
Modular Call Graph Construction for
Security Scanning of Node.js Applications

Benjamin Barslev Nielsen

Aarhus University

Denmark

barslev@cs.au.dk

Martin Toldam Torp

Aarhus University

Denmark

torp@cs.au.dk

Anders Møller

Aarhus University

Denmark

amoeller@cs.au.dk

ABSTRACT

Most of the code in typical Node.js applications comes from third-

party libraries that consist of a large number of interdependent

modules. Because of the dynamic features of JavaScript, it is difficult

to obtain detailed information about the module dependencies,

which is vital for reasoning about the potential consequences of

security vulnerabilities in libraries, and for many other software

development tasks. The underlying challenge is how to construct

precise call graphs that capture the connectivity between functions

in the modules.

In this work we present a novel approach to call graph construc-

tion for Node.js applications that is modular, taking into account the

modular structure of Node.js applications, and sufficiently accurate

and efficient to be practically useful. We demonstrate experimen-

tally that the constructed call graphs are useful for security scan-

ning, reducing the number of false positives by 81% compared to

npm audit and with zero false negatives. Compared to js-callgraph,

the call graph construction is significantly more accurate and effi-

cient. The experiments also show that the analysis time is reduced

substantially when reusing modular call graphs.

CCS CONCEPTS

• Software and its engineering → Software notations and

tools.

KEYWORDS

static analysis, JavaScript, modularity

ACM Reference Format:

Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller. 2021.

Modular Call Graph Construction for Security Scanning of Node.js Applica-

tions. In Proceedings of the 30th ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISSTA ’21), July 11–17, 2021, Virtual, Denmark.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3460319.3464836

1 INTRODUCTION

The npm package repository is the largest software repository in

the world with more than one million JavaScript packages. These

packages tend to depend heavily on each other: on average each

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00

https://doi.org/10.1145/3460319.3464836

package depends on more than 50 other packages when consider-

ing both direct and transitive dependencies [14, 36]. Packages are

comprised of modules, which correspond to JavaScript files that are

loaded individually by the module system. A typical Node.js applica-

tion thus consists of hundreds or thousands of JavaScript files, with

more than 90% of the code coming from third-party libraries [15].

As security vulnerabilities in libraries are frequently discov-

ered [5, 29, 30, 34–36], to ensure maximal security of the applica-

tions it is important for the application developers to know the

structure of dependencies within the applications. One of OWASP’s

top 10 categories of web application security risks is “Using Com-

ponents with Known Vulnerabilities”.
1
A study has shown that

up to 40% of all npm packages depend on code with at least one

publicly known vulnerability [36]. Another study has found that

12% of the available packages have a release that directly relies on

a version of a package that contains a vulnerability listed in Snyk’s

security reports [5], and if taking transitive dependencies and more

security reports into account the percentage is likely much higher.

(A related study [17] shows similar numbers for JavaScript on web

pages, but we here focus on the Node.js ecosystem.) This situation

has motivated the development of security scanners, which are tools

that warn developers if their programs either directly or transitively

depend on a library with a known security vulnerability. Existing

security scanners, such as Dependabot,
2
npm audit,

3
and Snyk,

4

only consider the package dependency structure that is specified in

the package.json files, without looking at the program code. This

means that they cannot tell whether the client actually uses the

vulnerable part of the library, and consequently client developers

are often overwhelmed with false-positive warnings. In a study of

npm projects where such security scanners reported high-priority

security warnings, 73% of the projects did not actually use the vul-

nerable parts of the libraries [34]. That study also concludes that

mapping the usage of library code in client projects is difficult and

that better automatic approaches are needed.

In this paper, we present an analysis that constructs call graphs

for Node.js applications. A call graph has a node for each function

in the application and an edge from a node 𝐹 to a node 𝐺 if 𝐹 may

call𝐺 [28]. It is well known that call graphs have many applications

for a variety of development tools [6]. We demonstrate that it is

possible to considerably improve the precision and usefulness of

security scanning by using call graphs. For this purpose, the call

graph analyzer ideally needs to be sound, precise, and efficient when

applied to real-world applications. We do not require theoretical

1
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A9-

Using_Components_with_Known_Vulnerabilities

2
https://dependabot.com/

3
https://docs.npmjs.com/cli/audit

4
https://snyk.io/

https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1145/3460319.3464836
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://dependabot.com/
https://docs.npmjs.com/cli/audit
https://snyk.io/

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller

soundness guarantees, but if the constructed call graphmisses many

call edges that are possible in concrete executions then security

issues may be overlooked. High precision is important, because if

the call graph has too many edges then the technique is no better

than the existing security scanners that only look at the package

dependency structure. Efficiency is necessary such that the tool can

be integrated into existing development processes.

Besides security scanning, other possible applications of the call

graphs include change impact analysis [1, 8], which may be useful

for finding out how breaking changes in library updates affect

client code [4, 24]. Furthermore, precise knowledge of function-

level dependencies across packages can also be useful for library

developers to learn how the library features are being used, and in

IDEs for code navigation, completion, and refactoring tools [6, 20].

Multiple approaches for constructing call graphs for JavaScript

programs already exist (see Section 8), but none of them take ad-

vantage of the module structure of Node.js applications. The salient

feature of the call graph analysis we present is its modularity. The

analysis has two stages: First, each module is analyzed separately,

resulting in a module summary. Second, the module summaries

are composed for producing call graphs for collections of modules.

This modular approach is an ideal match with the massive reuse

of packages in the Node.js ecosystem. As a variant of the example

above, assume both packages 𝐴1 and 𝐴2 depend on 𝐵, which in

turn depends on 𝐶 . Call graphs can then be built bottom-up in the

package dependency graph. After creating module summaries for 𝐵

and𝐶 , we can build a call graph G𝐵𝐶 for the collection {𝐵,𝐶}. Then
later we can build call graphs for both {𝐴1, 𝐵,𝐶} and {𝐴2, 𝐵,𝐶} by
reusing G𝐵𝐶 and only adding information from the module sum-

maries for 𝐴1 and 𝐴2, respectively, thereby avoiding redundant

work.

In summary, the main contributions of this paper are:

• We propose an analysis, Jam,
5
that constructs call graphs for

JavaScript programsmodularly, by first creatingmodule sum-

maries (Section 4) and then composing the summaries and

building call graphs for collections of modules (Section 5).

• We present a proof-of-concept tool that leverages call graph

construction for security scanning (Section 6).

• Wedemonstrate experimentally (Section 7) that on 12Node.js

applications, the call-graph-based security scanner finds the

same 8 vulnerabilities as npm audit while reducing the num-

ber of false positives by 81% (from 26 to 5), and that the

analysis time is reduced substantially when reusing modu-

lar call graphs. Moreover, compared to the state-of-the-art

call graph contruction tool js-callgraph,
6
which is a further

development of the tool by Feldthaus et al. [6], Jam achieves

substantially better precision, accuracy, and analysis time.

2 MOTIVATING EXAMPLE

Consider the npm application writex
7
for converting markdown

files into latex. For version 1.0.4 of writex (the most recent version

as of August 2020), the npm audit security scanner reports that

writex may be affected by up to 10 known vulnerabilities. They

5
JavaScript module analyzer

6
https://github.com/Persper/js-callgraph

7
https://www.npmjs.com/package/writex

originate from 5 different security advisories, but npm audit reports

an alarm for every occurrence of a vulnerable dependency, and

some appear through several dependency chains. For example, a

prototype pollution vulnerability
8
affecting lodash prior to version

4.17.19 is reported twice, because a vulnerable version of lodash is

required through both writex → lodash-template-stream → lodash

and writex → gaze→ globule → lodash.

By manually examining the source code of writex, we find that

only 1 of the 5 different advisories is a true positive: a regular expres-

sion vulnerability affecting the minimatch(path, pattern) function

of the minimatch library for matching strings against glob pat-

terns.
9
We classify an alarm as a true positive if the vulnerable

library function is used by the application, disregarding whether an

actual exploit is feasible. For the remaining 4 vulnerabilities (span-

ning 8 different alarms), the vulnerable function is not reachable

from the writex application, and those alarms can therefore safely

be ignored.

Using Jam to run a call-graph-based security scan of writex, only

the true positive minimatch vulnerability is reported. Furthermore,

the Jam call graph shows through which chain of function calls

the vulnerable function is reachable, making it easier to determine

whether the vulnerability is exploitable compared to the alarms re-

ported by npm audit. For the true positive alarm in the writex client,

the following fragment of a stack trace shows how the vulnerable

function on line 114 of minimatch.jsmay be reached via the globule

package.

writex/node_modules/minimatch/minimatch.js:114:0
writex/node_modules/minimatch/minimatch.js:74:9
writex/node_modules/globule/lib/globule.js:35:30
...

Two other functions in the minimatch API, filter and match,

use the vulnerable minimatch function internally. This means that

a client using those functions may also be vulnerable, however,

this fact is unclear from the advisory description, so the client

developer might be inclined to regard the alarm from npm audit as

a false positive. A user of Jam is unlikely to make a similar mistake,

because the call graph generated by Jam records the internal calls

to minimatch.

The writex application transitively depends on 53 different pack-

ages consisting of a total of 187 JavaScript files (modules). The call

graph generated by Jam shows that only 90 of the modules (span-

ning 42 packages) are reachable from the writex application. These

numbers illustrate why the npm audit security scanner produces

so much noise; if half of the files are dead code, it is unsurprising

that most of the security scanner alarms are false positives.

Jam builds the call graph for writex and all its dependencies in

2.6 seconds, and it infers a unique caller to the vulnerable function

in minimatch.js. In comparison, the existing tool js-callgraph takes

24 minutes to analyze that application, and the resulting call graph

contains 1 379 call sites to the vulnerable function, so it cannot be

used for providing a stack trace as the one shown above.

Furthermore, the modular analysis approach of Jam makes it

possible to reuse the module summaries. For example, if we have

8
https://www.npmjs.com/advisories/1523

9
https://www.npmjs.com/advisories/118

https://www.npmjs.com/package/writex
https://www.npmjs.com/advisories/1523
https://www.npmjs.com/advisories/118

Modular Call Graph Construction for Security Scanning of Node.js Applications ISSTA ’21, July 11–17, 2021, Virtual, Denmark

already produced modular call graphs for writex’s direct dependen-

cies (which are all used also by many other applications), then the

analysis time for writex is reduced from 2.6s to 0.2s.

3 KEY CHALLENGES

To understand some of the challenges with computing call graphs

for JavaScript applications, we describe two examples.

Example 1 Consider the code below consisting of the twomodules

lib1.js and client1.js:

lib1.js:
1 module.exports.filter = (iteratee) => {
2 return (arr) => {
3 const res = [];
4 for (var x of arr) {
5 if (iteratee(x))
6 res.push(x);
7 }
8 return res;
9 };
10 }

client1.js:
11 const filter = require('./lib1.js').filter;
12 console.log(filter(x => x % 2 == 0)([1, 2, 3]));

The lib1.js module implements a curried filter function that

takes a function argument, iteratee, and returns another function.

This function then takes an array argument, arr, and iterates over

all the elements of the array, passing each element to the iteratee

function, and eventually returns an array containing all of the

elements for which iteratee returned a truthy value.

To analyze this code, the first challenge we must address is that

the code is split into modules. The public interface of a module is

constructed dynamically by writing properties to the special ob-

ject module.exports. For example, the filtermethod is exported by

lib1.js as illustrated on line 1. When a module is loaded, an object

containing exactly the properties written to module.exports is re-

turned. Themodule loading happens by calling the require function,

as demonstrated on line 11.
10

It is possible, and also quite common,

to use dynamic property writes to create the module.exports object,

and it is therefore in general difficult to statically compute the struc-

ture of a module.exports object [15]. As we explain in Sections 4

and 5, we approximate the module structure using a light-weight

field-based static analysis that tracks what functions are written

to which fields (also called properties in JavaScript) but without

distinguishing individual objects. By combining the field-based ob-

servations with a heuristic for filtering irrelevant functions, we can

statically compute the module structure with high precision.

The js-callgraph tool, which does not take a modular approach,

loses precision in this example and confuses the filter function

with Array.prototype.filter from JavaScript’s standard library.

The second challenge is that a higher-order function is used; the

filter function on line 1 takes a function as argument and also

returns a function. The analysis should be able to determine that

the call to iteratee on line 5 is really a call to the arrow function

on line 12, and that the call to the value returned from filter on

line 12 (blue parentheses) is really a call to the function on lines 2–9.

Our call graph analysis keeps track of all these functions and where

they are being called.

10
This module system is known as CommonJS. The standardized ES6 module system

is also supported by Jam but is rarely used in practice.

Example 2 Consider the following application consisting of lib2.js

and client2.js:

lib2.js:
13 function Arit () { . . . }
14 Arit.prototype.sum = (x, y) => x + y;
15 Arit.prototype.mul = (x, y) => x * y;
16 . . .

17 module.exports.Arit = Arit;

client2.js:
18 const lib = require('./lib2');
19 const arit = new lib.Arit();
20 . . . arit.sum(a, b) . . .

The lib2.js module exports a constructor, Arit, which is used to

construct objects with a set of methods for performing basic arith-

metic. The client2.js module imports lib2.js and then constructs

an Arit object and stores it in the constant arit on line 19. On

line 20, the sum method is called on arit, resulting in an invocation

of the function defined on line 14.

For the call graph analysis to resolve the call on line 20, a natural

approach would be a form of dataflow analysis or pointer analysis

that keeps track of what objects each expression may evaluate to.

However, such an approach is extremely challenging for JavaScript,

and no existing analysis of that kind is capable of scaling to real-

world programs [16, 25, 31]. As we explain in Section 4, the field-

based approach ensures that our analysis both scales well and

remain precise for real-world programs. In particular, since the

method call on line 20 involves a property named sum, it is connected

to the write to the property named sum on line 14.

While the field-based approach could easily result in spurious

call edges added to functions stored in properties with the same

name but in unrelated objects, previous work has demonstrated

that it works well in practice for client-side JavaScript applications

that build on jQuery and related libraries [6]. The js-callgraph tool

extends the tool by Feldthaus et al. [6] with support for newer

JavaScript features, including ES6/CommonJS/AMD module load-

ing, but the analysis itself is not modular, i.e., it does not take advan-

tage of the module structure of the applications. As we demonstrate

in Section 7, js-callgraph is not suited for analyzing Node.js appli-

cations since they often contain many modules.

4 MODULE SUMMARY CONSTRUCTION

The first phase of the analysis constructs a summary for each mod-

ule, without considering the connections between the modules. Let

Loc, Prop, Var , and Exp denote the sets of all possible source code

locations,
11

property names, variable names (including parameters),

and program expressions, respectively. Given a single JavaScript

file 𝑓 as input,
12

we compute a module summary 𝛽𝑓 consisting of

three separate pieces of information:

• 𝛽𝑓 .calls : Loc ↩→ P(AccessPath) is a function call summary,

which for each function definition (represented by its source

location) describes all the functions that are called within its

body, using a special access path mechanism introduced below.

11
Source locations consist of file name, begin line, and begin column, and are therefore

always unique for every function definition. However, for brevity we omit the column

information and only write ⟨file name, begin line⟩.
12
We use the terms module and file interchangeably since a module is always stored

in a single file in Node.js.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller

AccessPath ::= < ImportPath >
| Fun⟨f, l⟩
| Fun⟨f, l⟩.Param[i]
| AccessPath . Prop
| AccessPath (P(AccessPath), . . .)
| U

Figure 1: Grammar for access paths.

• 𝛽𝑓 .returns : Loc ↩→ P(AccessPath) is a function return sum-

mary, which for each function definition similarly describes its

possible return values.

• 𝛽𝑓 .props : Prop ↩→ P(AccessPath) is an object property sum-

mary, which for each property name describes the values that

may be assigned to object properties of that name.

We use a light-weight static analysis to compute the three com-

ponents, as explained next.

Access Paths. The static analysis uses an access path mechanism

(inspired by Mezzetti et al. [22] and Møller et al. [23]) to describe

values of expressions in the program. The language of access paths

is defined by the grammar in Figure 1.

• <𝑚 > denotes the loading of a module𝑚, as in, e.g., require('𝑚').

• Fun⟨𝑓 , 𝑙⟩ denotes a function definition in file 𝑓 at line 𝑙 .

• Fun⟨𝑓 , 𝑙⟩.Param[𝑖] denotes the 𝑖’th parameter of the function

definition in file 𝑓 at line 𝑙 .

• ap.𝑃 denotes accesses to properties named 𝑃 of objects denoted

by the access path ap.

• ap(𝑆1, . . . , 𝑆𝑛) denotes calls to functions denoted by ap where

the 𝑖’th argument is denoted by an access path in 𝑆𝑖 .

• U is used for expressions where the static analysis is unable to

assign any other access path, as explained later.

As an example, the access path Fun⟨lib1, 1⟩.Param[0] describes
the iteratee parameter of the filter function on line 1 in Exam-

ple 1.

Alias Analysis and Access Path Analysis. The module summary

construction computes access paths for each expression in the

analyzed file using an access path analysis. This analysis uses a

simple field-based alias analysis to compute a map

Alias𝑓 :
(
Var ∪ Prop

)
→ P(Exp)

for the file 𝑓 , such that if the value of an expression 𝐸 is written to

a variable or property 𝑋 , then 𝐸 ∈ Alias𝑓 (𝑋).13
The alias analysis constructs the map through a single traversal

of 𝑓 ’s AST. At each assignment 𝑋 = 𝐸 or 𝐸 ′.𝑃 = 𝐸, the expres-

sion 𝐸 is added to Alias𝑓 (𝑋) or Alias𝑓 (𝑃), respectively. Transitive
dataflow is taken into account later when the alias information is

being used.

Based on the alias analysis result, a map is computed that assigns

a set of access paths to each expression in 𝑓 :

AccPaths𝑓 : Exp → P(AccessPath)
13
In the implementation, we extend Prop to also include special pre- and postfix forms

of property names. For example, for a write x["foo"+ x]= y, the analysis records

that y is written to a property that has "foo" as a prefix: Alias𝑓 (foo∗) = {y}. When

analyzing, for example, z.fooBar(), the analysis will then predict that the function y is

among the possible callees. This extension ensures that the analysis can handle some

dynamic property reads, but in a way that does not lead to a major loss of precision.

The map is computed by AccPaths𝑓 (𝐸) = AP ∅ (𝐸) for each expres-

sion 𝐸 in 𝑓 , where AP is defined in Figure 2. The subscript 𝑉 in AP

and in the lookup auxiliary function ensures termination for recur-

rences of expressions. For module loads, such as, require('lodash'),

the access path corresponding to the module load string is returned.

For a property read 𝐸.𝑃 , AP computes the access paths both by

recursively computing the access paths for the sub-expression 𝐸

and appending .𝑃 , and by using the lookup function to compute

the access paths of the expressions that the alias analysis has deter-

mined to be aliased by .𝑃 .14 For a call,AP computes the receiver and

argument access paths recursively, and then creates a call access

path for each receiver access path. For a read of a variable that is

not a parameter, AP uses lookup to recursively compute the access

paths for the expressions aliased by the variable. A parameter is

treated similarly to a variable read but also adds a parameter access

path. For a function definition expression, AP creates the corre-

sponding Fun access path. For conditional and logical expressions,

the access paths are computed as the union of the access paths

for the sub-expressions. In any other case (e.g., a + operation), the

access path U is assigned to the expression.

Notice that this analysis design combines field-based analysis [6]

and the use of access paths [22, 23], which enables the analysis to

reason about individual modules.

Summary Construction. The function call summary 𝛽𝑓 .calls is
formed by grouping the access paths AccPaths𝑓 (𝐸) for each expres-

sion 𝐸 according to the function definition containing 𝐸. (For an

expression in a nested function, we here only consider the inner-

most function.) Every Node.js module is wrapped in a function upon

load of the module. We use the special access path Fun⟨𝑓 , Main⟩
to refer to the function that wraps the analyzed file 𝑓 . Similarly,

⟨𝑓 , 𝑀𝑎𝑖𝑛⟩ denotes the location of that function.

The function return summary 𝛽𝑓 .returns is similarly computed

by grouping the access paths assigned to the expressions of return

statements in the function.

Finally, the object property summary 𝛽𝑓 .props is constructed as

𝛽𝑓 .props(𝑃) =
⋃

𝐸∈Alias𝑓 (𝑃) AccPaths𝑓 (𝐸) for each property 𝑃 .

Example 3 Continuing Example 1, we obtain the module sum-

maries 𝛽client1 and 𝛽lib1. Since the filter function is called in the

outermost scope of the client1.js file, the call of filter is recorded

as follows.

𝛽client1.calls(⟨client1,Main⟩) = {<lib1>.filter(. . .), . . .}
Furthermore, the return summary of the filter function records

the access path of the function returned:

𝛽lib1.returns(⟨lib1, 1⟩) = {Fun⟨lib1, 2⟩}

Example 4 Continuing Example 2, the function defined on line 14

is written to the property sum, and the function defined on line 15 is

written to the property mul. Therefore the object property summary

for the module lib2 contains the following entries:

𝛽lib2.props(sum) = {Fun⟨lib2, 14⟩}
𝛽lib2.props(mul) = {Fun⟨lib2, 15⟩}

14
The analysis ignores dynamic property reads that are not of the form described in

footnote 13, but since it is field-based this has little effect on its recall (see Section 5).

Modular Call Graph Construction for Security Scanning of Node.js Applications ISSTA ’21, July 11–17, 2021, Virtual, Denmark

AP𝑉 (𝐸) :=



{<𝑚>} if 𝐸 = require(𝑚) or import . . . from𝑚

{ap.𝑃 | ap ∈ AP𝑉 (𝐸′) } ∪ lookup𝑉 (𝑃) if 𝐸 = 𝐸′.𝑃

{ap (AP𝑉 (𝐸1), . . . ,AP𝑉 (𝐸𝑛)) | ap ∈ AP𝑉 (𝐸′) } if 𝐸 = 𝐸′ (𝐸1, . . . , 𝐸𝑛) or 𝐸 = new 𝐸′ (𝐸1, . . . , 𝐸𝑛)
lookup𝑉 (𝑋) if 𝐸 = 𝑋 where 𝑋 is a non-parameter variable

{Fun⟨𝑓 , 𝑙 ⟩.Param[𝑛] } ∪ lookup𝑉 (𝑋) if 𝐸 = 𝑋 where 𝑋 is the 𝑛’th parameter in a function created at line 𝑙 in file 𝑓

{Fun⟨𝑓 , 𝑙 ⟩ } if 𝐸 is a function definition at line 𝑙 in file 𝑓

AP𝑉 (𝐸1) ∪ AP𝑉 (𝐸2) if 𝐸 = 𝐸′ ? 𝐸1 : 𝐸2 or 𝐸 = 𝐸1 || 𝐸2 or 𝐸 = 𝐸1 && 𝐸2

{U} otherwise

lookup𝑉 (𝑍) :=

{ ⋃
𝐸∈Alias𝑓 (𝑍) AP𝑉∪{𝑍 } (𝐸) if 𝑍 ∉ 𝑉

∅ otherwise

Figure 2: Access path computation.

5 CALL GRAPH CONSTRUCTION

Before constructing the call graph for a Node.js application, we

combine the module summaries for all its modules. For example,

𝛽 .calls (omitting the module name) denotes the combined call sum-

mary and is computed by 𝛽 .calls(loc) = ⋃
𝑓 ∈𝑀 𝛽𝑓 .calls(loc) for all

loc ∈ Loc where𝑀 is the set of modules, and similarly for the other

components.

The call graph needs to span across multiple modules, so in the

call graph construction phase, we combine the module summaries

from each file into a call graph G = (𝑉 , 𝐸, 𝛽, 𝛼) with nodes𝑉 ⊆ Loc

corresponding to function definitions and edges 𝐸 ⊆ Loc × Loc ×
AccessPath that represent the call edges, 𝛽 is the combined module

summary, and 𝛼 is explained below. Each edge in 𝐸 is annotated

with the access path of a function call between the two functions.

We use these annotations when resolving calls to higher-order

function parameters.

Computing the call graph amounts to solving the constraints

generated by the rules of Figure 3. The constraints involve two rela-

tions: 𝐸, which contains the call graph edges, and 𝛼 ⊆ AccessPath×
AccessPath × AccessPath, which is used for resolving function calls

during the analysis. We say that an expression 𝐸 in a file 𝑓 is rep-

resented by an access path ap if ap ∈ AccPaths𝑓 (𝐸). The notation

𝑛
ap

⇝ 𝑛′ is a shorthand for (𝑛, 𝑛′, ap) ∈ 𝐸, meaning that the function

at 𝑛 may call the function at 𝑛′ and ap is an access path that rep-

resents such a call. Similarly, ap

ap
′

∼ ap
′′
means (ap, ap′, ap′′) ∈ 𝛼 ,

which intuitively means that expressions represented by ap may

obtain their function values from expressions represented by ap
′′
,

and ap
′
represents calls to such functions.

Example 5 The call to filter on line 12 marked with red paren-

theses in Example 1 gives rise to the following entries in 𝛼 and 𝐸.

<lib1>.filter
<lib1>.filter(. . .)∼ Fun⟨lib1, 1⟩

⟨client1,Main⟩ <lib1>.filter(. . .)
⇝ ⟨lib1, 1⟩

We explain in Examples 6 and 7 how these entries are produced.

The call graph computation works by iteratively extending 𝐸

and 𝛼 according to the constraint rules until a fixed point is reached.

Such a fixed point is guaranteed to exist since 𝐸 or 𝛼 always in-

creases in size and there are finitely many access paths in the

module summaries.

The first two rules in Figure 3 only depend on the function call

and object property summaries (𝛽 .calls and 𝛽 .props), and not on 𝐸

or 𝛼 , so they can be resolved in the first iteration of the algorithm.

• module-call connects the access path <𝑚> . . . 𝑔, representing
the callee of a call access path that is in the function call summary,

to an access path ap
′
if the module𝑚 resolves

15
to a file 𝑓 ′ and

the access path ap
′
is in the object property summary for a file

𝑓 ′′ and property 𝑔, where the package that contains 𝑓 ′ (denoted
package(𝑓 ′)) is the same as or depends directly or transitively

on the package that contains 𝑓 ′′. The reason for considering

only the object property summaries for those files is explained

by the following scenario: If a package 𝐴 depends on a package

𝐵, which in turn depends on package 𝐶 , then functions in 𝐴

typically do not affect the interface of 𝐵,16 whereas the functions

of 𝐶 may be re-exported through modules in 𝐵. We here use

the package dependency structure, because it can be extracted

soundly, directly from the package.json files. If the call is to the
module object directly, i.e., ap = <𝑚>(), then the default exported
function is extracted from the object property summary using

the property name exports.

• other-call connects the callee represented by an access path

ap
′
to itself if ap

′(. . .) appears in the function call summary, pro-

vided that the module-call rule does not apply. The remaining

analysis constraints will resolve ap
′
to the functions it represents.

Example 6 Based on the module summaries presented in Exam-

ple 3, the analysis has recorded that Fun⟨lib1, 1⟩ is written to the

filter property. The rule module-call then applies to the call to

filter on line 12, which results in the 𝛼 entry shown in Example 5.

Since no other functions are written to a property named filter

in lib1 or its dependencies, that entry is the only one added to 𝛼

for this call. We describe in Example 7 how the corresponding call

edge is produced from 𝛼 .

15
The resolve function in this rule is similar to the require.resolve function from

Node.js.

16
It is possible to construct a scenario where functions of𝐴 become part of𝐵’s interface,

but we have not observed this behavior in practice, which is why we resort to this

heuristic even though it is theoretically unsound.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller

[module-call]

ap = <𝑚> . . . 𝑔(. . .) ∈ 𝛽 .calls(⟨_, _⟩) 𝑓 ′ = resolve (𝑚)
ap

′ ∈ 𝛽𝑓 ′′ .props(𝑔) package (𝑓 ′) is or depends on package (𝑓 ′′)

<𝑚> . . . 𝑔
ap∼ ap

′

[other-call]

ap = ap
′(. . .) ∈ 𝛽 .calls(⟨_, _⟩) module-call does not apply

ap
′ ap∼ ap

′

[return-call]

· · · ap
′′
∼ ap(. . .)

ap
···∼ Fun⟨𝑓 , 𝑙 ⟩ ∨ ap = Fun⟨𝑓 , 𝑙 ⟩
ap

′ ∈ 𝛽𝑓 .returns(⟨𝑓 , 𝑙 ⟩)

ap(. . .)
ap

′′
∼ ap

′

[param-call]

· · · ap
′′
∼ Fun⟨𝑓 , 𝑙 ⟩.Param[𝑛] · · ·

ap

⇝ ⟨𝑓 , 𝑙 ⟩ ap
′ ∈ arg (ap, 𝑛)

Fun⟨𝑓 , 𝑙 ⟩.Param[𝑛]
ap

′′
∼ ap

′

[prop-call]

· · · ap
′′
∼ ap.𝑞 ap

′ ∈ 𝛽 .props(𝑞)

ap.𝑞
ap

′′
∼ ap

′

[transitive]

ap

ap
′′′
∼ ap

′
ap

′ ap
′′′
∼ ap

′′

ap

ap
′′′
∼ ap

′′

[edge]

· · · ap∼ Fun⟨𝑓 ′, 𝑙′⟩ ap ∈ 𝛽 .calls(⟨𝑓 , 𝑙 ⟩)

⟨𝑓 , 𝑙 ⟩
ap

⇝ ⟨𝑓 ′, 𝑙′⟩

Figure 3: Analysis constraint rules.

The next three constraint rules presented in Figure 3 model calls

to functions returned by other functions (return-call), calls to

function parameters (param-call), and calls to functions stored in

object properties (prop-call). These rules are applied iteratively

since, for example, for the expression f()(), resolving the second

call depends on the result of the first call.

• return-call ensures that if ap
′′
represents a call to a function

value that is returned from a function call ap(. . .), i.e.

· · · ap
′′

∼ ap(. . .), then ap(. . .) may obtain its function values from

the return values of ap functions. Those functions are retrived

using ap
· · ·∼ Fun⟨𝑓 , 𝑙⟩. In the special case where ap denotes

a function definition (ap = Fun⟨𝑓 , 𝑙⟩), we use the return val-

ues of that function directly. We retrieve the access paths ap
′

representing return values using the function return summary

(ap
′ ∈ 𝛽𝑓 .returns(⟨𝑓 , 𝑙⟩)).

• param-call ensures that if ap
′′
represents a call to a function

value that comes from the 𝑛’th parameter of a function Fun⟨𝑓 , 𝑙⟩,
i.e. · · · ap

′′
∼ Fun⟨𝑓 , 𝑙⟩.Param[𝑛], then the function values of that

parameter may come from the corresponding arguments at call

sites. The access paths 𝑎𝑝 of the call sites are retrieved from the

annotations of the call edges that point to ⟨𝑓 , 𝑙⟩, i.e. · · ·
ap

⇝ ⟨𝑓 , 𝑙⟩.

We use arg(ap, 𝑛) to denote the set of access paths at the 𝑛’th

argument of the call access path ap.

• prop-call ensures that if ap
′′
represents a call to a function

value that comes from an object property 𝑞, i.e. · · · ap
′′

∼ ap.𝑞, then
the possible function values ap

′
include those found in the object

property summary for 𝑞 (ap
′ ∈ 𝛽 .props(𝑞)).

The remaining two rules model transitivity and construction of

call edges.

• transitive models the fact that, for calls represented by some

access path ap
′′′
, if an expression 𝐸 represented by apmay obtain

its values from an expression 𝐸 ′ represented by ap′, and ap′ may

obtain its values from an expression 𝐸 ′′ represented by ap
′′
,

then 𝐸 may obtain its values from 𝐸 ′′. We require the access

path ap
′′′

to be the same in the two premises to avoid mixing

together calls from different call sites to the same function.

• edge ensures that a call edge is added from ⟨𝑓 , 𝑙⟩ to ⟨𝑓 ′, 𝑙 ′⟩
whenever there is an entry · · · ap∼ Fun⟨𝑓 ′, 𝑙 ′⟩ in 𝛼 where the

access path ap is in the function call summary of some function

⟨𝑓 , 𝑙⟩. Intuitively, such an entry in 𝛼 tells us that ⟨𝑓 ′, 𝑙 ′⟩ may

be called from a call site represented by access path ap, and if

ap ∈ 𝛽 .calls(⟨𝑓 , 𝑙⟩) then the call site is in the function ⟨𝑓 , 𝑙⟩.
Example 7 Continuing Examples 5 and 6, the call edge entry in 𝐸 is

created by the rule edge from the entry in 𝛼 since <lib1>.filter(. . .) ∈
𝛽 .calls(⟨client1,Main⟩).
Example 8 Continuing Example 1, let us now consider how the

call in blue parentheses on line 12 to filter’s return value is re-

solved. From 𝛽client1.calls we get the access path of this call as

<lib1>.filter(. . .)(. . .). Since module-call does not match, and the

access path ends with (. . .), the rule other-call applies:

<lib1>.filter(. . .)
<lib1>.filter(. . .)(. . .)∼ <lib1>.filter(. . .)

Furthermore, we saw in Example 3 that the return summary con-

tains the fact that filter returns the function Fun⟨lib1, 2⟩. By the

module-call rule, we also have

<lib1>.filter
<lib1>.filter(. . .)∼ Fun⟨lib1, 1⟩

so by return-call we have

<lib1>.filter(. . .)
<lib1>.filter(. . .)(. . .)∼ Fun⟨lib1, 2⟩

which finally by edge ensures that an edge is added in 𝐸 between

the caller and the callee:

⟨client1,Main⟩ <lib1>.filter(. . .)(. . .)
⇝ ⟨lib1, 2⟩

Example 9 Consider the call to iteratee colored brown on line 5

in Example 1. The access path is Fun⟨lib1, 1⟩.Param[0](. . .) for this
call. Again, by other-call:

Fun⟨lib1, 1⟩.Param[0]
Fun⟨lib1,1⟩.Param[0](. . .)∼ Fun⟨lib1, 1⟩.Param[0]

The param-call rule says that the parameter call access path is

related to the access paths of the 0’th argument of calls flowing into

Fun⟨lib, 1⟩. The only such call is the call to filter on line 12 with

access path <lib1>.filter({Fun⟨client1, 12⟩}) (we have omitted the

arguments in the access path previously due to space constraints).

So by the param-call rule:

Fun⟨lib1, 1⟩.Param[0]
Fun⟨lib1,1⟩.Param[0](. . .)∼ Fun⟨client1, 12⟩

Modular Call Graph Construction for Security Scanning of Node.js Applications ISSTA ’21, July 11–17, 2021, Virtual, Denmark

which by edge results in the call edge:

⟨lib1, 1⟩ Fun⟨lib1,1⟩.Param[0](. . .)
⇝ ⟨client1, 12⟩

Example 10 Consider the call to sum on line 20 in Example 2. From

𝛽client2.callswe have that the access path of sum is <lib2>.Arit().sum().
Again, the rule other-call applies:

<lib2>.Arit().sum
<lib2>.Arit().sum(. . .)∼ <lib2>.Arit().sum

This triggers the prop-call rule, which says that <lib2>.Arit().sum
is related to all functions in the object property summary for sum.

From Example 4 we know that the only such function is the one

defined on line 14.

<lib2>.Arit().sum
<lib2>.Arit().sum(. . .)∼ Fun⟨lib2, 14⟩

By edge this results in the following call edge:

⟨client2,Main⟩ <lib2>.Arit().sum(. . .)
⇝ ⟨lib2, 14⟩

Example 11 Let us consider an example program that requires

multiple applications of return-call and an application of transi-

tive, so that we can see how more complex calls are resolved.

lib3.js:
21 function e() {...}
22

23 function f() {
24 return e;
25 }
26

27 function g() {
28 return f;
29 }
30

31 module.exports.h = function() {
32 return g();
33 }

client3.js:
34 const lib = require('lib3');
35 const x = lib.h()();
36 x();

The function h (defined at line 31) returns the return value of g

(defined at line 27), which is the function f (defined at line 23), and f

returns the function e (defined at line 21). Hence, the expression on

line 35 results in calls to the functions f, g, and h, and the expression

on line 36 results in a call to the function e.

Let us first consider the call to h (lib.h()). Since Fun⟨lib3, 31⟩ ∈
𝛽lib3.props(h), we have by the module-call rule:

<lib3>.h
<lib3>.h()∼ Fun⟨lib3, 31⟩

By the edge rule, we then have:

⟨client3,Main⟩ <lib3>.h()
⇝ ⟨lib3, 31⟩

We now consider how the analysis resolves lib.h()() to f. By

the other-call rule we have:

<lib3>.h()
<lib3>.h()()∼ <lib3>.h()

From the resolution of the lib.h() call above, we have

<lib3>.h
<lib3>.h()∼ Fun⟨lib3, 31⟩

and during the module summary construction we have recorded

access paths representing return values of h:

Fun⟨lib3, 27⟩() ∈ 𝛽 .returns(⟨lib3, 31⟩)

The return-call rule then applies:

<lib3>.h()
<lib3>.h()()∼ Fun⟨lib3, 27⟩()

and by a second application of the return-call rule:

Fun⟨lib3, 27⟩() <lib3>.h()()∼ Fun⟨lib3, 23⟩
Finally, by the edge rule, an edge is added from the main function

of client3 to f in lib3:

⟨client3,Main⟩ <lib3>.h()()
⇝ ⟨lib3, 23⟩

The last call remaining is the call at line 36. For resolving that

call we first apply the other-call rule:

<lib3>.h()()
<lib3>.h()()()∼ <lib3>.h()()

Next, we apply the transitive rule, based on the entries added to

𝛼 by the two applications of the return-call rule for the second

call on line 35:

<lib3>.h()
<lib3>.h()()∼ Fun⟨lib3, 23⟩

From the function return summary we have

Fun⟨lib3, 21⟩ ∈ 𝛽 .returns(⟨lib3, 23⟩)
and finally, by the return-call rule:

<lib3>.h()()
<lib3>.h()()()∼ Fun⟨lib3, 21⟩

The edge rule then adds an edge from the main function of client3
to e in lib3:

⟨client3,Main⟩ <lib3>.h()()()
⇝ ⟨lib3, 21⟩

Modular Analysis. The call graph analysis is modular, as de-

scribed in Section 1. Let us consider the example from the introduc-

tion. We assume a call graph G𝐵𝐶 has been built for the modules 𝐵

and𝐶 , and we want to create a call graph for the application𝐴1 that

depends on 𝐵 and𝐶 . The analysis starts with the 𝛼 , and 𝐸 relations

from G𝐵𝐶 . The analysis then computes the module summaries for

every module in 𝐴1 and applies the first two rules of Figure 3 using

these summaries. The remaining constraints are now solved using

the combined module summaries from 𝐵, 𝐶 , and 𝐴1. Because G𝐵𝐶

represents a partial result of G𝐴1𝐵𝐶 , we can compute G𝐴1𝐵𝐶 faster

with G𝐵𝐶 precomputed, as demonstrated in Section 7. The resulting

call graphs when using this bottom-up approach are the same as

when combining all module summaries in a single step.

Analysis Extensions. The analysis described so far does not have

support for built-in functions, getters, setters, and events. We now

describe how the analysis is extended to handle these features. The

source code of built-in functions is generally unavailable, so the

analysis handles these by assuming that their function arguments

are always called. We leverage the field-based analysis design, such

that ap

ap
′′′
∼ ap

′.𝑞 from Figure 3 also adds ap
′.𝑞

ap
′′′
∼ ap

′′
for any

access path ap
′′
that represents callbacks to a built-in function 𝑞.

For example, if 𝑞 is map, the analysis adds the above entry to 𝛼

for each ap
′′ ∈ 𝑥 [0] since Array.prototype.map takes a callback

function as the first argument.

JavaScript supports getter (and setter) properties that invoke a

function when they are read (or written). For this reason, we extend

the module summary with two maps from property names to sets

of access paths describing the getter and setter functions similar to

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller

howwe handle field-based information. We refer to these additional

maps as 𝛽 .getters and 𝛽 .setters. For each property 𝑞 that is read or

written, we add Fun⟨𝑓 , 𝑙⟩ · · ·∼ ap to 𝛼 for each ap ∈ 𝛽 .getters(𝑞) for
getters and ap ∈ 𝛽 .setters(𝑞) for setters.

We also added a special mechanism for handling the Node.js

event system where events are registered using an on method and

emitted using an emitmethod. Each module summary is augmented

with an event summary similar to the object property summary. An

event summary is a map from event names to sets of access paths.

At calls to a method named on with two arguments where the first

argument is a string, the map is extended with the access paths of

the second argument. At emit calls, the corresponding access paths

for the emitted event is then looked up in the event summary, and

call graph edges are added accordingly.

Restricting Object Properties to Adjacent Packages. The number of

property writes in applications rises as the number of dependencies

grow, so for large applications, it is possible that unrelated object

properties from unrelated packages are mixed together. Since this

blowup increases the risk of spurious edges added by the prop-call

rule, we have added a heuristic where the object property summary

is only mixed between directly related packages. With this heuris-

tic, the lookup 𝛽 .props(𝑞) in prop-call only considers the object

property summary from the packages that are direct dependencies

or direct dependents to the package with the caller. While this

heuristic theoretically makes the technique more unsound, it does

not cause any vulnerabilities to be missed in our security scanning

experiments (see Section 7).

Soundness Assumptions. The call graph analysis is not theoreti-

cally sound. There are four potential sources of unsoundness [19]:

(1) The analysis ignores dynamic property reads/writes unless they

are of the special pre- or postfix form mentioned in footnote 13, but

since the analysis is field-based, the analysis results are not affected

much by this [6]. (2) The adjacent packages heuristic can result in

missing edges if values flow between packages that are not directly

linked in the package dependency graph. The design choice for the

module-call rule may have a similar consequence as mentioned

in footnote 16. However, as such flows occur rarely in practice, the

analysis result remains sound for practical purposes. (3) The anal-

ysis ignores dynamic module loads and dynamic code generation.

We have not found many usages of dynamic module loads, and

dynamic code generation is typically also only used sparsely in

Node.js programs. (4) The analysis does not model all ECMAScript

features such as iterators and implicit calls. However, the parser

used by Jam is compatible with all existing ECMAScript versions,

so the analysis will still produce results in the presence of these

features.

6 SECURITY SCANNING

To use the call graph for security scanning, the analysis has to know

which nodes represent vulnerable functions. We describe known

security vulnerabilities from the npm vulnerability database
17

using

17
https://www.npmjs.com/advisories

VulnDesc ::= (AdvisoryID, PackageName,

VersionRange, API-Pattern)

API-Pattern ::= { API-Pattern, . . . , API-Pattern }

| < ImportPath >
| API-Pattern . Prop
| API-Pattern ()

Figure 4: API patterns.

a simple pattern language, and use the function findNodes (see

Figure 5) to convert these patterns to source locations.
18

The grammar of the pattern language is shown in Figure 4. A

vulnerability description (VulnDesc) consists of the advisory ID,

the name of the package affected by the vulnerability, the range

of affected versions, and an API-Pattern identifying the vulnera-

ble parts of the library API. AdvisoryID is a number, and Modu-

leName and VersionRange are strings. An API-Pattern can express

disjunctions ({API-Pattern, . . . , API-Pattern}), values obtained from

loading modules (< ImportPath >), values read from properties

(API-Pattern . Prop), and return values of functions (API-Pattern

()). The language of API patterns resembles the language of access

paths (Figure 1) but is designed for easily identifying API functions,

whereas access paths are used only internally by the analysis.

If the application depends on some version of the vulnerable

package in the vulnerable version range, then the functionfindNodes

is used to find the source locations of the vulnerable functions. It

uses the vulnerability descriptions and the module summaries to

compute the source locations. The first case handles the disjunc-

tion pattern, 𝑝 = {𝑝1, ..., 𝑝𝑛}, as the union of the results of calling

findNodes for each subpattern. For property read sequences on a

module object without any calls, 𝑝 = <m> . . . 𝑔, the function source
locations are extracted similarly to the module-call rule of Figure 3

(this rule also applies when the module object is read directly, i.e.,

𝑝 = <m>, in which case the special exports property is used). For

a property read, 𝑝 = 𝑝 ′.𝑞, where 𝑝 does not begin with a module

load, we first extract the access paths of 𝑞 from 𝛽 .props and then

the concrete source locations of these access paths from 𝛼 . For calls

to returned values, 𝑝 = 𝑝 ′(), the source locations represented by 𝑝 ′
are extracted by calling findNodes recursively. For each function at

these locations, the access paths representing the return values of

that function are extracted by a lookup in the return summary of

the function. Finally, the actual function definitions are extracted

from 𝛼 (similar to the return-call rule).

The security scanner can then check whether these functions are

reachable in the call graph from the entry node of the application.
19

If any of the functions are reachable, the user is warned, and a link

to the informal npm advisory description is presented together with

the top of a stack trace leading to the vulnerable function as shown

in Section 2. The stack trace is computed by traversing backwards

in the call graph, from the vulnerable function.

18
One might be tempted to simply describe the vulnerable functions as a set of source

locations directly, but that would make the analysis sensitive to changes in source

locations across different versions of the vulnerable dependency.

19
While the call graph analysis works on both libraries and applications, the security

scanner is limited to applications that have a single, well-defined entry point.

https://www.npmjs.com/advisories

Modular Call Graph Construction for Security Scanning of Node.js Applications ISSTA ’21, July 11–17, 2021, Virtual, Denmark

findNodes (𝑝) :=



⋃
𝑝′∈{𝑝1,...,𝑝𝑛 } findNodes (𝑝

′) if 𝑝 = {𝑝1, ..., 𝑝𝑛 }

{ ⟨𝑓 , 𝑙 ⟩ | 𝑓 ′ = resolve (𝑚)
∧ package (𝑓 ′) is or depends on package (𝑓 ′′)
∧ ap ∈ 𝛽𝑓 ′′ .props(𝑔)
∧ ap

···∼ Fun⟨𝑓 , 𝑙 ⟩ }
else if 𝑝 = <m> . . . 𝑔

{ ⟨𝑓 , 𝑙 ⟩ | ap ∈ 𝛽 .props(𝑞) ∧ ap
···∼ Fun⟨𝑓 , 𝑙 ⟩ } else if 𝑝 = 𝑝′.𝑞⋃

⟨𝑓 ,𝑙⟩∈findNodes (𝑝′) { ⟨𝑓 ′, 𝑙′⟩ | ap ∈ 𝛽𝑓 .returns(⟨𝑓 , 𝑙 ⟩) ∧ ap
···∼ Fun⟨𝑓 ′, 𝑙′⟩ } else if 𝑝 = 𝑝′ ()

Figure 5: Algorithm for finding vulnerable functions from API patterns.

7 EVALUATION

We have implemented Jam (including the security scanner) in 3 000

lines of TypeScript code, using acorn
20

and acorn-walk
21

for parsing

JavaScript files and traversing ASTs. We evaluate the approach by

answering the following research questions.

RQ1: What are the precision and the recall of performing security

scanning on Node.js applications based on call graphs con-

structed by Jam, compared to the npm audit approach that

is based on package-level dependencies?

RQ2: What are the precision (measured by unique callees) and the

recall (measured by comparing against dynamically created

call graphs) for the call graphs constructed by Jam, and how

do they compare to call graphs computed by the existing

tool js-callgraph?

RQ3: How fast is the analysis? Is it faster if we, by taking advan-

tage of the modularity of the application structure and the

analysis, assume we have precomputed call graphs for the

packages used by the applications?

7.1 Experimental Setup

To answer the research questions, we randomly selected 12 Node.js

applications from the npm registry where npm audit reports one

or more alarms (to get nontrivial data for RQ1). The benchmarks

are listed in Table 1.

We run both npm audit and the Jam-based security scanner on

each benchmark and manually classify the reported issues as true or

false positives. Our security scanner is configured to use the same

set of known library vulnerabilities as npm audit. As mentioned in

Section 2, the security warnings generated by our approach pro-

vide reachability information at the level of functions, while the

warnings from npm audit only contain coarse-grained informa-

tion at the level of packages. For this experiment, we disregard

this reachability information and only look at whether or not the

given application is flagged as potentially affected by each of the

known library vulnerabilities. We classify a security warning as

a true positive if the vulnerable library function is reachable in

some concrete execution of the application. (Note that reachabil-

ity does not imply that the vulnerability is exploitable, which is

a more subjective matter.) Since npm audit reports alarms for all

the known library vulnerabilities in all transitive dependencies, a

priori it has no false negatives, and the Jam-based security scanner

by construction always reports the same or a subset of the issues

reported by npm audit.

20
https://www.npmjs.com/package/acorn

21
https://www.npmjs.com/package/acorn-walk

For RQ2, to measure recall relative to dynamically generated

call graphs, we use NodeProf [32] and different inputs to the appli-

cations to cover a variety of combinations of their configuration

options. Since it is difficult to obtain high dynamic coverage we

measure precision of the call graphs independently of dynamic

executions, as the percentage of call sites that have a unique callee

according to the analysis (Jam or js-callgraph) as in previous work

(e.g. [26, 31]). For these precision and recall measurements we dis-

regard call edges that are not reachable from the entry, since only

the reachable edges are relevant for security scanning. We run js-

callgraph in “optimistic” mode (strategy DEMAND), which gives

the best results.

To answer RQ3, for each application we first compute call graphs

for each of its direct dependencies. From these call graphs, we

compute an aggregated call graph of all the dependencies (see the

paragraph on modular analysis in Section 5). Finally, we compute

the call graph for the entire application using the aggregated call

graph of the dependencies.

Our experiments have been run on a machine with a 2.9GHz

Intel core i7 CPU with 10GB RAM for the analysis.

7.2 Results for RQ1 (Security Scanning)

The results of the security scanning experiment are presented in

Table 1, where “Functions” shows the total number of functions

in the application and all its dependencies, and, in parentheses, the

number of functions reachable from the application entry according

to the call graph computed by Jam, “Modules” and “Packages”

similarly show the numbers of modules and packages, the “npm

audit” columns show the number of security alarms reported by

npm audit security scanner, and the “Jam” columns show the alarms

reported by Jam. The alarms are categorized into alarms about

actual usage of a vulnerable library function (true positives, “TP”),

alarms about a vulnerable library function that is never used by

the application (false positives, “FP”), and usages of a vulnerable

library function where no alarm was raised (false negatives, “FN”).

We have manually classified the alarms by npm audit into true

and false positives. As can be seen in Table 1, npm audit reports 34

alarms for the 12 benchmarks, where only 8 are true positives and

26 are false positives, yielding a precision of only 24%.

The Jam security scanner found all 8 vulnerabilities, resulting

in a perfect 100% recall of the security warnings. For all the 7

applications where npm audit reports false positives, the call-graph-

based security scanner reduces the number of false positives. For

5 of them, the call-graph-based security scanner even manages to

remove all the false positives. In total, the call-graph-based security

scanner reduced the number of false positives by 81% compared

https://www.npmjs.com/package/acorn
https://www.npmjs.com/package/acorn-walk

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller

Table 1: Experimental results for security scanning.

npm audit Jam

Name Functions Modules Packages TP FP TP FP FN

makeappicon 1.2.2 6 165 (628) 1 393 (44) 13 (13) 0 3 0 2 0

toucht 0.0.1 6 479 (61) 1 560 (4) 25 (1) 0 3 0 0 0

spotify-terminal 0.1.2 8 259 (61) 783 (3) 106 (1) 0 4 0 0 0

ragan-module 1.3.0 839 (589) 85 (79) 61 (53) 1 0 1 0 0

npm-git-snapshot 0.1.1 898 (357) 120 (55) 41 (35) 1 0 1 0 0

nodetree 0.0.3 1 557 (143) 15 (7) 4 (4) 0 4 0 0 0

jwtnoneify 1.0.1 27 703 (3 762) 1 869 (201) 93 (55) 0 4 0 3 0

foxx-framework 0.3.6 4 334 (1 124) 261 (124) 68 (51) 1 0 1 0 0

npmgenerate 0.0.1 1 638 (530) 266 (31) 23 (19) 2 0 2 0 0

smrti 1.0.3 1 228 (732) 121 (116) 64 (56) 1 0 1 0 0

writex 1.0.4 4 177 (1 237) 187 (90) 53 (42) 1 4 1 0 0

openbadges-issuer 0.4.0 6 043 (670) 1 366 (133) 69 (37) 1 4 1 0 0

Total 69 320 (9 894) 8 026 (887) 620 (367) 8 26 8 5 0

Table 2: Experimental results for call graph construction.

Jam js-callgraph

Name Precision Recall Time (full) Time (modular) Precision Recall Time (full)

makeappicon 1.2.2 86.05% 100.00% 2.04s 0.07s – – –

toucht 0.0.1 92.08% 100.00% 0.69s 0.01s – – –

spotify-terminal 0.1.2 92.79% 100.00% 0.73s 0.01s – – –

ragan-module 1.3.0 87.42% 98.95% 1.39s 0.04s 80.00% 1.39% 1.84s

npm-git-snapshot 0.1.1 82.45% 94.78% 0.99s 0.04s 43.86% 85.32% 10.22s

nodetree 0.0.3 70.65% 100.00% 0.87s 0.03s – 0.00% 12.93s

jwtnoneify 1.0.1 71.43% 98.18% 23.01s 0.70s – – –

foxx-framework 0.3.6 89.14% 99.41% 2.37s 0.27s 68.44% 62.24% 61.30s

npmgenerate 0.0.1 97.42% 100.00% 1.80s 0.08s 59.81% 56.55% 614.37s

smrti 1.0.3 80.80% 96.51% 1.65s 0.09s 66.20% 63.53% 3.77s

writex 1.0.4 86.07% 100.00% 2.56s 0.18s 52.14% 64.20% 1 450.70s

openbadges-issuer 0.4.0 75.85% 95.59% 2.63s 0.11s 40.08% 52.04% 147.54s

Average 84.35% 98.62% 3.39s 0.14s 58.64% 48.16% 287.83s

to npm audit, which means that the precision of the Jam security

scanner is 61% compared to the 24% precision of npm audit.

The 5 false positives are caused by vulnerabilities in the lodash

library. The reason for these false positives is not that the computed

call graphs have too many edges, but that the vulnerable library

function, which is not used by the applications, is mixed together

with a function that is being used by the applications. This happens

because those two functions are defined in the library via a higher-

order function and originate from the same function definition,

and they differ only because of their free variables. Since Jam uses

the function definition source locations to identify the functions,

it does not distinguish between the two functions. Improving this

aspect is an interesting opportunity for future work.

Although Jam has no false negatives in the experiments, it is

possible that it may miss some call edges, as discussed in Section 5.

We have manually inspected the module connectivity in the call

graphs for the three benchmarks with fewer than 10 reachable

modules, and we find no inter-module edges missing. Also, we have

checked for all the benchmarks that all modules that are being

loaded in a concrete execution are reachable in the call graphs.

Naturally, any vulnerabilities that may exist in unreachable parts

of the application code cannot affect the behavior of the applications.

The applications altogether contain 69 320 functions, 8 026 modules,

and 620 packages (including duplicates used by several applications).

According to the computed call graphs, only 9 894 (14%) of the

functions, 887 (11%) of the modules, and 367 (59%) of the packages

are reachable, which gives an indication of the overall potential of

call-graph-based security scanning.

7.3 Results for RQ2 (Call Graph Accuracy)

The results of the call graph precision and recall measurements are

shown in Table 2. Jam finds that on average 84.35% of the call sites

have a unique callee, compared to only 58.64% for js-callgraph. Also,

98.62% of the call edges observed in the concrete executions are

detected by Jam, while the corresponding result for js-callgraph is

only 48.16%.
22

Moreover, js-callgraph fails on 5 of the applications,

either crashing with out-of-memory or producing a call graph with

no nodes reachable from the entry (both indicated by ‘–’). The few

missing edges in the Jam results are triggered by some rare cases

where the soundness assumptions do not hold (see Section 5).

22
We have excluded the package esprima from the recall measurements because it

has been bundled using webpack. The low recall for nodetree and ragan-module with

js-callgraph is due to limitations in its parser and lack of support for getters.

Modular Call Graph Construction for Security Scanning of Node.js Applications ISSTA ’21, July 11–17, 2021, Virtual, Denmark

These results suggest that the call graphs produced by Jam are

substantially more accurate than those produced by js-callgraph.

Even though the recall for Jam is not perfect, a few false nega-

tives is likely preferable to a large number of false positives or a

significantly slower analysis.

7.4 Results for RQ3 (Analysis Time)

The “Time (full)” columns in Table 2 shows the time it takes Jam

(and js-callgraph) to compute the call graphs for the applications

including all dependencies. The analysis time for Jam varies from

less than one second for the toucht application to around 23 seconds

for jwtnoneify, and js-callgraph is orders of magnitude slower.

The relatively large time for jwtnoneify is explained by a heavy

usage of, for example, the forEach function from the lodash library.

The forEach function is a higher-order function that takes a collec-

tion (typically an array) and some iterator function that is called

with each element in the collection as an argument. Because the

rule param-call from Figure 3 merges arguments from all call sites

when a parameter is called, a massive amount of new entries are

added to the 𝛼 relation. This behavior is similar to what happens

in a context-insensitive dataflow analysis. Perhaps surprisingly,

despite the longer analysis time and the less precise call graph, the

security scanner is still more precise than npm audit for this appli-

cation. Nevertheless, investigating this outlier in more detail and

improving its analysis time is an interesting challenge for future

work.

The “Time (modular)” column in Table 1 shows the analysis

time, when the call graphs for all direct dependencies of the ap-

plication have been precomputed, which is a realistic situation in

a scenario where many applications that share dependencies are

being analyzed. The time includes aggregating the call graphs from

the dependencies and computing the call graph for the entire ap-

plication. The call graph construction is very efficient taking less

than a second for all applications.

We conclude that the Jam full call graph analysis is highly ef-

ficient for most benchmarks. Furthermore, the modular approach

ensures that all benchmarks are analyzed even faster, which is

promising for, for example, IDE integration.

8 RELATEDWORK

As discussed in the introduction, multiple studies show how

JavaScript libraries are being used extensively, and how security

vulnerabilities in such libraries cause serious problems for the ap-

plications [4, 5, 14, 17, 29, 33–36]. In particular, Zapata et al. [34]

conclude that security scanning based on package dependencies

considerably overestimates the implications of security vulnerabili-

ties in libraries, and they suggest that many false positives may be

avoided by performing analysis at the function level, however, they

do not present such an analysis.

The dynamic call graph generators by Herczeg et al. [11] and

Hejderup et al. [10] have been developed for JavaScript security

scanning and function-level dependency management, but unlike

our approach they require high-coverage test suites to avoidmissing

security issues.

Präzi [9] is an approach to reason about package dependencies

that resembles Jam by relying on statically computed call graphs, but

it is developed for Rust, not JavaScript. Eclipse Steady [27] is a simi-

lar approach for Java. It has recently been adapted to JavaScript [3],

however, that work uses a simple program analysis that ignores

most JavaScript language constructs. Mininode [15] is a tool for

reducing the attack surface of Node.js applications by removing

unused code. It includes a form of call graph construction, but it is

unclear how it works for the dynamic features of JavaScript.

Multiple static analyzers already exist for JavaScript [6, 12, 13, 18,

20, 21]. Although they can in principle produce call graphs, none

of these analyzers have been designed for the modular structure

and heavy reuse of libraries in Node.js applications. Moreover,

the light-weight static analyzers (e.g., [6, 20, 21]) are fast but tend

to miss many call edges, whereas abstract-interpretation-based

analyzers (e.g., TAJS [13] and SAFE [18]) do not yet scale to real-

world Node.js applications. The study by Antal et al. [2] compares

different static call graph construction tools for JavaScript, with

very limited success for Node.js applications.

As explained in Section 5, a key component of Jam is the field-

based analysis inspired by Feldthaus et al. [6], extended with ac-

cess paths [22, 23] to enable modular reasoning. The experimental

results with Jam and js-callgraph demonstrate the advantages of

the modular analysis. The modular approach of Jam is inspired

by componential analysis [7], which also as a first step computes

summaries for modules (Scheme program components) and then

combines the summaries to obtain the analysis result for the full

program. As discussed in Section 5, Jam is designed to reach a

useful compromise between precision, recall, and efficiency [19].

Although it is theoretically unsound, no security issues are missed

in the experiments described in Section 7.

Another approach to security scanning is taint analysis, which

not only considers the call graph but also the dataflow, and can

thereby in principle safely dismiss some security warnings as harm-

less. The Nodest analyzer [25] extends TAJS with taint analysis

and circumvents the scalability problem by attempting to avoid

analyzing irrelevant modules, but still is orders of magnitude slower

than Jam. Staicu et al. [30] also discuss the problem with package-

dependency-level security scanning and propose a dynamic analysis

to infer taint summaries for libraries. Such taint summaries can

be used with, for example, the static analyzer LGTM,
23

which is

designed to minimize the amount of false positives, at the cost of

missing true positives, in contrast to Jam.

Change impact analysis is closely related to security scanning.

Existing change impact analysis tools for JavaScript [1, 8] are de-

signed for browser-based applications, not for reasoning about

dependencies between modules in Node.js applications.

9 CONCLUSION

We have presented Jam, a modular call graph construction analysis

that scales for Node.js applications, and we have shown how the

produced call graphs can be used for security scanning. Due to

Jam’s modular design, call graphs can be computed for libraries and

reused when computing call graphs for an application, and thereby

scale for applications with complex dependencies.

Jam is designed to strike a balance between analysis precision

(not producing an overwhelming amount of spurious call edges),

23
https://lgtm.com/

https://lgtm.com/

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller

recall (detecting almost all call edges that appear in concrete ex-

ecutions), and efficiency (analyzing real-world applications with

thousands of functions within seconds).

We have shown experimentally on 12 Node.js applications that

security scanning on the call graphs produced by Jam reports all

true positive security warnings and reduces the number of false

positives by 81% compared to the package-based security scanner

npm audit. The analysis time for Jam using the modular approach

is less than a second on average for our benchmarks, indicating

that Jam is practically useful. Future work involves exploring more

uses of the call graphs, for instance, change impact analysis as well

as code navigation and refactoring in IDEs.

ACKNOWLEDGMENTS

This work was supported by the European Research Council (ERC)

under the European Union’s Horizon 2020 research and innovation

program (grant agreements No 647544).

REFERENCES

[1] Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. 2015. Hybrid DOM-

Sensitive Change Impact Analysis for JavaScript. In 29th European Conference

on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech

Republic (LIPIcs, Vol. 37). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

321–345. https://doi.org/10.4230/LIPIcs.ECOOP.2015.321

[2] Gabor Antal, Péter Hegedüs, Zoltán Tóth, Rudolf Ferenc, and Tibor Gyimóthy.

2018. Static JavaScript Call Graphs: A Comparative Study. In 18th IEEE Inter-

national Working Conference on Source Code Analysis and Manipulation, SCAM

2018, Madrid, Spain, September 23-24, 2018. IEEE Computer Society, 177–186.

https://doi.org/10.1109/SCAM.2018.00028

[3] Bodin Chinthanet, Serena Elisa Ponta, Henrik Plate, Antonino Sabetta,

Raula Gaikovina Kula, Takashi Ishio, and Kenichi Matsumoto. 2020. Code-

based Vulnerability Detection in Node.js Applications: How far are we? CoRR

abs/2008.04568 (2020). arXiv:2008.04568

[4] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the Evo-

lution of Technical Lag in the npm Package Dependency Network. In 2018

IEEE International Conference on Software Maintenance and Evolution, ICSME

2018, Madrid, Spain, September 23-29, 2018. IEEE Computer Society, 404–414.

https://doi.org/10.1109/ICSME.2018.00050

[5] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of

security vulnerabilities in the npm package dependency network. In Proceedings

of the 15th International Conference on Mining Software Repositories, MSR 2018,

Gothenburg, Sweden, May 28-29, 2018. ACM, 181–191. https://doi.org/10.1145/

3196398.3196401

[6] Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. 2013.

Efficient construction of approximate call graphs for JavaScript IDE services. In

35th International Conference on Software Engineering, ICSE ’13, San Francisco,

CA, USA, May 18-26, 2013. IEEE Computer Society, 752–761. https://doi.org/10.

1109/ICSE.2013.6606621

[7] Cormac Flanagan andMatthias Felleisen. 1999. Componential Set-Based Analysis.

ACM Trans. Program. Lang. Syst. 21, 2 (1999), 370–416. https://doi.org/10.1145/

316686.316703

[8] Quinn Hanam, Ali Mesbah, and Reid Holmes. 2019. Aiding Code Change Un-

derstanding with Semantic Change Impact Analysis. In 2019 IEEE International

Conference on Software Maintenance and Evolution, ICSME 2019, Cleveland, OH,

USA, September 29 - October 4, 2019. IEEE, 202–212. https://doi.org/10.1109/

ICSME.2019.00031

[9] Joseph Hejderup, Moritz Beller, and Georgios Gousios. 2018. Präzi: From Package-

based to Precise Call-based Dependency Network Analyses. Working Paper. TU

Delft.

[10] Joseph Hejderup, Arie van Deursen, and Georgios Gousios. 2018. Software

ecosystem call graph for dependency management. In Proceedings of the 40th

International Conference on Software Engineering: New Ideas and Emerging Results,

ICSE (NIER) 2018, Gothenburg, Sweden, May 27 - June 03, 2018. ACM, 101–104.

https://doi.org/10.1145/3183399.3183417

[11] Zoltán Herczeg, Gábor Lóki, and Ákos Kiss. 2019. Towards the Efficient Use of

Dynamic Call Graph Generators of Node.js Applications. In Evaluation of Novel

Approaches to Software Engineering - 14th International Conference, ENASE 2019,

Heraklion, Crete, Greece, May 4-5, 2019, Revised Selected Papers (Communications

in Computer and Information Science, Vol. 1172). Springer, 286–302. https://doi.

org/10.1007/978-3-030-40223-5_14

[12] IBM Research. 2018. T.J. Watson Libraries for Analysis (WALA).

[13] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis

for JavaScript. In Static Analysis, 16th International Symposium, SAS 2009, Los

Angeles, CA, USA, August 9-11, 2009 (Lecture Notes in Computer Science, Vol. 5673).

Springer, 238–255. https://doi.org/10.1007/978-3-642-03237-0_17

[14] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Struc-

ture and evolution of package dependency networks. In Proceedings of the

14th International Conference on Mining Software Repositories, MSR 2017, Buenos

Aires, Argentina, May 20-28, 2017. IEEE Computer Society, 102–112. https:

//doi.org/10.1109/MSR.2017.55

[15] Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing

the Attack Surface of Node.js Applications. In Proceedings of the International

Symposium on Research in Attacks, Intrusions and Defenses (RAID).

[16] Erik Krogh Kristensen and Anders Møller. 2019. Reasonably-most-general clients

for JavaScript library analysis. In Proceedings of the 41st International Conference

on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. IEEE

/ ACM, 83–93. https://doi.org/10.1109/ICSE.2019.00026

[17] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo

Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the

Use of Outdated JavaScript Libraries on the Web. In 24th Annual Network and

Distributed System Security Symposium, NDSS 2017, San Diego, California, USA,

February 26 - March 1, 2017. The Internet Society.

[18] Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. 2012.

SAFE: Formal Specification and Implementation of a Scalable Analysis Framework

for ECMAScript. In Proc. International Workshop on Foundations of Object Oriented

Languages.

[19] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták, José Nel-

son Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders

Møller, and Dimitrios Vardoulakis. 2015. In defense of soundiness: a manifesto.

Commun. ACM 58, 2 (2015), 44–46. https://doi.org/10.1145/2644805

[20] Magnus Madsen, Benjamin Livshits, and Michael Fanning. 2013. Practical static

analysis of JavaScript applications in the presence of frameworks and libraries.

In Joint Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE’13,

Saint Petersburg, Russian Federation, August 18-26, 2013. ACM, 499–509. https:

//doi.org/10.1145/2491411.2491417

[21] Magnus Madsen, Frank Tip, and Ondrej Lhoták. 2015. Static analysis of event-

driven Node.js JavaScript applications. In Proceedings of the 2015 ACM SIGPLAN

International Conference on Object-Oriented Programming, Systems, Languages,

and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October

25-30, 2015. ACM, 505–519. https://doi.org/10.1145/2814270.2814272

[22] Gianluca Mezzetti, Anders Møller, and Martin Toldam Torp. 2018. Type Regres-

sion Testing to Detect Breaking Changes in Node.js Libraries. In 32nd European

Conference on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Ams-

terdam, The Netherlands (LIPIcs, Vol. 109). 7:1–7:24.

[23] Anders Møller, Benjamin Barslev Nielsen, and Martin Toldam Torp. 2020. De-

tecting locations in JavaScript programs affected by breaking library changes.

Proc. ACM Program. Lang. 4, OOPSLA (2020), 187:1–187:25. https://doi.org/10.

1145/3428255

[24] Anders Møller and Martin Toldam Torp. 2019. Model-based testing of breaking

changes in Node.js libraries. In Proceedings of the ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019. ACM,

409–419.

[25] Benjamin Barslev Nielsen, Behnaz Hassanshahi, and François Gauthier. 2019.

Nodest: feedback-driven static analysis of Node.js applications. In Proceedings

of the ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,

Tallinn, Estonia, August 26-30, 2019. ACM, 455–465. https://doi.org/10.1145/

3338906.3338933

[26] Changhee Park and Sukyoung Ryu. 2015. Scalable and Precise Static Analysis

of JavaScript Applications via Loop-Sensitivity. In 29th European Conference on

Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic

(LIPIcs, Vol. 37), John Tang Boyland (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 735–756. https://doi.org/10.4230/LIPIcs.ECOOP.2015.735

[27] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. 2020. Detection, assess-

ment and mitigation of vulnerabilities in open source dependencies. Empirical

Software Engineering (2020). https://doi.org/10.1007/s10664-020-09830-x

[28] Barbara G. Ryder. 1979. Constructing the Call Graph of a Program. IEEE Trans.

Software Eng. 5, 3 (1979), 216–226. https://doi.org/10.1109/TSE.1979.234183

[29] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. 2018. SYNODE:

Understanding and Automatically Preventing Injection Attacks on NODE.JS. In

25th Annual Network and Distributed System Security Symposium, NDSS 2018, San

Diego, California, USA, February 18-21, 2018. The Internet Society.

[30] Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schäfer, Anders Møller, and

Michael Pradel. 2020. Extracting Taint Specifications for JavaScript Libraries. In

Proc. 42nd International Conference on Software Engineering (ICSE).

https://doi.org/10.4230/LIPIcs.ECOOP.2015.321
https://doi.org/10.1109/SCAM.2018.00028
https://arxiv.org/abs/2008.04568
https://doi.org/10.1109/ICSME.2018.00050
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1109/ICSE.2013.6606621
https://doi.org/10.1109/ICSE.2013.6606621
https://doi.org/10.1145/316686.316703
https://doi.org/10.1145/316686.316703
https://doi.org/10.1109/ICSME.2019.00031
https://doi.org/10.1109/ICSME.2019.00031
https://doi.org/10.1145/3183399.3183417
https://doi.org/10.1007/978-3-030-40223-5_14
https://doi.org/10.1007/978-3-030-40223-5_14
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1109/MSR.2017.55
https://doi.org/10.1109/MSR.2017.55
https://doi.org/10.1109/ICSE.2019.00026
https://doi.org/10.1145/2644805
https://doi.org/10.1145/2491411.2491417
https://doi.org/10.1145/2491411.2491417
https://doi.org/10.1145/2814270.2814272
https://doi.org/10.1145/3428255
https://doi.org/10.1145/3428255
https://doi.org/10.1145/3338906.3338933
https://doi.org/10.1145/3338906.3338933
https://doi.org/10.4230/LIPIcs.ECOOP.2015.735
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1109/TSE.1979.234183

Modular Call Graph Construction for Security Scanning of Node.js Applications ISSTA ’21, July 11–17, 2021, Virtual, Denmark

[31] Benno Stein, Benjamin Barslev Nielsen, Bor-Yuh Evan Chang, and Anders Møller.

2019. Static analysis with demand-driven value refinement. Proc. ACM Program.

Lang. 3, OOPSLA (2019), 140:1–140:29. https://doi.org/10.1145/3360566

[32] Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder. 2018. Ef-

ficient dynamic analysis for Node.js. In Proceedings of the 27th International

Conference on Compiler Construction, CC 2018, February 24-25, 2018, Vienna, Aus-

tria. ACM, 196–206. https://doi.org/10.1145/3178372.3179527

[33] ErikWittern, Philippe Suter, and Shriram Rajagopalan. 2016. A look at the dynam-

ics of the JavaScript package ecosystem. In Proceedings of the 13th International

Conference on Mining Software Repositories, MSR 2016, Austin, TX, USA, May 14-22,

2016. ACM, 351–361. https://doi.org/10.1145/2901739.2901743

[34] Rodrigo Elizalde Zapata, Raula Gaikovina Kula, Bodin Chinthanet, Takashi Ishio,

Kenichi Matsumoto, and Akinori Ihara. 2018. Towards Smoother Library Mi-

grations: A Look at Vulnerable Dependency Migrations at Function Level for

npm JavaScript Packages. In 2018 IEEE International Conference on Software Main-

tenance and Evolution, ICSME 2018, Madrid, Spain, September 23-29, 2018. IEEE

Computer Society, 559–563. https://doi.org/10.1109/ICSME.2018.00067

[35] Ahmed Zerouali, Valerio Cosentino, Tom Mens, Gregorio Robles, and Jesús M.

González-Barahona. 2019. On the Impact of Outdated and Vulnerable JavaScript

Packages in Docker Images. In 26th IEEE International Conference on Software

Analysis, Evolution and Reengineering, SANER 2019, Hangzhou, China, February

24-27, 2019. IEEE, 619–623. https://doi.org/10.1109/SANER.2019.8667984

[36] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael

Pradel. 2019. Small World with High Risks: A Study of Security Threats in

the npm Ecosystem. In 28th USENIX Security Symposium, USENIX Security 2019,

Santa Clara, CA, USA, August 14-16, 2019. USENIX Association, 995–1010.

https://doi.org/10.1145/3360566
https://doi.org/10.1145/3178372.3179527
https://doi.org/10.1145/2901739.2901743
https://doi.org/10.1109/ICSME.2018.00067
https://doi.org/10.1109/SANER.2019.8667984

	Abstract
	1 Introduction
	2 Motivating Example
	3 Key Challenges
	4 Module Summary Construction
	5 Call Graph Construction
	6 Security Scanning
	7 Evaluation
	7.1 Experimental Setup
	7.2 Results for RQ1 (Security Scanning)
	7.3 Results for RQ2 (Call Graph Accuracy)
	7.4 Results for RQ3 (Analysis Time)

	8 Related work
	9 Conclusion
	Acknowledgments
	References

