Tool-supported Refactoring for JavaScript
Technical Report

Asger Feldthaus Todd Millstein Anders Mgller
Max Schafer Frank Tip

August 15, 2011

1 Syntactic Preliminaries

We assume that the program to be analyzed and refactored is represented as an
abstract syntax tree (ASTs). An AST node (or just node for short) is character-
ized both by its content, i.e., a piece of program text represented by the node,
and its position in the syntax tree for the entire program. For convenience, we
will sometimes elide the distinction between a node and its content.

The following node types are used in this specification:

Identifier reference An identifier used as an expression [1, §11.1.2]. Its name
is the IdentifierName with Unicode escape sequences of the form \uxxxx
normalized to their CVs [1, §7.8.4]. The set of all identifier reference nodes
in the program is denoted as IdRef.

Fixed-property expression A property accessor using dot notation [1,
§11.2.1]. Its base expression is the expression to the left of the dot, its
name the (normalized) identifier to the right. The set of fixed-property
expressions is denoted as FixedPropExp.

Dynamic property expression A property accessor using bracket nota-
tion [1, §11.2.1]. Its base expression is the expression to the left of the
opening bracket. The set of dynamic property expressions is denoted as
DynamicPropExp.

Property initializer A property assignment in an object literal [1, §11.1.5].
Its name is the property name to the left of the colon, resp. after the
get or set annotation. The set of fixed-property initializers is denoted as
PropInit.

In expression An expression whose top-level operator is the binary in opera-
tor. Its base expression is the expression to the right of the in operator.
The set of in expressions is denoted as InExp.

Variable declaration A variable declaration [1, §12.2]. Its name is the (nor-
malized) identifier. The set of variable declarations is denoted as VarDecl.

Function definition A function expression or declaration [1, §13]. The set of
function definitions is denoted as FunDef. For every node n, enclosingFun(n)
denotes the innermost function definition lexically enclosing n, not count-
ing n itself, if there is one.

Formal parameter An identifier occurring in the formal parameter list of a
function definition [1, §13] or in a catch clause [1, §12.14]. Its name is the
(normalized) identifier itself. The set of formal parameters is denoted as
FormalParm.

Function name An identifier occurring in a function definition [1, §13]. For
convenience, we assume that every function has a name; unnamed function
expressions can be thought of as having a unique synthetic name. The
name of a function name is the (normalized) identifier itself. The set of
function names is denoted as FunName.

Function call The set of function calls is denoted as FunCall.
New expression The set of new expressions is denoted as NewExp

Invocation An invocation is either a function call or a new expression. The set
of invocations is denoted as Invocation; for an invocation n, funExp(n)
denotes the invoked expression.

For-in loop A loop of the form for(h ine)b. The set of for-in loops is denoted
as ForInLoop; for a for-in loop I, loopExp(l) denotes the expression being
iterated over.

Catch clause The set of catch clauses is denoted as CatchClause.

With block The set of with blocks is denoted as WithBlock. For a with block
b, withExp(b) denotes the expression the with is performed on.

Scope node A scope node is either a function definition or a catch clause or
a with block.

An expression node e is in lvalue position if it is the left hand side of an
assignment, the operand of delete or of one of the increment or decrement
operators; it is in rvalue position if it is not the left hand side of a simple
assignment or the operand of delete. Parentheses are ignored for the purposes
of determining whether an expression is in lvalue or rvalue position.

Identifier references, fixed-property expressions, property initializers, vari-
able declarations, formal parameters and function names are collectively re-
ferred to as named accesses. Every named access a has a name (as defined
in the above description), which we write as v(a). Named accesses, dynamic
property expressions and in expressions are referred to as accesses.

For an access a and a name p, we say that a may have name p if either a is
a named access and p = v(a), or a is a dynamic property expression e[e’] such
that e’ may evaluate to a value v with p = ToString(v), or a is an in expression
e in €’ such that e may evaluate to a value v with p = ToString(v).

Similarly, we say that a must have name p if either a is a named access and
p = v(a), or a is a dynamic property expression e[e’] such that for every value
v that €’ evaluates to we have p = ToString(v), or a is an in expression e in e’
such that for every value v that e evaluates to we have p = ToString(v).

We assume that there are queries possiblyNamed and definitelyNamed which,
for a given property name p, determine an over- resp. under-approximation of
the set of access nodes in the program that may (must) have name p. These
queries can be implemented entirely syntactically, although an implementation
may choose to supplement the syntactic information with additional information
gained from static analysis.

Given an access a and an identifier y, we let p(a,y) denote the access that
results when replacing the name of a by y. Specifically:

1. For an identifier reference x, define p(z,y) :=y.

2. For a fixed-property expression e.x, define p(e.z,y) := e.y.

3. For a dynamic property expression ele’], define p(e[e],y) := e.y.
4

. For a property initializer p: e, define p(p: e,y) := y: e, and similar for get
and set properties.

o

For an in expression e in e/, define p(e ine’,y) := "y" ine’.

6. For a variable declaration var x, define p(var x,y) := var y, and similar
for variable declarations with initializer.

7. For a formal parameter x, define p(z,y) := y.
8. For a function name f, define p(f,y) :=y.

We write T' = (t1, ..., ;) for the list of top-level statements in the program
under consideration, in the order in which they are evaluated by the browser or
stand-alone interpreter.

We write P for the set of property names.

2 Central Concepts

We say that two access nodes a1 and as are directly related if they may resolve
to the same property in some evaluation, and (indirectly) related if they are
transitively directly related. Related access nodes always have to be renamed
together in order to preserve behavior.

To capture the concept that a JavaScript function behaves “like a construc-
tor” or “like a method”, we introduce the concepts of initialization and well-
scopedness.

A function definition node f initializes an object if it is invoked precisely
once with that object as a receiver, and that invocation happens before any
properties of the object are accessed.

A function object o, is well-scoped if it results from evaluating a function
definition node m that is a direct inner function of another function definition
node f and whenever o,, is invoked its receiver object is the same as the receiver
object of the invocation of f that created o,,. If every function object resulting
from m is well-scoped, we say that m itself is well-scoped. Generalizing to deeper
nesting, we say that m is well-scoped up to h if m is a (not necessarily direct)
inner function of h, and m and every enclosing function up to h is well-scoped.

3 The Underlying Analysis

This section codifies our assumptions about the underlying pointer analysis.

We assume that the analysis defines a finite set L of object labels such that
every object at runtime has a (not necessarily unique) label drawn from L.
Environment records also have labels. For technical reasons, we require that if an
object label represents an object allocated by a particular new expression, then
all objects represented by the label are allocated by that expression. Similarly,
we require that the sets of object labels representing different function objects
are disjoint.

Let L; be the subset of object labels that may represent function objects,
and LL;, the subset of object labels that may represent host objects.

We say that L C LL is an over-approzimation of a set of O runtime objects
if L contains all the labels of the objects in O. Conversely, L is an under-
approzimation of O if all objects labelled by any of the object labels in L are
contained in O.

We expect the pointer analysis to provide the following basic queries:

objects For any expression e in the program, objects(e) C L over-approximates
the set of objects to which e may evaluate, including objects arising from
ToObject conversion [1, §9.9]. For a function declaration f, objects(f)
over-approximates the set of function objects that may result from evalu-

ating f.

scope For any function definition or catch clause s, scope(s) C L over-
approximates the set of environment records that may appear at the top of
the lexical environment when the body of s is executed. We additionally
define scope(w) := objects(withExp(w)) for any with block w.

proto For any object label ¢, proto(¢) C IL over-approximates the possible pro-
totype objects of the objects represented by £. We write proto™* (L) for the
set of transitive prototypes of L as determined by this query, and similar
for proto*(L).

props For any object label ¢, props(¢) C L over-approximates the set of objects
that could be stored in properties of £.

mayHaveProp, mustHaveProp For any object label ¢ and property name p,
mayHaveProp(¢, p) must hold whenever any object represented by ¢ may
have a property p; mustHaveProp({,p), conversely, should only hold if
every object represented by ¢ must definitely have a property p.

arg, ret For an object label £ and a natural number 4, arg(¢, i) over-approximates
the set of objects that may be passed as the ith argument (or the receiver in
case ¢ = 0) to any function labelled by ¢. Similarly, ret over-approximates
the set of objects that may be returned from /.

builtin Given the name of a standard built-in ECMAScript object or property
(as specified in [1, §15]), this query returns the corresponding object label.
We write global for the object label corresponding to the global object.
For brevity, we use the names of built-in ECMAScript objects such as
Function.prototype.call to stand for their corresponding object labels.

4 Derived Queries
We define the following derived queries in terms of the above:

scopes Given an expression node e and a name n, scopes(e,n) computes an
over-approximation of the set of environment records and objects which
may be searched when n is looked up at position e.

Let s1,...,s, be the sequence of scope nodes enclosing e in order of
nesting, with s; being the innermost enclosing scope node. For every
ie{l,...,n} let

I scope(s;) if s; € FunDef U CatchClause
‘| proto*(objects(withExp(s;))) if s; € WithBlock
Additionally, let L, := {global}.

Let k be the smallest index such that mustHaveProp(¢,n) holds for every
¢ € Lj; if no such index exists, define k :=n + 1.

Finally, let scopes(e,) := J; <;<j, Li-

visited Given an access node a, visited(a) over-approximates the set of objects
that may be visited during resolution of a.

1. For an identifier reference x, visited(z) := scopes(z, v(z)).

2. For a fixed-property expression e.x that is not in rvalue position,
define visited(e.x) := objects(e).
If e.x is in rvalue position, visited(e.z) is the smallest set L such that
(a) objects(e) C L
(b) V¢ € L: ~mustHaveProp(¢,v(e.x)) — proto({) C L

3. For a dynamic property expression e[e’] in rvalue position:
visited(e[e']) := proto* (objects(e))
If e[e’] is not in rvalue position:
visited(e[e']) := objects(e)
4. For a property initializer p in an object literal [, visited(p) := objects(1).
5. For an in expression e in e/, visited(e in ') := proto*(objects(e’)).
6. For a variable declaration d without initializer:

. [scope(f) if f:= enclosingFun(d) is defined
visited(d) { {global} otherwise

If d has an initializer and the directly enclosing scope node s of e is
not a function declaration, visited(d) additionally contains scope(s).
7. For a formal parameter = belonging to s € FunDef U CatchClause,
visited(z) := scope(s).
8. For a function name f belonging to a function definition d:

| scope(g) if g := enclosingFun(d) is defined
visited(f) '_{ {global} otherwise

We also define a filtering version of visited as follows:
visited(a, n) := {¢ € visited(a) | mayHaveProp(¢,n)}

This discards from visited(a) all object labels that cannot possibly have a
property n.

base Given an access node a, base(a) approximates the set of base objects on
which a may be looked up.

If a is an identifier reference node in rvalue position, a property expression
node in rvalue position or an in expression, and a must have name n, define
base(a) := visited(a,n). Otherwise define base(a) := visited(a).

lookup For an expression node e and a name n, define

lookup(e, n) := {{ € scopes(e,n) | mayHaveProp(¢,n)}

related For an access node a, the set related(a) is the smallest set R such that

1.a€eR

2. Vp € P: Vay, as € mayHaveName(p): a; € R A base(ay) N base(az) #
0 — as € R

callees For an invocation expression ¢ define

callees(c) := objects(funExp(c))

intrinsic For an object label £ and a property name p, intrinsic(¢, p) holds when-
ever p is an intrinsic property on some object o represented by £, i.e., the
runtime system, browser or standard library treat property p of object o
specially.

Concretely:

1. V¢ e L: {{} x {toString, valueOf, constructor} C intrinsic
2. For every £ € L such that

proto(£)N{ Array.prototype, String.prototype, Function.prototype} # ()

we let (£, length) € intrinsic.
V¢ e L;: (¢, prototype) € intrinsic.
Vp e P: V0 € Ly,: (¢,p) € intrinsic

{global} x {document,window} C intrinsic

A S

{global} x G C intrinsic, where

G = {NaN, Infinite, undefined, eval, parselnt, parseFloat,
isNaN, isFinite, decodeURI, decodeURIComponent, encodeURI,
encodeURIComponent, Object, Function, Array, String,
Boolean, Number, Date, RegExp, Error, EvalError, RangeError,
ReferenceError, SyntaxError, TypeError, URIError, Math, JSON}

reflPropAcc For an object label ¢, reflPropAcc(f) holds whenever a property of
an object labelled by ¢ may be accessed reflectively by a built-in function.

Concretely:

. arg(Object.getOwnPropertyDescriptor, 1) C reflPropAcc
arg(Object.getOwnPropertyNames, 1) C reflPropAcc
arg(Object.defineProperty, 1) C reflPropAcc
arg(Object.defineProperties, 1) C reflPropAcc
arg(Object.defineProperties, 2) C reflPropAcc
arg(Object.keys, 1) C reflPropAcc
arg(Object.prototype.hasOwnProperty, 0) C reflPropAcc
arg(Object.prototype.propertylsEnumerable, 0) C reflPropAcc
props*(arg(JSON.stringify, 1)) C reflPropAcc

props*(ret(JSON.parse)) C reflPropAcc

© 0N WD

H
e

initializes For a function definition node f, initializes(f) is an under-approximation
of the set of objects which f initializes.

We say that a function definition node f is an initializer if it initializes
all of its receiver objects. One way of computing initializes(f) is to check
whether ¢ is an initializer; if so, we can set

initializes(f) := U arg(¢,0).
Leobjects(f)
Otherwise, we conservatively let initializes(f) := 0.

The basic idea is that a function is an initializer if every potential call to f
is either a new expression that definitely invokes f, or a “superconstructor”
invocation of the form F.call(this, ...) that definitely invokes f and
is the first statement of another function that is itself an initializer.

Let us call a function call node ¢ a superconstructor call if

1. ¢ is the expression of an expression statement, which in turn is the
first statement in the body of a function definition;

2. the first argument of ¢ is a this expression;

3. callees(c) C {Function.prototype.apply, Function.prototype.call}.

We say that a function call node ¢ may reflectively invoke a function
definition f if

1. callees(c) N {Function.prototype.apply, Function.prototype.call} # (;

2. either funExp(c) is a property expression with base expression e such
that
objects(e) N objects(f) # 0,

or there is a surrounding with block w such that
objects(withExp(w)) N objects(f) # 0.

We say that a function call node ¢ must reflectively invoke a function
definition f if

1. callees(c¢) C {Function.prototype.apply, Function.prototype.call};

2. funExp(c) is a property expression with base expression e such that
objects(e) C objects(f).

In order for a function definition f to be an initializer, it suffices if the
following conditions hold:

1. Function.prototype.bind is never invoked on f:

arg(Function.prototype.bind, 0) N objects(f) = 0

2. Function.prototype.apply, bind and call are not invoked on each
other.

3. Every invocation node ¢ such that callees(c) Nobjects(f) # () is a new
expression with callees(n) C objects(f).

4. Every invocation node ¢ that may reflectively invoke f must reflec-
tively invoke f, and it must be a superconstructor call in a function
f! such that f’ is itself an initializer.

wellscoped For a function definition node f, wellscoped(f) holds if f is well-
scoped.

It suffices to check the following conditions:

1. f is a direct inner function of function definition g.

2. f is only assigned to properties of the receiver of g: whenever the
right-hand side e, of a simple assignment may evaluate to f (i.e.,
objects(e,) N objects(f) # 0), the sole intra-procedural reaching def-
inition of e, is f itself, and the left-hand side of the assignment is a
property expression of the form this.p (for some identifier p).

3. f is only invoked on the object in whose property it is stored:

(a) For any invocation expression ¢ with callees(c) N objects(f) # 0,
funExp(c) is of the form e.p.

(b) V¢ € proto™ (objects(e)): ~mayHaveProp(¢, p)
4. f is not invoked reflectively.

5 Specification of Rename

Input A named access node a and an identifier y.
Overview « and its related accesses are renamed to y.

Definitions Let B := |, ¢ elatcd(a) Pase(r); this set labels all objects that are
affected by the renaming. Let x be the name of a.

Preconditions

1. z is not an intrinsic property on B:

Vb € B: (b,x) ¢ intrinsic

2. Every access to be renamed definitely has name x:

related(a) C definitelyNamed(x)

3. For every in expression e in €’ or dynamic property expression e’[e] in
related(a), expression e’ must be side effect free (since it will be replaced
by the renaming).

4. The accesses in related(a) can be renamed to y without name capture:
Vr € related(a): visited(r,y) = 0
We also say that y is free for related(a).

5. y does not cause name capture on B, that is:

(a) Existing accesses are not captured:
Vr € possiblyNamed(y): visited(r) N B = ()

(b) y is not an intrinsic property on B.

(c) Properties of the objects in B must not be accessed reflectively, that
is:
i. Vf € ForInLoop: B N objects(loopExp(f)) =0
ii. V¢ € B: —refiPropAcc(f).

Transformation Replace every a € related(a) with p(a,y).

6 Specification of Encapsulate Property

Input A fixed-property expression node a.

Overview This refactoring identifies a function ¢ that initializes all base ob-
jects of a and its related accesses, and turns the property accessed by a into a
local variable of c.

Any accesses to the property from within ¢ can be turned into accesses to the
local variable if they happen from within well-scoped functions. Accesses from
outside ¢ are handled by defining getter and setter functions in ¢ and rewriting
accesses into calls to these functions.

The preconditions identify a suitable ¢, determine how to rewrite accesses,
and prevent problematic name binding changes.

Definitions Let z := v(a) be the name of a; let g and s be appropriate getter
and setter names derived from .

Let B := Uremamd(a) base(r); this is the set of objects whose properties «
we want to encapsulate.

10

Preconditions

1. There is a function node ¢ such that B C initializes(c).

The getter and setter functions are defined in ¢; since it is invoked on
every affected object before any of its properties are accessed, we can be
sure that the functions are in place before their first use.

2. The affected objects do not appear on each others’ prototype chains, i.e.,

—=3by,by € B : by € protot (by)

3. Every access in related(a) is either a fixed-property expression or an iden-
tifier reference.!

4. There is a decomposition related(a) = A; W Ay W As such that

(a) Every a € A; is of the form this.x, is not an operand of delete,
and its enclosing function is well-scoped up to c.
These are the accesses that will be replaced by identifier references
x. Well-scopedness ensures that this reference refers to the right x.

(b) None of the a € Ay is in an lvalue position.
These accesses can be turned into invocations of the getter function.

(c) Every a € A is in an lvalue position, but not an operand of delete.

If it is a property expression that does not form the left-hand side of a
simple assignment expression, its base expression must be side effect-
free. If it is the operand of a post-decrement/-increment operator,
the whole expression (including the operator) must either be the left
operand of a comma operator, or the operand of a void operator, or
the expression of an expression statement.
These accesses will be turned into setter invocations if they form the
left-hand side of a simple assignment expression, or a combination
of getter and setter invocations otherwise. In the latter case, the
base expression has to be duplicated, hence the condition about side
effects. The effect of post-decrement and post-increment is hard to
mimick using getters and setters, except if their resulting value is not
observable, in which case they act like pre-decrement/-increment.

Let A, := {a’ € related(a) \ A; | ¢’ is in an rvalue position} be the set of
all rvalue-expressions that are rewritten to use the getter function.

5. Properties of B must not be accessed reflectively.
6. Naming checks:
(a) A; can be refactored without name capture:

Va € A;: base(a,z) =0

IThe latter can only happen if a with statement is involved.

11

(b) The declaration of the new local variable x in ¢ does not capture
existing identifier references.

Va € possiblyNamed(x): visited(a) N scope(c) = 0

(¢) z is not an intrinsic property on B.

7. If A, # 0, g must be free for A; and must not cause name capture on
initializes(c).

8. If A; # 0, s must be free for A, and must not cause name capture on
initializes(c).
Transformation

1. Insert a declaration var x; into c.

2. If A, # (), insert definition

this.g = function() {
return zx;

};
into c.

3. If A; # 0, insert definition

this.s = function(z’) {
return = = z’;

}

into ¢, where 2’ is a suitable identifier derived, but different, from z.
4. For every access a € A;:

(a) If a is the function expression of a function call with arguments

€1,...,en, replace the whole function call with z.call(this, ey, ..., e,).2

(b) Otherwise, replace a with an identifier reference z.

5. For every access a € Ay if a is a name expression, replace it with g();
otherwise it must be a fixed-property expression b.x, which is replaced
with b.g().

6. For every access a € Ag:

(a) If a is the left-hand side of a simple assignment expression with right-
hand side e, replace it with s(e) or b.s(e), depending on whether it
is a name expression or a fixed-property expression b.z.

2We assume that Function.prototype.call has not been redefined.

12

(b) If a is the left-hand side of a composite assignment expression with
operator o, replace it with s(g() o e) or b.s(b.g() o e), depending on
whether it is a name expression or a fixed-property expression b.z.

(c) Otherwise, a is either the operand of an increment operator, in which
case replace it with s(g() + 1) or b.s(b.g() + 1), or the operand of a
decrement operator, which is handled analogously.

7 Specification of Extract Module

Input Contiguous top-level statements tg, . .., tx4; occurring in the same script
element or source file, a set P of identifiers to extract and an identifier M to be
used as module name.

Overview Schematically, the transformation performed by the refactoring is
as follows (where we write p1,...,p, for the identifiers in P):

var M = (function() {

. var pi, ..., Dn;
ks tes oov trtls
: = return {
thyl; p1t Pis ---5 Pnt DPn
3
HO;
The extracted global variables pq,...,p, are turned into properties of the
newly declared module variable M; hence they can be accessed as M.py, ..., M.p,

after module initialization has finished, i.e., the definition of M has been eval-
uated. There should not be any accesses to these variables before module ini-
tialization, and any accesses during module initialization have to instead refer
to the corresponding local variables p1, ..., pn.

If some p; is not assigned to after module initialization, accesses lexically
nested inside the module can access the local variable instead and do not need
qualification with M.

The preconditions determine a set () of accesses that have to be qualified,
and a set U of accesses that do not; in addition, they ensure that there are no
accesses before module initialization and prevent name binding issues.

Definitions Let S be the set of all access nodes appearing in the given state-
ments, with its subset I containing only those nodes not nested inside functions.
Accesses in [are thus guaranteed to only be evaluated during module initial-
ization.

Let I* be an overapproximation of the set of all access nodes that may be
evaluated before or during module initialization. This can be computed by
building a transitive call-graph of the statements t1, ..., tx4, using query callee
to determine possible callees of invocation nodes. Finally, let C' contain all

13

access nodes not in I*; accesses in C are thus guaranteed not to be evaluated
before module initialization is complete.

For p € P, we define A, := {a € possiblyNamed(p) | global € base(a, p(a,p))}
to be the set of accesses that may refer to the global property p, and Ap :=
Upep Ap. We define mutable(p) to hold if A, contains a write access that does
not belong to I, i.e., if p may be written after module initialization is complete.

Preconditions

1. Any access that may refer to some property in P must refer to that prop-
erty; i.e., for every p € P and a € Ap:

a € definitelyNamed(p) A visited(a, p) = {global}

2. There is a partitioning Ap = Q W U into accesses that will be qualified
with M and accesses that will be turned into identifier references.

Q@ must fulfill the following conditions:

(a) @ C C, i.e., accesses in @) can only be evaluated after module initial-
ization is finished.

(b) M is free for Q.

(¢c) For any identifier reference in @ that is the invoked expression of a
function call ¢, no possible callee of ¢ may reference this. That is,
there may not be any this expression ¢ such that

objects(enclosingFun(t)) N callees(c) # (.

(d) For any fixed-property expression e.f in @ that is the invoked ex-
pression of a function call, e must be side effect-free (since it will be
duplicated by the transformation).

Every u € U referring to p € P must fulfill the following conditions:

(a) we IVue SN -mutable(p)
(b) base(u,p) C {global}.

(¢) If w is not an identifier reference, it must be a fixed-property expres-
sion of the form e.p such that e is side-effect free.

3. M does not cause name capture on global.

4. No p € P is an intrinsic on global.

14

Transformation
1. Replace t,...,tr4; with the definition of module M as shown above.
2. For every access q € Q:

(a) If g is an identifier reference, replace it with M.q.

(b) If ¢ is a fixed-property expression e.p that forms the function ex-
pression of a function call node with arguments ey, ..., e,, replace it
with e.M.p.call(e,eq,...,e,). If it does not form such a function
expression, replace it with e.M.p.

(c) Otherwise, ¢ must be a variable declaration declaring a variable p. If
q has an initializer expression e, turn it into an assignment M.p = e.
Otherwise delete q.

3. For every access u € U: if u is a fixed-property expression, replace it with
an identifier reference formed from its name.

8 Specification of Inline Function

Inlining a function invocation in JavaScript can be done in three steps:

1. Inline the called function into a one-shot closure, i.e., a function expression
that is immediately applied.

2. Turn arguments into local variables.

3. Convert the closure into a block and inline the local variables.

We concentrate on the first step only, even though it is not very useful as a
standalone refactoring.

Input A function invocation node f of the form eg(ey,...,e,).

Overview Once it has been determined that f can only call one unique func-
tion, the main challenge is verifying which closure variables may be accessed by
the inlined function. Even if a referenced variable is in scope at f, it is possible
that this variable could be read from a different lexical environment representing
the same scope.

Preconditions

1. There is a function definition node ¢ with objects(eg) C objects(c).

This guarantees that f invokes a unique user-defined (as opposed to built-
in) function.

2. For every identifier reference v in ¢ and its inner functions, at least one of
the following conditions must hold:

15

(a) v refers to a global variable and is not captured at f
base(v) = {global} A base(f,v) = {global}

(b) wv refers to a local variable of ¢ or one of its inner functions

(¢) ¢ is a function declaration with name g, eg is an identifier refer-
ence g that refers to ¢ (hence they share a lexical environment), and
base(v) = base(f,v)

3. If eg is not a property expression, the body of ¢ may not contain a this
expression.

4. If eg is not a property expression, it must not have side effects, as they
would be removed by the inlining.

Transformation Let py,...,p, be the parameters of ¢ and b its body. If eg
is a property expression with receiver expression e,, replace f by?>
(function(py, ..., pn) { b }).call(eq, €1, ..., €p)

Otherwise, replace f by

(function(pi, ..., pn) { b P)Cer, ..., €n)

References

[1] ECMA. ECMAScript Language Specification, 5th edition, 2009. ECMA-262.

3This transformation may be unsound if wuser code has redefined
Function.prototype.call; we choose to ignore this possibility.

16

