Algorithms and Data Structures
for Faulty Memory

Computer Science Day 2008

Gerth Stølting Brodal

Department of Computer Science, University of Aarhus, June 20, 2008
August 18-21, 2008

MADALGO Summer School on Cache-Oblivious Algorithms

June 8-10, 2009

25th Annual ACM Symposium on Computational Geometry
"You have to provide reliability on a software level. If you're running 10,000 machines, something is going to die every day."

— Google™ fellow Jeff Dean
A bit in memory changed value because of e.g. background radiation, system heating, ...
Binary Search for 16

$O(\log N)$ comparisons
Binary Search for 16

Requirement: If the search key occurs in the array as an uncorrupted value, then we should report a match!
Where is Kurt?
Where is Kurt?
Where is Kurt?

If at most 4 faulty answers then Kurt is somewhere here.
Faulty-Memory RAM Model

- **Content** of memory cells can get **corrupted**
- Corrupted and uncorrupted content **cannot be distinguished**
- **$O(1)$ safe** registers
- **Assumption**: At most δ corruptions

![Diagram of memory cells and safe registers]
Faulty-Memory RAM: Searching

Problem?

Low confidence High confidence

4 7 10 13 14 15 16 18 19 23 8 26 27 29 30 31 32 33 34 36 38

16?
Faulty-Memory RAM: Searching

When are we done (δ=3)?

Contradiction, i.e. at least one fault

If range contains at least δ+1 and δ+1, then there is at least one uncorrupted and, i.e. x must be contained in the range
Faulty-Memory RAM: \(\Theta(\log N + \delta) \) Searching

Brodal, Fagerberg, Finocchi, Grandoni, Italiano, Jørgensen, Moruz, Mølhave, ESA’07

If verification fails
→ contradiction, i.e. \(\geq 1 \) memory-fault
→ ignore 4 last comparisons
→ backtrack one level of search
Faulty-Memory RAM: $\Theta(\log N + \delta)$ Searching

Brodal, Fagerberg, Finocchi, Grandoni, Italiano, Jørgensen, Moruz, Mølhave, ESA’07

- Standard binary search + verification steps
- At most δ verification steps can fail/backtrack
- **Detail**: Avoid repeated comparison with the same (wrong) element by grouping elements into blocks of size $O(\delta)$
Faulty-Memory RAM: Reliable Values

- Store $2\delta+1$ copies of value x - at most δ copies uncorrupted
- $x =$ majority
- Time $O(\delta)$ using two safe registers (candidate and count)

Boyer and Moore ‘91

$$\delta=5 \quad \begin{array}{cccccccccc}
y & y & y & x & x & y & x & x & x & y & x \\
\text{Candidate} & y & y & y & y & y & y & - & x & -x \\
\text{Count} & 1 & 2 & 3 & 2 & 1 & 2 & 1 & 0 & 1 & 0 & 1
\end{array}$$
Faulty-Memory RAM: Dynamic Dictionaries

- Packed array
- Reliable pointers and keys
- Updates $O(\delta \cdot \log^2 N)$
- Searches = fault tolerant $O(\log N + \delta)$

- 2-level buckets of size $O(\delta \cdot \log N)$
- Root: Reliable pointers and keys
- Bucket search/update amortized $O(\log N + \delta)$

- Search and update amortized $O(\log N + \delta)$
Fault-Tolerant Results

- Merging, time $\Theta(N+\delta^2)$
 Finocchi, Grandoni, Italiano, ICALP’06

- Priority queue, time $\Theta(\log N+\delta)$
 Jørgensen, Moruz, Mølhave, WADS’07

- Sorting, time $\Theta(N \cdot \log N+\delta^2)$
 Finocchi, Grandoni, Italiano, ICALP’06

- Static and dynamic dictionary, time $\Theta(\log N+\delta)$
 Brodal, Fagerberg, Finocchi, Grandoni,
 Italiano, Jørgensen, Moruz, Mølhave, ESA’07

 Finocchi, Grandoni, Italiano, ICALP’06

- External-memory fault tolerant searching, $\Theta\left(\frac{1}{\epsilon} \log B \ N + \frac{\delta}{B^{1-\epsilon}}\right)$ I/Os
 Brodal, Jørgensen, Mølhave, Submitted