
Fluid Annotations Through Open Hypermedia:
Using and Extending Emerging Web Standards

Niels Olof Bouvin *, Polle T. Zellweger , Kaj Grønbæk *, Jock D. Mackinlay
* Department of Computer Science

University of Aarhus
Åbogade 34

8200 Århus N, Denmark
+45 8942 5659, +45 8942 5636

{n.o.bouvin, kgronbak}@daimi.au.dk

 Xerox Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, CA 94303 USA
+1.650.812.4335, +1.650.812.4426

{jmackinlay, pzellweger}@acm.org

ABSTRACT
The Fluid Documents project has developed various research
prototypes that show that powerful annotation techniques based
on animated typographical changes can help readers utilize
annotations more effectively. Our recently-developed Fluid
Open Hypermedia prototype supports the authoring and
browsing of fluid annotations on third-party Web pages. This
prototype is an extension of the Arakne Environment, an open
hypermedia application that can augment Web pages with
externally stored hypermedia structures. This paper describes
how various Web standards, including DOM, CSS, XLink,
XPointer, and RDF, can be used and extended to support fluid
annotations.

Categories and Subject Descriptors:
H.5.4 [Information Interfaces and Presentation]:
Hypertext/Hypermedia – architectures, navigation, user issues.

General Terms: Design, Human Factors, Standardization.

Keywords: Fluid Documents, Web augmentation with open
hypermedia, annotations, Annotea, XLink, XPointer, RDF.

1. INTRODUCTION
Annotation has a long and important history as a way for readers
to augment written texts, dating from at least the monks who
created interlinear glosses on hand-copied Bibles. It is therefore
appropriate that annotation has figured prominently in the
defining visions for hypertext systems. For example, in Bush’s
proposed Memex, a reader could connect and comment on
existing material to form trails for personal or shared use [9].
Since 1989 the field of open hypermedia has been working on
allowing readers to add links and annotations to a wide range of
existing documents by integrating a variety of third-party
applications [24]. Recently the Annotea system has been
developed to foster an infrastructure based on Web standards for
sharing annotations on the Web [30].
Although standards to share annotations on the Web are clearly
important, we also have the opportunity to improve annotations
by taking full advantage of the capabilities of computer-based
documents. For most of their history, annotations have been

limited by the static nature of the written page. For example,
space limitations prevented Fermat from providing us with the
proof of his famous Last Theorem. The simple hypertext link
can overcome such space limitations by linking text to a separate
annotation page. Unfortunately, this separation creates a poor
annotation experience for the reader because it makes the
comparison of original text and annotation more difficult.
During the last five years, the Fluid Documents project has been
exploring the use of animated typographical changes to provide
an effective and appealing user experience for viewing
document annotations and other supporting material in context,
rather than on separate pages. Fluid Documents arose from the
user interface research domain as a way to broaden
focus+context techniques [19] and to apply them to the problem
of finding and viewing annotations. Previous prototypes have
demonstrated the value of the Fluid Documents approach in a
variety of application domains, including hypertext [45],
electronic books [14], spreadsheets [28], avant-garde fiction
[46], and reading instruction [48]. Furthermore, user studies
have validated its basic tenets of animation and contextual
views [47].
Given the success of our self-contained research prototypes, we
are now focusing on using open hypermedia to bring fluid
annotations to the Web. Our recently-developed Fluid Open
Hypermedia prototype supports the authoring and browsing of
fluid annotations on third-party Web pages. The Fluid Open
Hypermedia prototype is an extension of the Arakne
Environment [5], an open hypermedia application aimed at
augmenting Web pages with externally stored hypermedia
structures.
An earlier paper [44] presented initial work on the Fluid Open
Hypermedia prototype and described the changes needed to
bring Fluid Documents concepts and behavior to the Web. This
paper provides more implementation details and examines how
existing as well as emerging Web standards can support the
demands of a fluid annotation system.

2. OPEN HYPERMEDIA AND THE WEB
Open hypermedia dates back to 1989, when it was realized that
the reliance on special-purpose editors found in existing
monolithic hypermedia systems was a liability, as it limited the
appeal of hypermedia structuring. By integrating third-party
applications with hypermedia, users could continue to work with
their accustomed tools while enjoying the advantages of
hypermedia structuring. The open hypermedia community has
produced a number of systems, including MicroCosm [26],
HyperDisco [40], Devise Hypermedia (DHM) [21], Chimera [2]

Copyright is held by the author/owner(s).
WWW 2002, May 7-11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

160

and HOSS [34]. The desire to support third-party applications
led to certain characteristics, such as externally stored
hypermedia structures. From the view of open hypermedia, the
Web is an interesting subject of integration, and several systems
have been extended to provide external links on Web pages.
These systems include DLS [11], DHM/WWW [20], Webvise
[23], and the Arakne Environment [5][6]. Using these systems,
readers can create links and other hypermedia structures on top
of arbitrary Web pages, and can share these links with others.
The Arakne Environment forms the infrastructure for the Fluid
Open Hypermedia prototype. The Arakne Environment [5] is a
collaborative open hypermedia system aimed at augmenting
Web pages with externally stored links and other hypermedia
structures. This goal is accomplished through the integration of
the Microsoft Internet Explorer, allowing links and annotations
to be added to Web pages as they are rendered in the Web
browser. Hypermedia structures created in the Arakne
Environment are stored on hypermedia servers, and can be
exported in the Open Hypermedia Interchange Format (OHIF)
[22].

3. REQUIREMENTS FOR WEB
ANNOTATIONS
Informed by our experiences with Fluid Documents and other
prior annotation systems, we have developed a variety of
requirements and desires for Web-based annotations. This
section presents our requirements and offers some underlying
rationale for their inclusion.
1. Augment existing Web pages directly, so that they will be

found naturally when those pages are viewed subsequently.
Long espoused by the open hypermedia community [24] and
others, this requirement eliminates the need to copy Web pages
in order to annotate them, provides a central and contextualized
place to store annotations, and requires no changes to the work
practice of readers.
2. Support rich augmentation, including both links and

annotations. Annotations should be able to contain links,
images, audio, and other complex content.

The ability to add links allows annotators1 to make additional
connections, either to their own documents or to other third-
party Web pages. Annotations allow annotators to add
additional material without having to create and manage new
files to hold the annotations. Rich annotation content allows
annotators powerful options for expressing their ideas. In
addition to links and annotations, the Arakne open hypermedia
system [5] also offers the ability to add other hypermedia
structures, such as guided tours.
3. Support fine-grained annotations within a page – that is,

annotations should be able to refer to any characters or
objects on the page, including existing link anchors.

Fine-grained annotations reduce annotator effort by eliminating
the need to describe the subject of the annotation within the
annotation itself. They also support detailed comments on many
different locations on a page. The ability to annotate existing

1 We use the term “annotator” when we wish to emphasize the

tasks required to augment pages; the term “reader” considers
the tasks required to view augmentations. Users may assume
either or both roles.

link anchors allows annotators to add their own link rationales
or link previews, as advocated by the work on Fluid Links [45].
In contrast, Microsoft Web Discussions permit reader
annotations only at author-selected points on a page [10].
4. Allow further edits to the underlying page without loss of

annotations. A robust mechanism for positioning
annotations is desirable.

This requirement supports shared work and minimizes the need
for manual updates when the underlying document changes.
The system should detect changes to locations within a
document that contained annotations and allow access to any
annotations that have been “orphaned” as a result. Readers may
also want to be notified of more distant changes in the
underlying page, in case the relevance or accuracy of
annotations is thus damaged. User expectations regarding
correct positioning in the face of edits can vary [8]. Algorithms
for providing improved positioning robustness are under active
development [35][43].
5. Support personal and shared annotations.
Early work on the ComMentor system for Web annotation [37],
as well as the more recent Microsoft Web Discussions [10],
have demonstrated the utility of shared annotations. Marshall’s
analysis of personal annotations [32] has shown the value and
variety of personal commentary on existing documents.
6. Provide facilities for organizing, filtering, and searching

annotations.
Pioneered by the ComMentor system, the organizing, filtering
and searching capabilities of the present-day iMarkup plugin
[29] provide a particularly pleasant example of good
functionality and ease-of-use for annotators.
7. To support a wide variety of existing pages and annotation

goals, annotators should have considerable control over
the salience of their annotations – that is, how much they
stand out from the underlying page – ranging from little or
no impact on layout and appearance to significant impact.
This control should be easy for annotators to use.

Avoiding impact on layout can permit the annotation of
carefully formatted text, such as aligned columns. Reducing
initial page impact also honors the original page as the primary
material and permits it to be viewed with minimal distractions
[31]. However, annotators may also wish to make an annotation
initially the most visible thing on the page in order to call
attention to it for their own purposes [32][38].
An effective way to achieve minimal impact is to separate an
annotation into two parts: its anchor, which establishes its
location, and its contents, which we also term its gloss. A gloss
can remain hidden until the reader asks to view it. Issues of
salience thus apply separately to both anchor and gloss: while a
reader is viewing a gloss, annotators may wish to clearly
distinguish the entire gloss from the underlying page, or they
may wish it to blend in.
8. Allow readers to view glosses in context – that is,

combined with the original page. Ideally, a gloss should
be displayed near its anchor, and items on the original
page should not be occluded.

Combining a gloss directly with the original page reduces
cognitive effort for readers, allowing them to relate and compare
the gloss with its surrounding context. Studies of collaborative

161

editing have shown that placing commentary near its referent
improves the ability of reviewers to add comments and of later
editors to process the comments [41]. Studies of Fluid
Documents have indicated that providing glosses close to their
anchors speeds reader performance [46]. However, these
benefits of nearby placement are reduced and may be eliminated
when the gloss occludes material on the original page, as for
example in the popup ToolTip windows commonly used to
display HTML link titles in current browsers [33].
9. Provide readers with easy interactive control over viewing

glosses. Ideally, the reader should be able to view multiple
glosses simultaneously for comparison with the original
material and each other.

Annotations are typically smaller than full hypertext pages, and
therefore an easy, lightweight mechanism for viewing them is
desirable to match the effort required with their relative
information content.
10. Allow readers to interact fully with glosses: following

embedded links, selecting text and inserting further open
hypermedia links and annotations, etc.

When glosses can include links, annotators can create effective
multi-way links that improve their browsing experience [45].
Allowing further annotations within glosses supports
conversations and other shared work [37].

4. FLUID OPEN HYPERMEDIA
This section describes the capabilities of the Fluid Open
Hypermedia system. We begin with a simple example to
motivate and demonstrate the use of fluid annotations.
The central characters in our scenario are a group of Web page
designers who refer to the W3C standard documents regularly in
their daily work. By augmenting the existing W3C documents
with fluid annotations, the designers can both record
information for their own use and pool their knowledge in a way
that fits seamlessly into their normal work practice. The
contents of their annotations serve a variety of roles, including:
showing examples, warning of reduced compliance by some
browsers, and providing additional comments.
Figure 1 [jdm1]shows several shared fluid annotations on the
W3C Cascading Style Sheets 1 Web page. In this example,
various colored highlights indicate the presence of shared
annotations of different types. Not only do their distinct anchor
appearances mark their roles within the document, but they also
support filtering on the different types.
Fluid annotations have many desirable features:

• Any document element can act as an anchor, allowing
a fluid annotation and/or an open hypermedia link to
be added to it.

• The contents of fluid annotations (glosses) are
typically hidden (or closed) until the reader
interactively activates (or opens) them.

• When opened, a gloss expands to become a temporary
first-class element of the original document near its
anchor. Readers can thus interact fully with the
contents of a gloss, following links, copying text, etc.

• Readers can interactively open and close each gloss as
desired, allowing one or more to be available
simultaneously for use and comparison with the
original text and/or other glosses.

• Space to display a gloss is created by dynamically
altering the layout, typography, and other graphical
characteristics of the original material. Occlusion of
the original material is minimized. In our current
“push down” technique, the gloss is gradually
revealed just below the anchor, while the following
lines are pushed down the page to make room for it.
See Figure 2[jdm2].

• Animated opening and closing transitions clarify the
changes as additional material arrives and departs
from the page. Animation smooths the experience of
viewing glosses, allowing it to become a perceptual

Figure 1. Shared annotations on the W3C Cascading Style
Sheet 1 Web page. Using three different Presentation
Specifications, readers have added fluid annotations with
distinct anchor highlights to indicate examples (e.g., the
seven separate annotations near the top, all currently open
for comparison) and warnings (e.g. “[larger | smaller]”
near the bottom of the page). Each gloss can be opened or
closed interactively as desired. To avoid occluding the
original material, following lines are dynamically pushed
down on the page when a gloss is opened.

Figure 2. Smooth gloss animation. These snapshots show intermediate stages in the opening of an annotation that a reader has
anchored on the word “Hypermedia” on the WWW 2002 preliminary Technical Program page.

162

activity rather than a cognitive one.

• Annotators can use Presentation Specifications
(PSpecs) to specify the visual appearances of anchors
and glosses to suit a wide variety of annotation goals
and settings. Anchors and glosses can be designed to
blend in with the original Web page or to be visually
distinct from it. To ease the creation of annotations,
PSpecs can also be reused and shared with other
annotators.

• To permit links (either existing links within the page
or open hypermedia links) and fluid annotations to
share the same anchor, PSpecs also allow the
annotator to specify a different activation event (e.g.,
shift + mouseEnter or shift + leftMouseClick) for the
fluid annotation than co-located links. See Figure
3.[jdm3]

• Glosses are expressed in HTML and can contain
embedded links, rich formatting, and images. Open
hypermedia links and/or fluid annotations can also be
added to glosses.

It is illustrative at this point to compare fluid annotations with
two previous efforts to display supporting material on Web
pages: the well-known ToolTip-style popup windows for HTML
link titles [33] and the iMarkup annotation system for
augmenting existing Web pages [29]. Although popup link
titles provide a way to present supporting information to the
reader, they cannot be added by the reader. iMarkup
annotations can be added by reader. Both ToolTip popups and
iMarkup annotations appear on an overlaid virtual layer rather
than being combined with the original page. This simplifies
implementation, but occludes material on the original page.

ToolTip popups have the additional flaw that they are very
transitory: only one can be open at a time and users cannot
interact with their contents (e.g., the user cannot copy/paste
from a ToolTip). iMarkup annotations do not share these flaws.
To avoid these problems of occlusion and limitations on
opening and interacting with annotations, we have chosen to
combine the annotations with the original page. Animation is a
strong asset in managing the temporary addition and subtraction
of annotations on the page.
Animation helps readers easily process the changes to a page
required to display a gloss. If glosses are placed nearby,
animation can be used to move surrounding text out of the way
in a visually clear way. On the other hand, if glosses are distant,
animation can be used to guide the reader’s attention to and
from them, so that the gloss material is not inadvertently missed.
Studies of Fluid Documents [46] showed that users can process
moving text even in a serious reading situation. They also
showed that distant glosses presented without animation were
frequently not seen.
In an effort to minimize clutter and distraction on the page when
annotations are closed, as well as to avoid altering page layout
(if desired), we have so far chosen not to insert special
annotation markers. This has two implications: finding
annotations is not necessarily obvious, and there is no special
annotation locus for behavior. We address the former issue in
two ways: anchor appearance can be adjusted to be visually
distinct from the underlying page as well as from ordinary links,
and a separate editor allows readers to list and filter existing
annotations and other augmented structures. We have solved
the latter problem with overloading behavior on the anchor as
part of the PSpec.
Similarly, although earlier versions of Arakne annotations
permitted changes to the anchor, such as insertion or
replacement of text, current fluid annotations do not permit such
modifications. This restriction is intended to maintain the
integrity of the existing page. Given appropriate safeguards
against rewriting that is invisible to readers, this policy could be
changed in the future if users find it worthwhile.

Figure 4. Nested open hypermedia links and annotations
inside glosses. Contemplating a car purchase, the reader has
created a gloss and then added three open hypermedia links
to it: to two reviews of the car and to a similar car. Another
reader has added nested annotation to clarify what makes
the car special.

Figure 3. Using fluid annotations to explain or preview
open hypermedia links and HTML links. To the left, the
annotator created two open hypermedia links (“This dog”
and “musher”) and then annotated the former with
explanatory text. On the right, the top musher “Dee Dee
Jonrowe” has a HTML link (notice the URL visible in the
bottom of the window). This link has been annotated with
the first sentences from the destination Web page to form
a link preview. Note that the visual appearance of anchors
composes: a double solid underline indicates an open
hypermedia link anchor, a broken single underline
indicates an annotation anchor, and the conventional
single solid underline indicates a HTML anchor.

163

5. BUILDING FLUID OPEN
HYPERMEDIA USING WEB STANDARDS
This section describes how the Fluid Open Hypermedia system
was implemented using DOM and CSS: what issues were
encountered, and how they were resolved.
The Fluid Open Hypermedia prototype allows readers to add
fluid annotations and multi-headed open hypermedia links to
third-party Web pages. Both links and annotations are tied to
anchors, which can be actuated by the user. The visual
appearance of anchors and glosses are governed by Presentation
Specifications. All these elements, known from open
hypermedia and previous fluid document prototypes, have been
mapped to the Web using the Document Object Model [16] and
Cascading Style Sheets [12].

5.1.1 Open Hypermedia Anchors
An open hypermedia anchor is a selection chosen to form the
source of a fluid annotation and/or the endpoint of an open
hypermedia link. The nature of the anchor will vary according to
the media type addressed. While the Arakne Environment has
previously explored externally-defined anchors into temporal
data [6], the current version is limited to text anchors.
Regardless of media type, anchors are defined by a Node
Specification, which specifies the object wherein the anchor
occurs. This node may currently be a Web page, a frame
hierarchy, or a gloss. The ability to address glosses as nodes
enables open hypermedia links and fluid annotations within
glosses, as shown in Figure 4[jdm4].
Furthermore, an anchor has a Location Specifier [25], which
designates a selection in a media type. As described above, these
currently only address text selections, but given the extensible
nature of open hypermedia location specifications, this
limitation may be lifted in the future. Location specifiers should
be extended to support arbitrary HTML elements, so that e.g. an
image can act as an anchor as well.
Additionally, an anchor contains arbitrary key/value-pairs[jdm5],
which may be used for e.g. semantic information.

5.1.2 Open Hypermedia Links
Using the Arakne Environment, annotators can create bi-
directional multi-headed links on arbitrary Web pages. If more
than one destination is available for a link, the destinations are
presented in a popup menu as the reader activates the link.

5.1.3 Fluid Annotations
A fluid annotation contains a text (i.e., the gloss) that is
presented when its anchor is activated. Because the gloss is
expressed as HTML, it can contain rich formatting and images.
Open hypermedia anchors can be added to a gloss, so fluid
annotations can contain open hypermedia links or other fluid
annotations. An example of a nested annotation can be seen in
Figure 4.[jdm6]

5.1.4 Presentation Specifications (PSpecs)
The user can format the appearance or presentation of anchors
and glosses. This formatting is accomplished through the
Presentation Specification or PSpec, which is authored using the
PSpec Editor in Arakne. One of the challenges faced by an
annotator is to properly style the annotations, so that they are
distinct without being jarring. Because the formatting parts of
the PSpec are expressed in CSS, anchors and glosses inherit
style from their context. In addition to the static formatting, the
PSpec is also used to designate how an anchor should be
actuated and how a gloss should be animated.
The editor used to create PSpecs can be seen in Figure 5[jdm7].

5.2 Rendering Fluid Annotations via DOM
The aim of the Fluid Open Hypermedia prototype is to provide
smoothly animated fluid annotations on arbitrary Web pages, in
combination with open hypermedia links and other hypermedia
structures. This section explains how this goal is accomplished
through the Render Engine component.
An overview of the relationship between the Arakne
Environment and the Render Engine can be seen in Figure
6[jdm8]. The Render Engine is a DLL that serves to connect
Arakne and the Microsoft Internet Explorer. The Render Engine
provides the Arakne Environment with an API to define
anchors, open hypermedia links, fluid annotations, and PSpecs,

Figure 5. The Presentation Specification (PSpec) Editor. This editor is used to specify the appearance and behavior of glosses and link
endpoints. Instances of all three tabs are shown (the left panels do not change).

164

and to receive events generated by the Web browser (including,
but not limited to the events designated to actuate links or
glosses). The Render Engine maintains the initial state of the
gloss (opened or closed), models the space available for glosses
on the Web page, and handles the animation of opening and
closing the glosses.
The first task of the Render Engine is to determine the current
location of the anchors. This is done through open hypermedia
Location Specifiers (LocSpecs) [24], similar to XPointer. An
anchor may be associated with both open hypermedia links and
fluid annotations, and are therefore declared separately from
these. Once an anchor location has been found, a tag is
created around it, and it is marked up according to its
Presentation Specification, which is pure CSS. At this point, the
Render Engine subscribes to all events generated by this
 tag. Of special interest is the event specified to be the
actuation command for this anchor (e.g. shift + mouseEnter). If
such an event is generated, the gloss associated with the anchor
should be displayed. The actuation event, as well any other
generated event, is also sent to Arakne. This gives Arakne the
opportunity to react to any event, as well as to define the gloss
on demand, rather than when the page is initially displayed.
When a gloss is to be displayed, its size and location must be
determined, and room on the page must be made, if necessary.
The resulting structure is illustrated in Figure 7[jdm9]. First, a
<div> tag is created between the end of the line containing the
anchor and the beginning of the following line. This creates the
Context box, which provides a static origin for its containing
box. Inside the Context box, another <div> tag is created,
which will contain the white space upon which the gloss will be
drawn. This creates the White Space box. Finally, the gloss is
inserted into the White Space box in a <div> tag. By this time,
the Gloss box has been generated and decorated using its
Presentation Specification, so that its size is known. In the case
of a “push-down” animation, the text below the anchor is
gradually pushed down, revealing the gloss. To accomplish this
effect, the Internet Explorer’s timer is started, and at each tick,
the Gloss box is made bigger. The White Space box will resize
to the point of accommodating the largest of its contained Gloss
boxes. Likewise, the Context box will accommodate the White
Space box. As this animation runs, the growth of the boxes will
push down the following lines. The animation terminates when
the Gloss box has reached its desired size.
The White Space box is necessary to handle the situation where
there is more than one annotation on a line, as shown in Figures
1 and 7[jdm10]. The initial implementation of the Render Engine

made room available for glosses by enlarging the Context box.

This worked fairly well, but not in the case illustrated by Figure
1[jdm11], where there are multiple anchors on the same line.
Opening multiple glosses would result in the following text
being pushed unnecessarily further and further down the page,
as each gloss would make room for itself again. By introducing
the White Space box, this problem was solved, as the White
Space box will grow or shrink no larger than its largest
contained Gloss box. In Figure 1, notice how the text is pushed
down to accommodate the largest gloss, and notice how the
largest gloss has been pushed slightly out of the way to make
room for the rest of the glosses. The boxes around the glosses
show the space needed for each.
The current version of the Render Engine only models the white
space that it has itself created on the page. A challenge for the
future is to extend this functionality, so that previously existing
white space on an unmodified Web page can be utilized when it
is sufficiently near the anchor.

5.3 Writing and Reading Fluid Annotations
The Arakne Environment is a collaborative hypermedia system.
Users may create annotations for their own use or for a wider
audience. Annotations can either be shared via the hypermedia
servers, or exchanged in the OHIF format [22]. This section
briefly outlines the typical interaction with the system.
Most authoring and browsing of fluid annotations and open
hypermedia links can be accomplished directly in the Internet
Explorer. The annotator can specify how links should be
followed and glosses should be opened. The default is “click”
for links, and “shift + MouseEnter” for glosses, but can be any
combination of mouse events and modifier keys that the
annotator wishes.
Open hypermedia links and glosses are typically authored via
context-dependent popup menus. Right-clicking on a text

Context box
White Space box
Gloss boxes

Anchor

Context box
White Space box

Anchors

Figure 7. The <div> boxes generated by the Render
Engine. The Context box forms a static origin for the
White Space box, wherein the Gloss boxes are found. This
example has two anchors and two open glosses.

Arakne
Environment

Internet Explorer

Render Engine

Animation Engine

Model

Document Object Model

modifications events

COM

Arakne
Environment

Internet Explorer

Render Engine

Animation Engine

Model

Document Object Model

modifications events

COM

Figure 6. The structure of the Fluid Open Hypermedia
system.

165

selection and selecting “Create Gloss” in the context menu
creates an open hypermedia anchor for the selection and opens
an auxiliary window in which the annotator can type the gloss
(using HTML, if desired) and select the styling of the
annotation. Once the window is closed, the Web page is
refreshed and the new annotation appears. Inserting open
hypermedia links and adding endpoints to existing open
hypermedia links is handled similarly. Endpoints and glosses
can also be removed through the right-click menu. The
commands available in the right-click menu depend on the state
of the system (is the user currently authoring a link?) and what
element the user has right-clicked on (a new selection vs. an
existing endpoint?). This is illustrated in Figure 8[jdm12], which
is a composite figure demonstrating the various context menus.
The appearance of fluid annotations and open hypermedia links
is specified by PSpecs, which are created using the PSpec Editor
shown in Figure 5[jdm13]. This tool allows for a varied set of
appearances (based on CSS) for open hypermedia link anchors,
annotation anchors, gloss text and gloss behavior. To reduce
annotator effort and to support meaningful shared visual
semantics, PSpecs are first-class objects that can be reused and
shared. Thus annotators will most often use an existing PSpec.

6. USING AND EXTENDING EMERGING
WEB STANDARDS
Based on our experiences with Fluid Open Hypermedia and the
ongoing standards work by the W3C, this section discusses

areas where the standards are moving in the right direction and
where they might yet be improved.

6.1 CSS3
The Fluid Open Hypermedia prototype relies heavily on DOM
for modeling and manipulating the structure of Web pages, and
on CSS for affecting the appearance as well as animation of
fluid annotations. The existing CSS standards (CSS1 and CSS2)
[12] are aimed at static page rendering: once a Web page have
been parsed, and its associated style sheets have been applied to
its DOM, the rendered result does not change. In contrast, the
animations performed by the Render Engine are handled by
gradually modifying the appearance (through DOM and CSS) of
the Web page. Dynamic Web pages are now quite common, with
behaviors such as rollover effects and unfolding menus as prime
examples. These modifications are usually handled through
JavaScript programs, which manipulate the DOM and style
sheet of the Web page. These scripts are however on an ad hoc
basis, and often vary depending on the Web browser used.
The work on CSS3 is currently in progress, and many new
technologies have been suggested for inclusion in this new
standard. These extensions include some that are of special
relevance to Fluid Open Hypermedia. BECSS (Behavioral
Extensions to CSS) [4] proposes a model to extend CSS with
behavior, so that the above-described dynamic HTML can be
handled directly through CSS.
Another interesting proposed extension is the support for ruby
[13]. A ruby is a small pronunciation guide close to a primary

Figure 8. Composite illustration of context-dependent right-click menus. Leftmost, the reader has selected “Technical Program”
and can add a new open hypermedia link or fluid annotation. Topmost, the reader has right-clicked on a link endpoint, and can
choose between following the link (which leads to the Sheraton Web site) or removing the anchor underlying the endpoint. Notice
how the link anchor PSpec has uppercased “SHERATON WAIKIKI HOTEL” to make it more visible. At the right edge, the reader
has selected “Sheraton Waikiki Hotel” and can create a new link or gloss, add the selection as an additional endpoint for the link, or
replace the existing endpoint (above) of the link with this selection. In all instances, selecting “cont...” in the menu produces the
standard Internet Explorer menu.

166

text. It is commonly used in Japan where it helps young or
foreign readers to grasp the meaning of the primary text. While
very useful in this context, this technology also has use for
general annotations. Using this technique, authors could place
small annotations on e.g. links.
The consequences of these suggested extensions of CSS are
interesting. Firstly, the flexibility and modularization provided
by CSS1 and CSS2 with regards to layout would be available to
behavior. Secondly, it would make it possible to provide
functionality similar to fluid annotations for ordinary Web
browsers without special software. While not necessarily
addressing externally stored annotations like Fluid Open
Hypermedia, it would allow Web page authors more tools to
ease the navigation of their readers.
One thing we have found lacking during the development of the
Fluid Open Hypermedia prototype is the notion of time in CSS.
It is not possible to designate that a certain markup should last
for a specified time. One obvious use of such a feature would
be to temporarily highlight a link destination. CSS offers pseudo
classes for the <a> tag, so that users can easily distinguish
between e.g. links that have been visited and others that have
not. Yet, these pseudo classes do not extend to the <a> tag
when it is used as a destination (through the name attribute) on
Web pages, leaving the reader to wonder where the destination
on the displayed part of the Web page is. If the destination could
be temporarily highlighted (also to distinguish from other
material on the page), there would be no confusion.
The Fluid Open Hypermedia prototype has demonstrated that
interesting results may be achieved by creatively using existing
Web standards. Reaching this point however required a fair
amount of development work, trying to make the Internet
Explorer do as we intended. This is acceptable for a research
prototype, but if the technologies described in CSS3 became
standardized, it would be much easier for others to follow suit.
Behavior should be standardized rather than handled through ad
hoc programming, and ruby offers discreet annotations on Web
pages (if nothing else as an alternative to ToolTip popups).

6.2 Annotea and Fluid Annotations
This section briefly describes the W3C Annotea framework,
compares it to fluid annotations, and finally proposes an
extension to Annotea to implement fluid annotations.

6.2.1 Annotea
Annotea [30] is a Web-based shared annotation framework
based on an open RDF infrastructure. Annotations are modeled
as a class of metadata. Annotations are viewed as statements
made by an author about a Web document. Annotations are
external to the documents and can be stored in one or more
annotation servers, e.g. implemented as a general RDF database.
A number of clients implement the Annotea framework:

• Amaya [1] provides native support for Annotea, for
publishing, querying, and discussion threads.

• Bookmarklets is a browser-independent JavaScript
interface to Annotea, which provides document-level
annotations and not fine-grained annotations that are
possible with Amaya.

• Annozilla [3] uses Annotea within Mozilla.
Annotea annotations are represented in a combination of RDF
[36], Dublin Core [18], XPointer [43], and XLink [42].

Annotations are (in Amaya) marked with a pencil icon on the
location pointed out by the a:context attribute in the source
document. The annotation text is stored either locally or on a
server as a separate HTML file (the a:body resource). At
runtime the annotation is spawned in a new browser window
with the Dublin Core attributes shown in a table before the
annotation text.

6.2.2 Comparing Annotea and Fluid Annotations
In contrast to Amaya’s new browser window, fluid annotations
grow smoothly out of the source text between the lines. The
open hypermedia LocSpec mechanism [24] is used to locate the
annotation in the source material. PSpecs (a concept originating
with the Dexter model [27]) are used to govern the appearance
and behavior of fluid annotations. LocSpecs (introduced in
[25]), PSpecs, and annotation text (or reference) is stored in the
XML-based OHIF format [22]. In the following we propose to
extend the Annotea framework with fluid annotations based on
our experiences in designing Fluid Open Hypermedia.

6.2.3 Fluid Annotation Proposal for Annotea
In order to implement fluid annotations, the Annotea framework
must be extended with PSpec information and a model for
rendering the PSpec info.
Annotea could be extended with a new name space specifying
the PSpec:
 xmlns:fluid=http://www...com/fluid/fluid-ns#
as illustrated in Figure 9[jdm14].
The inclusion of such a name space, together with the
functionality provided by the Render Engine regarding
presentation and animation, would provide Annotea with fluid
annotations. Systems not supporting gloss animation should
naturally ignore the fluid namespace.

6.3 XLink, XPointer, RDF and Fluid
Annotations
The Fluid Open Hypermedia system uses the OHIF [22] XML
format as the basis for storing annotations and other hypermedia
structures. The OHIF format uses the general LocSpec
mechanism proposed in [24], which is aimed at specifying
locations in arbitrary document types such as text, graphics,
audio, video, and CAD. With the emerging XPointer and XPath
standards we can start using these as LocSpecs for fluid
annotations in XML data. XPointer supports identification of
regions, e.g. the anchor for a fluid annotation, in XML
documents. XPointer allows for selection based on ids,
hierarchical structure (from XPath), or an arbitrary user
selection (e.g. selecting a string in the rendered XML
document). XPointer can address arbitrary XML documents,
and a given region may be identified using several locators -
XptrParts, which improves reliability, as one locator might fail
after a document has been edited. However, we still need to use
other means of location specification if we wish to provide fluid
annotations and links in non-XML documents.
For the purpose of providing fluid annotations we could replace
the linking and annotation mechanism of OHIF with the XLink
and RDF standard for representing links and annotation
relations, similar to what is done in Annotea. RDF is well suited
for representing the actual annotation and attributes as metadata,
however the presentation format and behavioral aspects require
extensions, as discussed in Section 6.1[jdm15].

167

Another important issue is how to address nested links or nested
annotations in a document. In the current Fluid Open
Hypermedia implementation, links to material located within
glosses are resolved by first retrieving the parent Web page of
the gloss, opening the gloss and locating the destination. This
does not fit well with the XLink philosophy of using URI and
XPointer as targeting mechanism, as there is no provision for
the opening of the containing gloss.
Finally, XLink is designed primarily for navigational
hypermedia, which is the classic hypermedia application. If we
consider general open hypermedia, other structuring
mechanisms have been introduced which cannot easily (or at all)
be described in terms of links. This goes e.g. for composites,
guided tours, spatial, or taxonomic hypermedia [24]. Thus
general open hypermedia structures combined with fluid
annotations still calls for the mechanisms of the OHIF format or
similar extensions to the XLink standard.

7. RELATED WORK
Recent interest in digital libraries has spawned a broader look at
various forms of annotation. In addition to Marshall’s
previously-mentioned analysis [32], the Notable project has
produced a useful conceptual framework to aid in the design of
annotation systems [15].
Although the Arakne system arose from the open hypermedia
community and its approaches, there have been other efforts
with related augmentation goals within the Web community.
[39] presents an abstract annotation architecture and discusses
how well current open and standard Web infrastructures support
varied implementations of it. Yawas [17] also uses the DOM to
provide fine-grained anchoring of annotations with customizable

annotation styling. However, these systems do not support the
richness of Fluid Open Hypermedia’s animated gloss
presentations, nested links and annotations, and broadly
customizable gloss and anchor appearance via CSS.
For a detailed comparison with ComMentor [37], DLS [11], the
Webvise system [23], the Arakne Environment [5], Microsoft
Office Web Discussions [10], and the XLibris prototype digital
reading appliance[38], see [44]. These systems all provide some
notion of annotating content, but none of them provides a fluid
annotation interface.
In the previous section we compared fluid annotations to
Annotea-based annotations on the Web [30]. Although neither
of the current Annotea clients (Amaya and Annozilla) provides a
fluid annotation interface, we have demonstrated how we could
extend Annotea to do so.
In addition to systems already covered, we have discovered two
new annotation facilities for the Web: a new version of iMarkup
and a new system called BrowseUp, which we will briefly
discuss here.
iMarkup [29] provides the richest user interface for Web
annotation to date. It supports both textual annotation
(underlines, highlights, etc.) and document-level annotation via
Post-It™-style sticky notes. Annotators can also draw freeform
ink on the page. Many different styles are available to support
varied users and usage. Recent additions include voice
annotations; transparent sticky notes that create a result similar
to the earlier Fluid overlay technique[45]; the ability to add one
or more links to a sticky note (these are global to the note – that
is, there are no fine-grained text anchors within the note); and
the ability to mark on PDF documents as well as on HTML

+

+

+

+

+

+

+

+

+

<?xml version="1.0" ?>
<r:RDF xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:a="http://www.w3.org/2000/10/annotation-ns#"
 xmlns:http="http://www.w3.org/1999/xx/http#"
 xmlns:d="http://purl.org/dc/elements/1.0/"
 xmlns:fluid="http://www...com/fluid/fluid-ns#">
 <r:Description>
 <r:type resource="http://www.w3.org/2000/10/annotation-ns#Annotation" />
 <r:type resource="http://www.w3.org/2000/10/annotationType#Comment" />
 <a:annotates r:resource="file:///C:/Program%20Files/Amaya/amaya/AmayaPage.html" />
 <a:context>file:///C:/Program%20Files/Amaya/amaya/AmayaPage.html#xpointer(string-
range(/html[1]/body[1]/div[1]/p[1],"",12,10))</a:context>
 <fluid:AnchorPSpec style="url(http://www...com/important.css)"/>
 <d:title>Annotation of Welcome to Amaya</d:title>
 <d:creator>Kaj Gronbak</d:creator>
 <a:created>2001-11-11T20:48:51</a:created>
 <d:date>2001-11-11T20:49:01</d:date>
 <a:body r:resource="file:///C:/WINNT/profiles/Kaj%20Gronbak/amaya/annotations/annots19c.2.html"
/>
 <fluid:GlossPSpec id="important"

 style="border: thin dotted black; font-size: small;"

 initial-state="closed">

 <fluid:animation type="push-down" duration="50"/>

 <fluid:actuation-open event="onMouseEnter" modifier="shift"/>

 <fluid:actuation-close event="onMouseLeave" modifier="shift"/>

 </fluid:GlossPSpec>

 </r:Description>
</r:RDF>

Figure 9. An Annotea annotation created with the Amaya browser and augmented with a fluid PSpec. A ‘+’ symbol in the left
column distinguishes the lines that comprise the fluid extension.

168

pages. These features, together with smooth integration with
Internet Explorer as an Explorer Bar or a menu extension and
good capabilities for organizing and sharing annotations, make
iMarkup a very usable and versatile tool.
However, despite a feature for shrinking annotations that are not
currently of interest (neither this minimization nor its dual
expansion is animated), iMarkup has a tendency to clutter and
obscure its page content. This may be appropriate for many
situations, but is not universally positive. iMarkup does not
allow as much appearance control or interaction control for text
annotations as does Fluid Open Hypermedia, nor does it
contribute to our understanding and development of standards
by making its mechanisms and algorithms public.
BrowseUp [7] is a recently released system that provides what
they call Virtual Links or oLinks (Object Links) on top of Web
pages. The system is similar to open hypermedia systems such as
WebCosm, Webvise, and Arakne. BrowseUp supports linking in
a separate layer on top of Web pages. Augmented content, such
as local files, is automatically converted into HTML and
uploaded to the BrowseUp server used by the client program.
BrowseUp uses its own proprietary data format stored in an
Oracle 8 based server. The oLinks can be assigned keywords,
thereby enabling searches. There is no separate notion of
annotations in BrowseUp. Instead, annotations are made as
links to a new page, which is uploaded to the BrowseUp server
and is thus accessible for specified groups of users. The link-
based annotations are presented as popups, similar to other
links.

8. FUTURE WORK
In the previous sections we have described the successful Fluid
Open Hypermedia prototype we have constructed to provide
fluid annotations using Web standards and open hypermedia
techniques. We see several promising directions of development
that will enable us to provide a more seamless reading and
annotation environment on the Web: developing an Annotea-
compliant Render Engine, providing link previews and other
Fluid Links-type behavior, better Web browser integration, and
developing a layout negotiation model for the Web.
We plan to develop an Annotea-compliant Render Engine for
fluid annotations, taking advantage of the proposed fluid
annotation namespace and the CSS-based PSpecs. This can be
done by implementing a small preprocessor to the current
Render Engine to parse the Annotea annotations, filtering out
the XPointer LocSpec information and the extended PSpec
information.
Fluid Links are a specific way to use glosses to improve
hypertext navigation [45]. Glosses can be placed on link
anchors to support readers in choosing among links and
understanding the structure of a hypertext. At each link anchor,
readers can either follow the link in the usual way or they can
first view the gloss “preview” in the context of the source page.
The contents of such glosses can potentially be computed
dynamically, removing the need for authors to construct them
individually. For example, gloss material can be automatically
retrieved or constructed from the destination page. Multi-way
links and nested glosses allow readers to skip through
intermediate nodes while still attending to their original source
context.
We see promise in using the concept of fluid annotation to
provide link previews. The links on a Web page (either

conventional or open hypermedia links) could be augmented
with fluid previews: a generated gloss containing metadata, or
extended with a preview grabbed from the first few sentences of
the target location.
The use of context-dependent menus in the Web browser is a
step towards tighter user interface integration with the Internet
Explorer. Other venues of integration could be the use of
Explorer Bars similar to iMarkup. Whether this is a viable
course remains future work.
The original Fluid Documents work matured to a point where
we could codify a simple yet powerful interaction language and
process between the primary document and a supporting
annotation that wished to display itself [14]. The primary
document and the annotations would express their constraints
and desires about their relative space and salience. Given a
better white space model for a Web page, it could be possible to
create similar RDF extensions to support such a negotiation in
the Web environment.

9. CONCLUSIONS
The scientific method and many other effective human activities
are based on a cycle of reading and writing of documents.
Annotation supports this cycle in individual documents, where a
reader instantly becomes a writer and the document becomes an
artifact that moves the activity forward. During the last five
years, we have been researching fluid annotations, animated
typographical changes to computer-based documents that
provide an improved annotation experience for readers. We
recently developed the Fluid Open Hypermedia prototype, an
extension to the Arakne Environment that supports the
authoring and reading of fluid annotations on third-party Web
pages. This paper focuses on how we used existing Web
standards, including DOM and CSS, to develop our research
prototype, and how various emerging Web standards, such as
XLink, XPointer and RDF, can be used and extended to support
fluid annotations. Ultimately, we hope that these emerging
Web standards will take full advantage of the capabilities of
computer-based documents to support a wide range of effective
and appealing annotation activities, from individual use to
global collaboration.

10. ACKNOWLEDGEMENTS
This work has been supported by the Danish Research Council's
Center for Multimedia (Project No. 9600869) and by the Center
for Human-Machine Interaction of the Danish Research
Foundation. We wish to thank Henning Jehøj for his work on
programming the Render Engine. We also thank the anonymous
reviewers for thoughtful comments that improved the
presentation and clarity of this paper.

11. REFERENCES
[1] Amaya. http://www.w3.org/Amaya/

[2] K. M. Anderson, R. N. Taylor, and E. J. Whitehead, Jr.
Chimera: Hypermedia for heterogeneous software
development environments. ACM Transactions on
Information Systems, 18(3), July 2000.

[3] Annozilla. http://annozilla.mozdev.org/

[4] Behavioral Extension to CSS.
http://www.w3.org/TR/becss

169

[5] N. O. Bouvin. Unifying strategies for Web augmentation.
Proceedings of ACM Hypertext 1999, p 91–100, 1999.

[6] N. O. Bouvin and R. Schade. Integrating temporal media
with open hypermedia on the World Wide Web.
Proceedings of the 8th World Wide Web Conference,
Toronto, Canada, p 375–387, 1999.

[7] BrowseUp. http://www.browseup.com/

[8] A.J. Brush, D. Bargeron, A. Gupta, JJ Cadiz. Robust
annotation positioning in digital documents. Proceedings
of CHI 2001, p 285–292, 2001.

[9] V. Bush. As we may think. The Atlantic Monthly,
Volume 176, No. 1, July 1945, p 101–108.

[10] J. J. Cadiz, A. Gupta, and J. Grudin. Using Web
annotations for asynchronous collaboration around
documents. Proceedings of CSCW 2000, p 309–318,
2000.

[11] L. A. Carr, D. DeRoure, W. Hall, and G. Hill. The
distributed link service: A tool for publishers, authors
and readers. Proceedings of the 4th International World
Wide Web Conference, 1995.

[12] Cascading Style Sheets. http://www.w3.org/TR/REC-
CSS1

[13] Cascading Style Sheet 3 module: Ruby.
http://www.w3.org/TR/2001/WD-css3-ruby-20010216/

[14] B. Chang, J. Mackinlay, P. Zellweger, T. Igarashi. A
negotiation architecture for fluid documents. Proceedings
of UIST 1998, p 123–132.

[15] S. Cousins, M. Baldonado, A. Paepcke. A Systems View
of Annotations. Xerox PARC Tech Report P9910022,
April 2000.http://www.parc.xerox.com/istl/members/bald
onad/tr00-notable.pdf

[16] Document Object Model. http://www.w3c.org/TR/REC-
DOM-Level-1/

[17] L. Denoue and L. Vignollet. An annotation tool for Web
browsers and its applications to information retrieval.
Proceedings of RIAO 2000, Paris, April 2000.

[18] Dublin Core Metadata Initiative. http://dublincore.org/

[19] G.W. Furnas. Generalized fisheye views. Human Factors
in Computing Systems, Proc. CHI 1986 Conference,
Boston, April 13-17, 1986, p 16–23.

[20] K. Grønbæk, N. O. Bouvin, and L. Sloth. Designing
Dexter-based hypermedia services for the World Wide
Web. Proceedings of ACM Hypertext 1997, p 146–156,
1997.

[21] K. Grønbæk, J. A. Hem, O. L. Madsen, and L. Sloth.
Cooperative hypermedia systems: A Dexter-based
architecture. Communications of the ACM, 37(2), p 64–
74, Feb. 1994.

[22] K. Grønbæk, L. Sloth, and N. O. Bouvin. Open
hypermedia as user controlled meta data for the Web.
Computer Networks, (33), p 553–566, 2000.

[23] K. Grønbæk, L. Sloth, and P. Ørbæk. Webvise: browser
and proxy support for open hypermedia structuring

mechanisms of the World Wide Web. Proceedings of the
8th World Wide Web Conference, p 253–267, 1999.

[24] K. Grønbæk and R. Trigg. From Web to Workplace:
Designing Open Hypermedia Systems. MIT Press,
Boston, USA, July 1999.

[25] K. Grønbæk and R. Trigg. Toward a Dexter-based model
for open hypermedia: Unifying embedded references and
link objects. Proceedings of ACM Hypertext 1996, p
149–160, 1996.[PTZ16]

[26] W. Hall, H. C. Davis, and G. Hutchings. Rethinking
Hypermedia: The MicroCosm Approach. Kluwer
Academic, Norwell, USA, 1996.

[27] F. Halasz and M. Schwartz. The Dexter hypertext
reference model. Communications of the ACM, 37(2), p
30–39, Feb. 1994. [PTZ17]

[28] T. Igarashi, J. Mackinlay, B. Chang, P. Zellweger. Fluid
visualization of spreadsheet structures. Proceedings of
Visual Languages 1998, 1998.

[29] iMarkup: Annotate, organize and collaborate on the Web.
http://www.imarkup.com/products/annotate_page.asp

[30] J. Kahan, M. Koivunen, E. Prud'Hommeaux, and R.
Swick. Annotea: An open RDF infrastructure for shared
Web annotations. Proceedings of the 10th World Wide
Web Conference. Hong Kong, 2001.

[31] D. Levy. I read the news today, oh boy: Reading and
attention in digital libraries. Proceedings of ACM Digital
Libraries 1997, p 202–211, 1997.

[32] C. Marshall. Toward an ecology of hypertext annotation.
Proceedings of ACM Hypertext 1998, 1998.

[33] J. Nielsen. Jakob Nielsen’s Alertbox for January 11,
1998. http://www.useit.com/alertbox/980111.html

[34] P. J. Nürnberg, J. J. Leggett, E. R. Schneider, and J. L.
Schnase. Hypermedia operating systems: A new
paradigm for computing. Proceedings of ACM Hypertext
1996, p 194–202, 1996.

[35] T. A. Phelps and R. Wilensky. Robust intra-document
locations. Proceedings of the 9th World Wide Web
Conference, p 105–118, 2000.

[36] Resource Description Framework (RDF).
http://www.w3.org/RDF/

[37] M. Roscheisen, C. Mogensen, and T. Winograd. Beyond
browsing: Shared comments, SOAPs, trails, and on-line
communities. Proceedings of the 3rd World Wide Web
Conference, 1995.

[38] B. Schilit, G. Golovchinsky, M. Price. Beyond paper:
supporting active reading with free-form digital ink
annotations. Proceedings of ACM CHI 1998, 1998.

[39] V. Vasudevan and M. Palmer. On Web annotations:
Promises and pitfalls of current Web infrastructure.
Hawaiian Int’l Conf. on Systems and Software, 1999.

[40] U. K. Wiil and J. J. Leggett. The HyperDisco approach to
open hypermedia systems. Proceedings of ACM
Hypertext 1996, p 140–148, 1996.

170

[41] P. Wojahn, C. Neuwirth, and B. Bullock. Effects of
interfaces for annotation on communication in a
collaborative task. Proceedings of CHI 1998, p 456-463,
1998.

[42] XML Linking Language (XLink).
http://www.w3.org/TR/XLink/

[43] XML Pointer Language (XPointer).
http://www.w3.org/TR/xptr/ [PTZ18]

[44] P. Zellweger, N. O. Bouvin, H. Jehøj, J. Mackinlay.
Fluid annotations in an open world. Proceedings of ACM
Hypertext 2001, pp. 9–18, 2001.

[45] P. Zellweger, B. Chang, J. Mackinlay. Fluid links for
informed and incremental link transitions. Proceedings of
ACM Hypertext’98, p 50–57, 1998.

[46] P. Zellweger, A. Mangen, P. Newman. Authoring fluid
narrative hypertexts using treetable visualizations.
Proceedings of ACM Hypertext 2002, to appear.

[47] P. Zellweger, S. Regli, J. Mackinlay, B. Chang. The
impact of fluid documents on reading and browsing: An
observational study. Proceedings of CHI 2000, 2000.

[48] P. Zellweger, J. Mackinlay. The Fluid Reading Primer:
Animated decoding support for emergent readers.
Proceedings of ED-MEDIA 2001, Tampere, Finland,
2001.

Vitae

Niels Olof Bouvin is a post doc at the Department of Computer Science, University of Aarhus, Denmark.
His research interests include open hypermedia systems, Web augmentation, structural computing, and
collaboration on the Web. Niels Olof Bouvin received his Ph.D. in 2001 from the Department of Computer
Science, University of Aarhus, Denmark.

Polle Zellweger received her PhD in computer science from the University of California at Berkeley,
where she focused on interactive source-level debugging of optimized programs. Motivated by a long-term
goal to improve people's interactions with documents and each other, she has explored a wide variety of
topics in user interfaces, hypertext, multimedia, electronic books, and collaborative work since joining
Xerox PARC in 1984. She has served as a member of the editorial board of ACM Transactions on
Information Systems. She was a visiting professor at the University of Aarhus, Denmark in the 2000-2001
academic year.

Kaj Grønbæk is professor at the Department of Computer Science, University of Aarhus, Denmark. He
finished his master's degree in 1988 and his Ph.D. in 1991 from the Dept. of Computer Science, University
of Aarhus, Denmark. His research interests are: Hypermedia; Multimedia, CSCW; Interactive Workspaces,
Participatory Design; User interface design; object oriented tools and techniques for system development.
He is serving as a member of the editorial board of the NRHM and CSCW journals.

 Jock Mackinlay received his PhD in computer science from Stanford University, where he pioneered the
automatic design of graphical presentations of relational information. He joined Xerox PARC in 1986,
where he collaborated with the User Interface Research Group to develop many novel applications of
computer graphics for information access, coining the term "Information Visualization". Much of the fruits
of this research can be seen in his recently published book, Readings in Information Visualization: Using
Vision to Think (Morgan Kauffman, 1999, co-authored with Stuart Card and Ben Shneiderman). He is a
member of the editorial board of ACM Transactions on Computer-Human Interaction. He was a visiting
professor at the University of Aarhus, Denmark in the 2000-2001 academic year.

171

