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Motivation

Traditional focus in algorithm design: Running Time

Here: Second core issue: Memory utilization.

Historically: Space-Efficiency considered due to high memory
prices.

Nowadays: Space-Efficiency considered due to:

– Larger datasets.

∗ High-resolution survellaince data
∗ Temporal and spatio-temporal data

– Smaller computing devices.

∗ Location based services for mobile communication net-
works

∗ Data analysis and propagation in sensor networks
– Limited (read/write)-memory

Sensor Networks

Car Navigation
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In-Place Algorithms

Definition 1.1

An algorithm A is called in-place iff during its execution A occupies

O (1) words, i.e. O (log2 n) bits, in addition to the space required by

the input.

(Assumption: Any pointer or data item occupies O (1) words.)

Consequences:

Classic recursive algorithms are not in-place.

{ Need to maintain a call stack of size 


(

logn

)

.

Algorithms using auxiliary pointer-based data structures (such as

balanced binary trees or linked lists) are not in-place.

{ Need to resort to implicit data structures.

Example:

Heapsort is an in-place algorithm (uses in-place data structure).
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Motivation: Dealing with Large Datasets

Algorithmic concepts for different scenarios:
Small, fast working memory. Data resides on slow disks.

– Cache-oblivious and I/O-efficient Algorithms: Minimize data (block) move-
ment.

Data is streamed and not constantly available.

– Streaming algorithms: (Approximation of) data aggregates.

(Almost) no memory to use additional to the given input.

Implicit data structures, in-place algorithms.

More motivation:

\The less memory used, the faster .."

Because of: Memory-, disk-, network latencies, less garbage to

collect, larger basecases . . .

In-place model \in between" I/O- and Streaming-Model . . .

May provide insights in computational complexity of problems.
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Previous Results

In-Place Sorting and Related Problems:

Heapsort [Floyd, 1964].

Linear-time merging/partitioning
[Mannila & Ukkonen, 1984; Geffert et al., 2000; Katajainen & Pasanen, 1999]. . .

Linear-time k-selection [Carlsson & Sundström, 1995; Geffert & Kollar,

2001; Bose et al., 2006].

In-Place, Cache-Oblivious(!) Dictionary:

O (logn) update/queries [Franceschini & Grossi, 2003].
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Sapce-efficient Computational Geometry Results

In-Place Computational Geometry:

Closest Pair etc. [Bose et al., 2006].

Line-Segment Intersection [Bose et al., 2006; Vahrenhold, 2005].

Convex Hull and Maxima problems etc. [Brönnimann et al., 2004b;

Brönnimann & M.Chan, 2004; Blunck & Vahrenhold, 2006].

\Use-Polylog-Extra-Space-And-Time" Geometry Results:

3d-convex hull and related

[

Br�onnimann et al., 2004c

]

.

Multidimensional search sctructures

[

Br�onnimann et al., 2004a

]

.

Klee's Measure Problem

[

Chen & M.Chan, 2005

]

.
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In this lecture . . .
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Computing the Skyline

Maximal Points:

Given: Set P of n points in the plane.

p ∈ P is maximal ⇔
∀q ∈ P : p.x ≥ q.x ∨ p.y ≥ q.y

i.e., p 2 P is maximal i� no other q 2 P

in \upper-right quadrant" of p.

Union of maximal points:

`skyline', `pareto-optimal points'.

Objective:

Find \points" that cannot be \opti-

mized" in all d dimensions.

Generalizations:

De�nition generalizes to:

{ Arbitrary dimensions d.

{ 'Maxima' w.r.t. d arbitrary chosen co-

ordinate axes.
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Computing all skylines in-place

Layers of Maxima:

Compute `skyline' MAX(P) of P.

If P nMAX(P) not empty, set P :=

MAX(P) and repeat.

Number of iterations (layers) can

be linear in n.

Convex Layers:

de�ned analogical.

In-place setting:

Group points by layer.

In each layer: points sorted (by x).
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Computing the Skyline: Selecting Maximal Points in 2D

Presort points by y-coordinate using, e.g., heapsort.

Sweep top-down, maintain lowest maximal point (='tail') seen so far.

{ Invariant: Next point p: is maximum ) p right of tail.

Swap maximal points to the front of the array.

\Skyline" (in <

x

-order): In-place, O

(

n logn

)

(sort & scan).
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Computing the Convex Hull in 2D:Graham's Scan

Presort points lexicographically using, e.g., heapsort.

Sweep left-right, maintain last two convex hull points seen so far.

{ Invariant: Point q not on upper convex hull i� (p; q; r) form a left-turn.

Swap upper hull points to the front of the array; then compute lower hull ..

Convex hull: In-place, O

(

n logn

)

(sort & scan)

[

Graham, 1972

]

.
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Presort points lexicographically using, e.g., heapsort.

Sweep left-right, maintain last two convex hull points seen so far.

– Invariant: Point q not on upper convex hull iff (p, q, r) form a left-turn.

Swap upper hull points to the front of the array; then compute lower hull ..

µi  
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µ0 µ1 µ2 µ3
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(
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[
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]

.

Henrik Blunck Implicit Computation Geometry 12



Computing the Convex Hull in 2D:Graham’s Scan

Presort points lexicographically using, e.g., heapsort.

Sweep left-right, maintain last two convex hull points seen so far.

– Invariant: Point q not on upper convex hull iff (p, q, r) form a left-turn.

Swap upper hull points to the front of the array; then compute lower hull ..

µi  
: convex hull

      points

µ1

µ2

µ3

µ4
µ5

µ0

µ0 µ1 µ2 µ3 µ4 µ5

Convex hull: In-place, O (n logn) (sort & scan) [Graham, 1972].
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Computing the Convex Hull in 2D output-sensitive [Chan, 1996]

Chan’s output-sensitive algorithm:
Avoid global presorting (if h << n ).

Speed up Jarvis' March:

{ Bundle input in H groups G

1

; : : : ; G

H

{ Graham-Scan each group to build CH(G

1

); : : : ; CH(G

H

).

{ Jarvis-march with CH(G

1

); : : : ; CH(G

H

) (instead of points) as input-objects.

� To �nd next CH-vertex p

k

+1: Compute tangents to G

1

; : : : ; G

H

, each by

binary search on a CH(G

i

).

{ ) Runnig time: O

(

n=H �H � log

2

H + H � n=H � log

2

H

)

= O

(

n � log

2

H

)

Doing rounds: \Guess" h by choosing H = 2

2

1

;2

2

2

; : : :

) Global runnig time (with log

2

H = 2

t

):

O

�

P

dlog

2

log

2

he

t

n � 2

t

�

= O

�

n � 2

dlog

2

log

2

he+1

�

= O

(

n � log

2

h

)

:
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– Jarvis-march with CH(G1), . . . , CH(GH) (instead of points) as input-objects.

∗ To find next CH-vertex pk +1: Compute tangents to G1, . . . , GH, each by
binary search on a CH(Gi).

– ⇒ Runnig time: O (n/H ·H · log2 H + H · n/H · log2 H) = O (n · log2 H)

Doing rounds: \Guess" h by choosing H = 2

2

1

;2

2

2

; : : :

) Global runnig time (with log

2

H = 2

t

):

O

�

P

dlog

2

log

2

he

t

n � 2

t

�

= O

�

n � 2

dlog

2

log

2

he+1

�

= O

(

n � log

2

h

)

:

3-44© Klaus Hinrichs Algorithmische Geometrie I – Konvexe Hülle

… Algorithmus von Chan …

• Beschleunigung des Einwickelschrittes durch Preprocessing:
– Wähle 1 ≤ m ≤ n und partitioniere die Menge S der n Punkte in

Èn/m˘ Teilmengen Si der Größe ≤ m.
– Berechne mit Graham's scan die konvexe Hülle CHi jeder Teilmenge

Si in jeweils O(m·log m) Zeit
fiÈn/m˘ möglicherweise überlappende konvexe Polygone CHi mit

jeweils höchstens m Eckpunkten werden bestimmt in

O((n/m)·m·log m) = O(n·log m) Zeit.

– Einwickelschritt: Bestimme nächste
Kante der konvexen Hülle CH von S
aus den Èn/m˘ Tangenten an die
konvexen Polygone CHi.

pk–1

pk

pk+1
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How to run Chan’s algorithm in-place?

Problems to solve:

H can be stored in single extra word ⇒ Only one round to consider.

Where to (out)put convex hull vertices?

Where to store convex hulls of the groups G

1

; : : : ; G

H

?

{ How to arrange w/o extra space G

i

's and global convex hull?

{ How to store sizes jG

i

j and jCH(G

i

)j?

Extra run time cost of in-place solution:

Binary search on G

i

(instead of on CH(G

i

)). O

(

1

)

per search step.

Recompute two CH(G

i

) for every output vertex p

k

. O

�

H

2

log

2

H

�

) Global costs still in O

(

n � log

2

h

)

for h < n= log

2

n.

For larger h: Just run Graham's Scan.

) O

(

n � log

2

h

)

in-place convex hull computation.
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How to run Chan’s algorithm in-place?

Problems to solve:

H can be stored in single extra word ⇒ Only one round to consider.

Where to (out)put convex hull vertices?

Where to store convex hulls of the groups G1, . . . , GH?

– How to arrange w/o extra space Gi’s and global convex hull?
– How to store sizes |Gi| and |CH(Gi)|?

Extra run time cost of in-place solution:

Binary search on Gi (instead of on CH(Gi)). O (1) per search step.

Recompute two CH(Gi) for every output vertex pk. O
(
H2 log2 H

)
⇒ Global costs still in O (n · log2 h) for h <

√
n/ log2 n.

For larger h: Just run Graham’s Scan.

⇒ O (n · log2 h) in-place convex hull computation.
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Computing Layers of Maxima

Def. of ’Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P \ MAX(P) not empty, set P :=
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.

In each layer, sort by x.

Caveat:

Na��ve approach: Iteratively compute sky-

lines.

Cost: O

(

n logn

)

time per layer, i.e.,

O

�

n

2

logn

�

time in total.
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Computing Layers of Maxima

Def. of ’Layers of Maxima’:

Compute ‘skyline’ MAX(P) of P.

If P \ MAX(P) not empty, set P :=
MAX(P) and repeat.

Number of iterations (layers) can be lin-
ear in n.

To achieve (in in-place setting):

Group points by layer.
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Computing Layers of Maxima in-place: Overview

Agenda:

Compute (and arrange!) all points on each of the O (n) layers in-place.

Approach:

Process multiple layers at a time.

Number of batches: O

(

logn

)

.

Per batch:

{ Process O

(

n= logn

)

layers at a time by . . .

{ sweeping the input array (similar to skyline sweep).

{ Maximum allowed cost: O

(

n

)

time per batch, i.e., no pre-sorting.

Charging scheme: Spend extra O

(

logn

)

time per point processed.
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For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

L
h-1

L
h

L
κ-1

τ
hτ

κ-1 ...

...
τ

h-1

In-place, O

(

logn

)

time per point ) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18



For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

L
h-1

L
h

L
κ-1

τ
hτ

κ-1 ...

...
τ

h-1

τ0 τh τκ-1... ...

tails of  L1... Lκ-1

In-place, O

(

logn

)

time per point ) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18



For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

p

L
h-1

L
h

L
κ-1

τ
hτ

κ-1 ...

...
τ

h-1

τ0 τh τκ-1 p... ...

processed

tails of  L1... Lκ-1 current

In-place, O

(

logn

)

time per point ) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18



For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

p

L
h-1

L
h

L
κ-1

τ
hτ

κ-1 ...

...
τ

h-1

τ0 τh τκ-1 p... ...

processed

tails of  L1... Lκ-1 current

In-place, O

(

logn

)

time per point ) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18



For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

p

L
h-1

L
h

L
κ-1

τ
hτ

κ-1 ...

...
τ

h-1

τ0 τh τκ-1 p... ...

processed

tails of  L1... Lκ-1 current

In-place, O

(

logn

)

time per point ) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18



For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

L
h-1

L
h

L
κ-1

τ
h

τ
κ-1 ...

...
τ

h-1

τ0 τh τκ-1... ...

processed

tails of  L1... Lκ-1

In-place, O

(

logn

)

time per point ) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18



For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

L
h-1

L
h

L
κ-1

τ
h

τ
κ-1 ...

...
τ

h-1

τ0 τh τκ-1... ...

processed

tails of  L1... Lκ-1

p

current

p

In-place, O

(

logn

)

time per point ) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18



For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

L
h-1

L
h

L
κ-1

τ
h

τ
κ-1 ...

...
τ

h-1

τ0 τh τκ-1... ...

processed

tails of  L1... Lκ-1

p

current

p

In-place, O

(

logn

)

time per point ) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18



For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

L
h-1

L
h

L
κ-1

τ
h

τ
κ-1 ...

...
τ

h-1

τ0 τh τκ-1... ...

processed

tails of  L1... Lκ

τ
κ

τκ

In-place, O

(

logn

)

time per point ) O

(

n logn

)

overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18



For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

L
h-1

L
h

L
κ-1

τ
h

τ
κ-1 ...

...
τ

h-1

τ0 τh τκ-1... ...

processed

tails of  L1... Lκ

τ
κ

τκ

In-place, O (logn) time per point ⇒ O (n logn) overall.

Use this algorithm to count points on topmost layers. =)

Henrik Blunck Implicit Computation Geometry 18



For starters: Counting the Number of Layers

Sweep points top-down, maintain tail τi for each layer Li in (in-
verse) <x-order.

L
h-1

L
h

L
κ-1

τ
h

τ
κ-1 ...

...
τ

h-1

τ0 τh τκ-1... ...

processed

tails of  L1... Lκ

τ
κ

τκ

In-place, O (logn) time per point ⇒ O (n logn) overall.

Use this algorithm to count points on topmost layers. =⇒
Henrik Blunck Implicit Computation Geometry 18



Counting the Points on the Topmost κ Layers

Fix κ ∈ ω(1) and run essentially the same algorithm.

Increment a global counter per “tail”-update. O

(

logn

)

/point

A closer look:

Query: Is some point p not on topmost � layers? O

(

1

)

/point

L
h-1

L
h

L
κ-1

τ
hτ

κ-1 ...

...

τ
h-1

τ0 τh τκ-1... ...

tails of  L1... Lκ-1

Sum: O

(

n+ � logn

)

, � =

P

��1

i=0

jL

i

j.

To compute each jL

i

j. . .

. . . we need to increment a coun-

ter c

i

for each update of �

i

.

Wait a minute!

Did you say \� 2 !(1)"?

Where/how to store � counters?
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A closer look:
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Finding “extra” space

Space needed: κ ∈ ω(1) counters.

Bit-encoding technique

[

Munro, 1986

]

:

Use permutation of two adjacent elements to encode one bit.

p <

y

q: pq � 0, qp � 1. Counter: 2dlog

2

ne elements.

Set � = n= log

2

n ) � counters need n representing points.

Partitioning the input array:

Start working on the �rst n entries.

Use last n entries for counters.
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Extracting the Topmost κ Layers

Setup:

Compute size ci of i-th layer, 0 ≤ i < κ= 1
6n/ log2 n.

Compute maximal j s.t.

P

j

i=0

c

i

� n.

Extracting the topmost j layers:

Combine extraction with counting sort.

Maintain \tails" in \work space"; construct layers in sorted order

in \scratch space".

Move constructed layers to front.

work space

0 n/3 2n/3

scratch space counter space

n-1
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Extracting All Layers–I

First phase, i.e., for earlier iterations:

Construct (groups of 1
6 ·

n
logn) layers in first part of the array.

work space

0 n/3 2n/3

scratch space counter space

n-1

Analysis:

Cost per iteration that processes all � points on � layers:

O

(

n+ � logn

)

.

Invariant: Keep unprocessed(!) points in sorted <

y

-order.

No more than O

(

logn

)

such iterations, i.e., O

(

n logn

)

global cost.
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Construct (groups of 1
6 ·

n
logn) layers in first part of the array.

work space

0 n/3 2n/3

scratch space counter space

n-1

Analysis:

Cost per iteration that processes all ξ points on 1
6 ·

n
logn layers:

O (n + ξ logn).

Invariant: Keep unprocessed(!) points in sorted <y-order.

No more than O (logn) such iterations, i.e., O (n logn) global cost.
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Extracting All Layers–II

Second phase (with a grain of salt):

Construct (in O (n logn) time) one layer crossing the boundary

between work and scratch space using the skyline algorithm.

work space

0 n/3 2n/3

scratch space counter space

n-1

Third phase i.e., for later iterations:

Construct (groups of � ) layers in second part of the array.

O

(

n+ � logn

)

time to process � layers with � points.

Whenever scratch space is too small, perform skyline computa-

tions on subarrays of geometrically decreasing size ) O

(

n logn

)

.
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Third phase i.e., for later iterations:

Construct (groups of 1
6 ·

n
logn) layers in second part of the array.

O (n + ξ logn) time to process 1
6 ·

n
logn layers with ξ points.

Whenever scratch space is too small, perform skyline computa-

tions on subarrays of geometrically decreasing size ⇒ O (n logn).
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Repairing the Layer Order

Finishing up:

Bit-encoding corrupts layer order (locally).

Repairing after last iteration by linear time sweep:

Each bit-neighbour pair (q, r) can be correctly ordered by only

looking at q, r and predecessor p:

r|q

q|r

q

rr

r r

(see figure to the right)

(see figure to the right,
 with q and r exchanged)

q|r rqor

r|q qror

pq|r
prq

p|rqq

r p

p

p

p

p(2)

(1)

⇒ Layer order repairable by linear scan.

⇒ O (n · log2 n) in-place computation of layers of maxima.
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Convex layers computation
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Ideas applicable also to convex layers problem?

Applicable:

{ Sweep-framework.

{ Maintainance of tails for each layer.

Problem:

A point changes its convex layer O

(

n

)

times during

sweep.

Solutions (for 2D layers and 3D hull)?

for 2D convex layers?

for 3D convex hull?
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Computing the skyline in 3D

Time-Optimal algorithm [Kung et al., 1975]:

Do divide-and-conquer along z.

For each conquer-step:

– Problem broken down to 2D . . .
– Divide in upper and lower part.
– Simultanious y−sweep over upper and lower maxima and exploit:
– For each maximum of P|z>ζ: on skyline (of whole input).
– For each maximum of P|z≤ζ: on skyline ⇒ x-larger than actual tail.

Making it in-place:

Use in-place recursion framework

[

Bose et al., 2006

]

.

For each conquering: Explicit reconstruction of skyline bounds.

. . . Maxima of P|z≤ζ Maxima of P|z>ζ . . .

`b `′b b(`b + `e)/2c `′e `e

⇓

. . . Maxima of P|z≤ζ ∪ P|z>ζ . . .

`b `′ `e
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Convex hull and layers computation

Solutions (for 2D layers and 3D hull):

Build recursively defined hull data structure . . .

. . . then remove points iteratively.

) 2D Convex layers in O

(

n log

2

n

)

time

[

Chazelle, 1985

]

. In-place variant?

) 3D Convex hull in O

�

n log

3

2

n

�

time and O

(

1

)

space

[

Br�onnimann et al.,

2004a

]

. Running time improvable?

11 4 3 9 1 7 102 5 8 6 12

{11,4,1,5,12}, 3

{ }, 1 { }, 1 {8}, 1 {6}, 1

{2}, 1

{ }, 1{3,9}, 2

{7}, 2

{ }, 1 {10}, 1
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Overview

1. Introduction: Motivation for implicit computation

2. Skylines and convex hulls
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