ACM SIGPLAN International
Symposium on on Dynamic Languages, Vancouver, BC, Canada, October
23 - 27, 2017. ACM, 2017, pp. 51–62.

[22] H. Sun, D. Bonetta, F. Schiavio, and W. Binder, “Reasoning about the
Node.js event loop using Async Graphs,” in IEEE/ACM International
Symposium on Code Generation and Optimization, CGO 2019, Wash-
ington, DC, USA, February 16-20, 2019. IEEE, 2019, pp. 61–72.

[23] T. Sotiropoulos and B. Livshits, “Static analysis for asynchronous
JavaScript programs,” in 33rd European Conference on Object-Oriented
Programming, ECOOP 2019, July 15-19, 2019, London, United King-
dom., ser. LIPIcs, vol. 134. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2019, pp. 8:1–8:30.

[24] Sqreen, “Curated list of awesome open-source applications made
with Node.js,” 2019. [Online]. Available: https://github.com/sqreen/
awesome-nodejs-projects

[25] Sindresorhus, “Curating the best Node.js modules and resources,” 2019.
[Online]. Available: https://github.com/sindresorhus/awesome-nodejs

[26] M. Samak, M. K. Ramanathan, and S. Jagannathan, “Synthesizing
racy tests,” in Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015. ACM, 2015, pp. 175–185.

[27] F. A. Bianchi, A. Margara, and M. Pezzè, “A survey of recent trends
in testing concurrent software systems,” IEEE Trans. Software Eng.,
vol. 44, no. 8, pp. 747–783, 2018.

[28] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson,
“Eraser: A dynamic data race detector for multithreaded programs,”
ACM Trans. Comput. Syst., vol. 15, no. 4, pp. 391–411, 1997.

[29] C. Boyapati and M. C. Rinard, “A parameterized type system for
race-free Java programs,” in Proceedings of the 2001 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and
Applications, OOPSLA 2001, Tampa, Florida, USA, October 14-18,
2001. ACM, 2001, pp. 56–69.

[30] M. Naik, A. Aiken, and J. Whaley, “Effective static race detection
for Java,” in Proceedings of the ACM SIGPLAN 2006 Conference on
Programming Language Design and Implementation, Ottawa, Ontario,
Canada, June 11-14, 2006. ACM, 2006, pp. 308–319.

[31] K. Sen, “Race directed random testing of concurrent programs,” in
Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation, Tucson, AZ, USA, June 7-13,
2008. ACM, 2008, pp. 11–21.

[32] C. Flanagan and S. N. Freund, “FastTrack: Efficient and precise dynamic
race detection,” in Proceedings of the 2009 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2009,
Dublin, Ireland, June 15-21, 2009. ACM, 2009, pp. 121–133.

[33] E. Andreasen, L. Gong, A. Møller, M. Pradel, M. Selakovic, K. Sen,
and C. Staicu, “A survey of dynamic analysis and test generation for
JavaScript,” ACM Comput. Surv., vol. 50, no. 5, pp. 66:1–66:36, 2017.

[34] K. Sen, S. Kalasapur, T. G. Brutch, and S. Gibbs, “Jalangi: A selective
record-replay and dynamic analysis framework for JavaScript,” in Joint
Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26,
2013. ACM, 2013, pp. 488–498.

https://nodejs.org/api/
https://github.com/sqreen/awesome-nodejs-projects
https://github.com/sqreen/awesome-nodejs-projects
https://github.com/sindresorhus/awesome-nodejs

	Introduction
	Motivating Example
	Background
	Approach
	Observation Phase
	Happens-Before Identification Phase
	Guided Execution Phase

	Implementation
	Evaluation
	Experimental Setup
	Analysis of Results
	Limitations and Threats to Validity

	Related Work
	Conclusion
	References

